01;03

Уравнения поведения вектора ядерной намагниченности текущей жидкости в условиях модуляции магнитного поля в катушке нутации

© В.В. Давыдов, В.И. Дудкин, А.И. Елисеев

Санкт-Петербургский государственный политехнический университет E-mail: Davydov_vadim66@mail.ru

Поступило в Редакцию 2 декабря 2014 г.

Представлена новая методика описания формирования линии нутации в условиях модуляции постоянного магнитного поля переменным магнитным полем. Исследованы зависимости формы линии нутации (число пиков, их амплитуды и ширина) от параметров поля модуляции и величины неоднородности магнитного поля в зоне размещения катушки нутации.

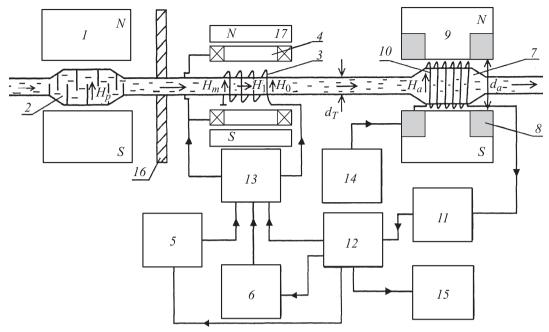
В настоящее время расходомеры, основанные на ядерно-магнитном резонансе (ЯМР), находят множество различных применений: в атомной энергетике для контроля работы систем охлаждения, в отраслях промышленности, где используются агрессивные среды (например, кислоты и щелочи) или биологические растворы, при работе с которыми необходимо соблюдать условия стерильности, а также для контроля технологических процессов в нефтеперерабатывающей промышленности [1-4]. В ЯМР-расходомерах полностью исключен контакт измерительных систем с текущей средой по сравнению с другими типами расходомеров. Другое достоинство ЯМР-расходомеров — измерение расхода q, производится в реальном масштабе времени. Прибор не нуждается в предварительной градуировке и обладает высокой точностью измерения (погрешность 0.3-0.4%) [1,5-7]. Еще одним преимуществом ЯМР-расходомеров перед другими измерителями расхода является возможность реализовать в нем режим работы релаксометра введением дополнительных электронных блоков без изменения конструкции магнитной системы и схемы протекания жидкой среды. Этот режим позволяет измерять константы релаксации текущей жидкой среды, по которым можно контролировать изменение ее агрегатного состояния

или физических условий (например, наличие примесей в среде или измерение температуры) [4–6,8].

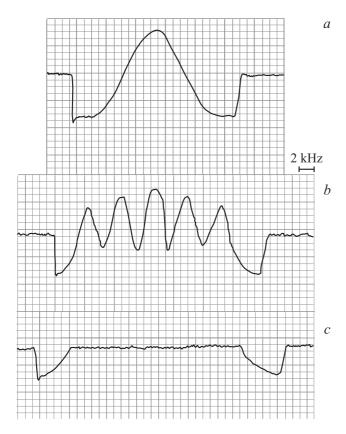
В применяемых в настоящее время измерителях физических величин (магнитометрах, меточных расходомерах — релаксометрах и т.д.), принцип действия которых основан на использовании явления ядерного магнитного резонанса в текущей жидкости, при проведении измерений используется зависимость амплитуды регистрируемого сигнала ЯМР от амплитуды H_1 или частоты ω_n радиополя в катушке нутации (линии нутации) [4–9]. Зная особенности механизма формирования линии нутации, можно разрабатывать новые методы измерений и совершенствовать конструкцию приборов для улучшения их метрологических характеристик.

Указанная ранее погрешность измерения q в меточном ЯМРрасходомере достигается за счет высокой крутизны склона S_n линии нутации [4-9]. Но при быстром изменении q текущей среды, особенно для линии нутации с высокой S_n , может произойти изменение амплитуды и фазы регистрируемого сигнала ЯМР, что приведет к увеличению погрешности измерения — на практике до 5%. Это очень актуально при измерении малых q. Данная проблема была решена авторами размещением катушки нутации в поле между полюсами постоянных магнитов с индукцией $B_0 = 0.038\,\mathrm{T}$ и неоднородностью $1.4 \cdot 10^{-2} \, \mathrm{cm}^{-1}$, которое модулируется радиочастотным магнитным полем. Под действием поля модуляции линия нутации уширяется и приобретает гребенчатую структуру в виде линий — сателлитов различной амплитуды и ширины, напоминающих явление параметрического резонанса в оптически ориентированных атомах [10-13]. Подбирая параметры поля модуляции, авторам удалось уменьшить амплитуды линий — сателлитов до уровня шумов. Полученный результат позволил меточному ЯМР-расходомеру работать в новом режиме измерения от U_c до 0, где U_c — амплитуда сигнала ЯМР при $H_1 = 0$, а значение 0 в сечение регистрации дает "отмеченная" жидкость (от инвертированного сигнала ЯМР). Это режим работы позволяет исключить описанные выше изменения амплитуды и фазы регистрируемого сигнала ЯМР при быстром изменении q.

Теоретическое описание явления параметрического резонанса представлено в работах [10-13] для случая, когда на атомную систему одновременно действует несколько полей и в оптически ориентированных атомах ${\rm Rb}^{87}$, "одетых" радиочастотным магнитным полем вида


 $H_R\cos(\omega t)$, наблюдается параметрический резонанс, который возбуждается образовавшимся эффективным радиочастотным магнитным полем $H_{eff}\cos(\Omega t)$. В этом случае в спектре поглощения "одетого" атома происходит параметрическая конверсия частоты. Но намагниченная жидкость в катушке нутации под действием переменных полей находится ограниченный интервал времени, а в работах [10-13] — все воздействия носят постоянный характер. Кроме того, для получения максимального отношения сигнал/шум при регистрации сигнала ЯМР с инверсией намагниченности в катушке нутации должно выполняться следующее соотношение [1,4,5,7,8]:

$$\gamma H_1 \frac{V_n}{q} = \pi,\tag{1}$$


где V_n — объем катушки нутации. Таких ограничений по полю H_1 в работах [10-13] нет. Поэтому цель работы — вывод уравнения движения вектора намагниченности в катушке нутации с учетом неоднородности магнитного поля H_0 в зоне ее размещения в условиях модуляции поля H_0 переменным магнитным полем и обоснование методики расчета линии нутации.

На рис. 1 представлена экспериментальная установка, собранная на основе классических схем ЯМР-расходомеров и релаксометров, принцип работы которых подробно рассмотрен в [1,4–6,8]. Новыми элементами в собранной экспериментальной установке являются постоянный магнит 17 с индукцией $B_0=0.038\,\mathrm{T}$ и неоднородностью $1.4\cdot 10^{-2}\,\mathrm{cm}^{-1}$, в который помещены катушка нутации и катушки модуляции поля B_0 , подключенные к радиочастотным генераторам 5 и 6.

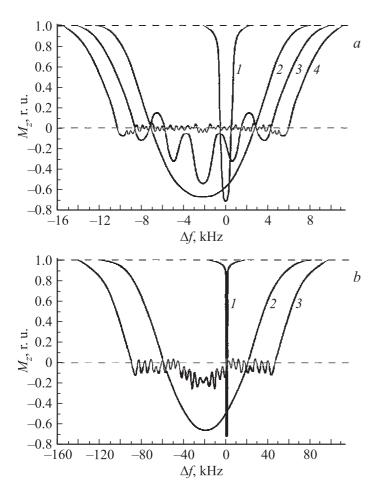
На рис. 2 в качестве примера представлены экспериментальные записи линий нутации, полученные в условиях сканирования частоты генератора 5 при различных амплитудах и частотах поля модуляции при $q=29\,\mathrm{ml/s}$ для водопроводной воды при $T=14.5^{\circ}\mathrm{C}$ (времена продольной и поперечной релаксации жидкости $T_1=1.23\,\mathrm{s},\ T_2=1.38\,\mathrm{ms}$). При модуляции постоянного магнитного поля H_0 переменным магнитным полем H_m с частотой f_m форма линии нутации приобретает гребенчатую структуру в виде линий-сателлитов. Ее вид напоминает явление параметрического резонанса в оптически ориентированных атомах [10-13] или линию магнитного резонанса, детектируемую в

Рис. 1. Структурная схема меточного ядерно-магнитного расходомера-релаксометра: I — магнит-поляризатор; 2 — сосуд-поляризатор; 3 — катушка нутации; 4 — катушки модуляции; 5, 6 — генераторы катушек нутации и модуляции; 7 — сосуд-анализатор; 8 — катушки модуляции поля магнита-анализатора; 9 — магнит-анализатор; 10 — катушка регистрации сигнала ЯМР; 11 — схема регистрации сигнала ЯМР; 12 — схема обработки и управления; 13 — электронные ключи; 14 — радиочастотный генератор; 15 — схема индикации; 16 — магнитный экран; 17 — постоянный магнит.

Рис. 2. Экспериментальная запись линии нутации при $H_1 = 15.11$ A/m. Графикам a, b и c соответствуют значения $H_m(A/m), f_m(kHz)$: 0, 0; 20.15, 7.0; 25.54, 2.8.

технике атомно-молекулярных пучков, где для уменьшения влияния градиента магнитного поля на ширину линии резонанса используют метод пространственного разделения зон взаимодействия атомного пучка с высокочастотным полем [8,12,14]. Но полученные в работах [10–13] решения уравнения движения вектора намагниченности в магнитном поле не отображают физические процессы в катушке нутации. Ис-

пользуемые ранее в работах [4,7,8,12] для описания движения вектора намагниченности в катушке нутации феноменологические уравнения Блоха не учитывают как модуляцию поля H_0 , так и неоднородность этого поля в зоне размещения катушки нутации. Поэтому на основании полученных экспериментальных результатов ранее проведенных исследований [2,5-8], а также с учетом результатов представленных в [9-13] и сделанных выводов авторы предлагают систему уравнений для описания движения вектора намагниченности в катушке нутации в системе координат с осями x, y и z, вращающимися с частотой ω_n ($f_n = \omega_n/2\pi$) вместе с полем H_1 вокруг оси z, по которой направлено постоянное магнитное поле H_0 , модулируемое радиочастотным магнитным полем H_m в следующем виде:


$$dM_x/dt + M_x/T_2 + \left[\Delta\omega + (\Delta H_0/t_n)\gamma t + \gamma H_m \sin(\omega_m t)\right]M_y = 0,$$

$$dM_y/dt + M_y/T_2 - \left[\Delta\omega + (\Delta H_0/t_n)\gamma t + \gamma H_m \sin(\omega_m t)\right]M_x + \gamma H_1M_z = 0,$$

$$dM_z/dt + M_z/T_1 - \gamma H_1M_y - M_0/T_1 = 0,$$
(2)

где $\Delta\omega=\omega_0-\omega_n$ — расстройка частоты нутации ω_n от частоты прецессии намагниченности в поле H_0 ($\omega_0=\gamma H_0$), t_n — время нахождения сегмента жидкости под действием магнитных полей в катушке нутации, ΔH_0 — неоднородность магнитного поля в зоне размещения катушки нутации, H_m и ω_m — амплитуда и частота модулирующего поля. Причем вектор линейно поляризованного поля H_1 направлен по оси x. Кроме того, выполняется условие, которое подтверждается экспериментально $M_p=\chi_0 H_p\gg M_0=\chi_0 H_0$. Это означает, что постоянным слагаемым M_0/T_i в уравнениях (2) можно пренебречь.

В используемых в настоящее время ЯМР-расходомерах условие адиабатической теоремы выполняется на всем пути протекания жидкости от катушки нутации 3 до катушки регистрации 10. Поэтому θ — угол изменения ориентации вектора намагниченности M_p , заданный π -импульсом (1) радиополя H_1 в катушке нутации, сохраняет свое значение до поступления текущей жидкости в катушку регистрации 10. Амплитуда регистрируемого сигнала ЯМР в схеме регистрации 11 будет пропорциональна продольной составляющей вектора намагниченности M_z текущей жидкости, так как поперечная составляющая вектора намагниченности рассеивается в неоднородных магнитных полях магнитов поляризатора 1 и анализатора 9. Решая (2) относительно M_z , M_x

Рис. 3. Расчетная зависимость величины продольной компоненты M_z намагниченности ядер от величины расстройки частоты от резонанса Δf при $t_n=0.0034$ s для водопроводной воды с $T_1=1.23$ s и $T_2=1.38$ ms. a — графики получены при $H_1=17.5$ A/m. Графику I соответствует $\Delta H_0=0$ и $H_m=0$, графикам 2, 3, 4 соответствует $\Delta H_0=147.8$ A/m, а также H_m в A/m и f_m в kHz: 0, 0; 29.3, 8.5; 42.4, 4.3. b — графикам I, 2, 3 соответствует ΔH_0 , H_I , H_m в A/m и f_m в kHz: 0, 17.5, 0, 0; 1477.8, 20.3, 0, 0; 1477.8, 20.3, 47.2, 9.8.

и M_y для различных параметров магнитных полей, соответствующих проведенным экспериментам, можно получить зависимость M_z от $\Delta \omega$, которая будет воспроизводить форму линии нутации, получаемую в эксперименте.

На рис. З в качестве примера представлены полученные теоретические зависимости продольной компоненты намагниченности M_z на выходе катушки нутации от $\Delta \omega$ (линия нутации) для различных значений магнитных полей и величин неоднородности ΔH_0 .

На основании проведенных исследований можно сделать вывод, что предложенная авторами система уравнений (2) для описания движения вектора намагниченности в катушке нутации позволяет учитывать влияние неоднородности магнитного поля в зоне размещения катушки нутации на форму линии, а также отображает физические процессы при модуляции постоянного магнитного поля H_0 переменным магнитным полем. Проведенные расчеты и экспериментальные исследования формы линии нутации позволили определить интервал параметров поля модуляции (H_m и f_m) для получения линий-сателлитов

$$H_1 \leqslant H_m \leqslant 3 H_1, \tag{3}$$

$$5/t_n \leqslant f_m \leqslant 40/t_n$$
.

В случае невыполнения хотя бы одного из условий неравенства (3) или условия по значению неоднородности магнитного поля H_0 невозможно получить в случае модуляции поля H_0 переменным магнитным полем линию нутации (в виде линий-саттелитов), которую можно использовать для улучшения точности измерения физических величин в ЯМР-магнитометрах, расходомерах и релаксометрах.

Список литературы

- [1] *Давыдов В.В., Дудкин В.И., Карасев А.Ю.* // Известия высших учебных заведений. Приборостроение. 2013. Т. 56. № 10. С. 64.
- [2] *Давыдов В.В.* // Известия высших учебных заведений. Физика. 1999. Т. 42. № 9. С. 50.
- [3] Давыдов В.В., Дудкин В.И., Карасев А.Ю. // Известия высших учебных заведений. Приборостроение. 2014. Т. 57. № 3. С. 44.
- [4] Давыдов В.В., Дудкин В.И., Величко Е.Н., Карасев А.Ю. // Метрология. 2014. № 5. С. 32.

- [5] Davydov V.V., Dudkin V.I., Karseev A.Yu. // Optical Memory & Neural Networks (Information Optics). 2013. V. 22. N 2. P. 112.
- [6] Davydov V.V., Dudkin V.I., Karseev A.Yu. // Optical Memory & Neural Networks (Information Optics). 2014. V. 23. N 3. P. 170.
- [7] Давыдов В.В., Дудкин В.И., Карсеев А.Ю. // Письма в ЖТФ. 2014. Т. 40. В. 19. С. 96.
- [8] Давыдов В.В., Семенов В.В. // ПТЭ. 1999. $№ 3.\ C.\ 151–153.$
- [9] Александров Е.Б., Вершовский А.К. // УФН. 2009. Т. 179. № 6. С. 605–637.
- [10] Новиков Л.Н., Скроцкий Г.В., Соломахо Г.И. // УФН. 1974. Т. 113. В. 4. С. 597.
- [11] Новиков Л.Н., Скроцкий Г.В. // УФН. 1978. Т. 125. В. 3. С. 449.
- [12] *Семенов В.В., Никифоров Н.Ф., Ермак С.В., Давыдов В.В.* // Радиотехника и электроника. 1990. Т. 35. № 10. С. 2179.
- [13] Megbed А.Е. // ЖЭТФ. 1984. Т. 86. № 1. С. 302.
- [14] Рамзей Н. Молекулярные пучки. М.: Иностр. лит-ра, 1960. 456 с.