# Смещение спектров электролюминесценции структур $In_x Ga_{1-x} N/GaN$ с различным содержанием индия и различным материалом подложки, обусловленное эффектом Штарка и механическими напряжениями

© В.П. Велещук <sup>¶</sup>, А.И. Власенко, М.П. Киселюк, З.К. Власенко, Д.Н. Хмиль, В.В. Борщ+

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03680 Киев, Украина

<sup>+</sup> Полтавский национальный технический университет им. Юрия Кондратюка, 36011 Полтава, Украина

(Получена 25 ноября 2014 г. Принята к печати 11 декабря 2014 г.)

В работе измерено смещение между максимумами спектров электролюминесценции структур  $In_xGa_{1-x}N/GaN$  при прямом и обратном напряжении в зависимости от содержания индия x в квантовой яме и от материала подложки — SiC, AuSn/Si, Al $_2O_3$ . Установлено, что данное смещение увеличивается с ростом концентрации индия в слое  $In_xGa_{1-x}N$  и механических напряжений от подложки.

### 1. Введение

Для различных применений в оптоэлектронике, предполагающих подсветку и освещение, важно прогнозирование спектров электролюминесценции (ЭЛ) светодиодов (СД) InGaN/GaN, получения излучения в определенном наперед заданном спектральном диапазоне и его варьирование в широких пределах. Это достигается изменением толщины и содержания In в квантовых ямах (КЯ) InGaN.

На практике, однако, точного соответствия длины волны излучения содержанию Іп в КЯ не наблюдается. Для типичных светодиодных структур сдвиг в длинноволновый диапазон может составлять вплоть до нескольких десятков нанометров. Причинами могут быть внутренние механические напряжения и их градиент, пространственные флуктуации концентрации In, его сегрегация и особенно наличие пьезоэлектрической и спонтанной поляризации в нитридах [1-8]. Рассогласование параметров кристаллической решетки между слоями InGaN и GaN, а также между GaN и подложкой приводит к возникновению значительных механических напряжений. Из-за таких напряжений и спонтанной поляризации в КЯ InGaN существует большое суммарное встроенное поляризационное поле, что ведет к красному смещению спектра за счет квантово-размерного эффекта Штарка (КРЭШ) [1-6].

При приложении обратного напряжения возможна компенсация суммарного встроенного электрического поля, и тогда спектр ЭЛ не смещается [2,6,8,9], при этом излучение имеет микроплазменный характер по поверхности [9–12]. Спектры микроплазм (МП) СД InGaN/GaN несут дополнительную информацию об оптических свойствах гетероструктуры [9–12], особенно о ее дефектах. Несмотря на интенсивные теоретические исследования эффектов, обусловленных спонтанной и пьезоэлектрической поляризациями в нитридных соединениях [1–5,7], экспериментальных данных о закономерностях и величи-

нах смещения спектров в гетероструктурах InGaN/GaN за счет КРЭШ на сегодня недостаточно.

Поэтому целью данной работы является исследование спектров излучения гетероструктур InGaN/GaN мощных СД с различным содержанием индия в КЯ и на разных подложках при обратном и прямом напряжении.

# 2. Эксперимент

Исследовались структуры  $In_xGa_{1-x}N/GaN$  мощных светодиодов (мощность  $P_{\rm el}=1$  Bт, номинальный ток  $I_{\rm nom}=350$  мА, площадь гетероструктур 1 мм²) с различным содержанием индия в квантовой яме, x=0.05, 0.15, 0.2 и 0.3, на подложке SiC. Исследовались также структура на подложке  $Al_2O_3$  и структура (x=0.2), выращенная на сапфировой подложке и перенесенная после лазерного отделения (процесс laser lift off [13]) на Si-подложку с помощью AuSn-контакта (эвтектика). На рис. 1 показаны расположение и параметры слоев гетероструктур. Номинальная толщина квантовой ямы была одинаковой и равнялась 30 Å. В таблице приведены плотность дислокаций и световой поток от структур. Эти параметры позволяют оценить качество структур.

Спектры электролюминесценции МП имели очень малую интенсивность и измерялись спектрорадиометром HAAS-2000 (Everfine) с большим временем интегрирования для четкого выявления линий спектра, время измерения спектров составляло 5 или 10 мин.

Плотность дислокаций и световой поток от структур при токе  $350\,\mathrm{mA}$ 

| Параметр                                           | Подложка           |                                                                           |                                                |
|----------------------------------------------------|--------------------|---------------------------------------------------------------------------|------------------------------------------------|
|                                                    | SiC                | $\begin{array}{c} AuSn/Si\\ (после отделения\\ oт \ Al_2O_3) \end{array}$ | Al <sub>2</sub> O <sub>3</sub>                 |
| Плотность дислокаций, $cm^{-2}$ Световой поток, лм | $\sim 10^7$ $30.6$ | $     \sim 10^9 $ 21                                                      | $\begin{array}{c} \sim 10^9 \\ 15 \end{array}$ |

<sup>¶</sup> E-mail: vvvit@ukr.nd

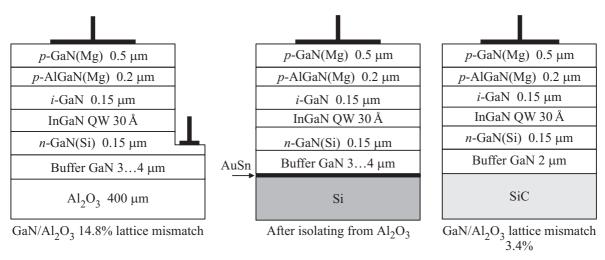
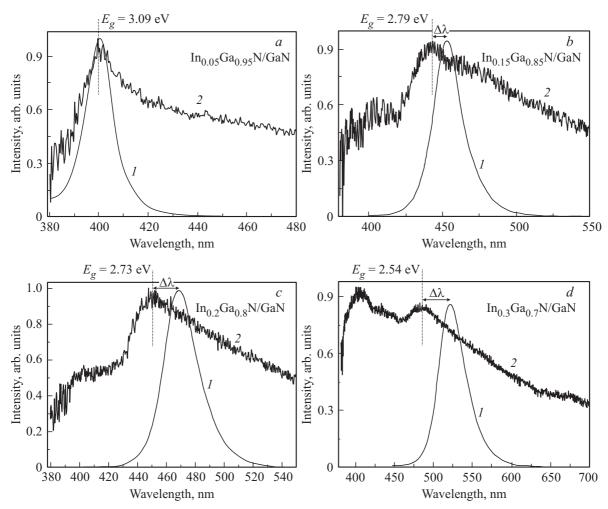
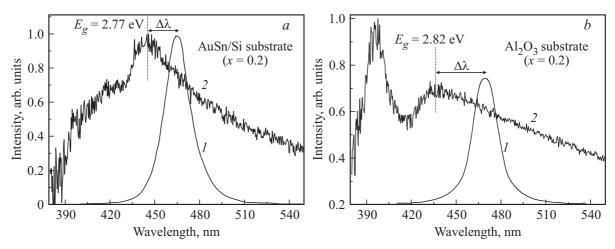




Рис. 1. Схематическое изображение гетероструктур InGaN/GaN мощных светодиодов.




**Рис. 2.** Спектры электролюминесценции структур  $In_xGa_{1-x}N/GaN$  с различным содержанием индия x в квантовой яме при прямом (1) и обратном (2) смещении. Подложка SiC.  $U_{rev} = -23$  (a), -40 B (b-d).

## 3. Результаты и обсуждение

На рис. 2 приведены спектры ЭЛ структур на подложке SiC при прямом и обратном напряжении с различным

содержанием индия в квантовой яме. При прямом напряжении ток имел номинальное значение 350 мА. Обратное напряжение составляло  $U_{\rm rev}=-40\,{\rm B},$  а для структуры с  $x=0.05\,$  (длина волны максимума  $\lambda_{\rm peak}=400\,{\rm hm})$ 



**Рис. 3.** Спектры электролюминесценции структур  $In_{0.2}Ga_{0.8}N/GaN$  на различных подложках при прямом (1) и обратном (2) смещении.  $U_{rev} = -40$  (a), -24 B (b).

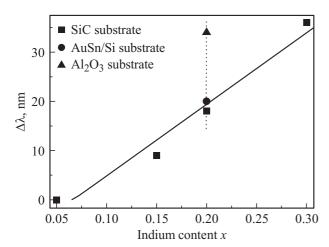
 $U_{\rm rev} = -23\,{\rm B}$ , поскольку уже при  $-26\,{\rm B}$  может происходить пробой при выдержке до 15 мин.

В спектре МП присутствует основной пик КЯ, максимум которого соответствует энергии запрещенной зоны  $(E_g)$  InGaN, и плечо при 400 нм (рис. 2, b, c) или пик (рис. 2, d) прилегающих к КЯ слоев GaN. Плечо в области 390-430 нм соответствует рекомбинации на донорах и (или) акцепторах в слоях p- и n-GaN, при этом для структуры  $In_{0.3}Ga_{0.7}N/GaN$  (рис. 2, d) и для структуры на сапфировой подложке (рис. 3, b) вместо плеча присутствует пик при 400 нм, интенсивность которого превышает пик от КЯ. Это указывает на большую концентрацию донорных и акцепторных состояний, связанных также и с дефектами на гетерограницах, поскольку большое содержание индия (x = 0.3), равно как и сапфировая подложка, ведут к большому рассогласованию решеток на гетерограницах и соответственно большей концентрации дефектов (см. таблицу).

Видно, что между пиком ЭЛ при номинальном токе и пиком КЯ при обратном напряжении существует смещение (интервал)  $\Delta\lambda$ , которое увеличивается с ростом содержания индия x. Для СД, излучающего на длине волны 400 нм,  $\Delta\lambda=0$ , а для СД, излучающего на длине волны 520 нм (зеленое излучение),  $\Delta\lambda$  максимально и составляет 36 нм. При этом в работах [9,10] для светодиода зеленого излучения InGaN/GaN ( $\lambda_{\rm peak}=525$  нм), но на сапфировой подложке, данное смещение  $\Delta\lambda=45$  нм.

В дополнение к рис. 2, c на рис. 3 приведены спектры ЭЛ при прямом и обратном напряжении структур  $In_{0.2}Ga_{0.8}N/GaN$  на подложке AuSn/Si и на сапфировой подложке. Здесь также при прямом напряжении ток равен 350 мA, обратное напряжение равно -40~(a) и -24 В (b), поскольку для СД на подложке  $Al_2O_3$  при повышении величины обратного напряжения > 30 В может происходить пробой из-за большей концентрации протяженных и точечных дефектов.

Видно, что для структуры  $In_{0.2}Ga_{0.8}N/GaN$  величина смещения  $\Delta\lambda$  минимальна в случае подложки SiC


(рис. 2, c) и максимальна в случае подложки  $Al_2O_3$  (рис. 3, b).

Энергия пика электролюминесценции микроплазм КЯ InGaN для структуры на подложке SiC равна  $E_g=2.73\,\mathrm{pB},$  для структуры на подложке AuSn/Si  $E_g=2.77\,\mathrm{pB},$  на Al $_2\mathrm{O}_3$  —  $2.82\,\mathrm{pB}.$  Видно, что  $E_g$  увеличивается, что связано с увеличением внутренних механических напряжений в буферном слое GaN и слое InGaN

Спектры при прямом напряжении (номинальном токе) измерялись при одинаковой температуре, что обеспечивалось одинаковым теплоотводом на медном массивном радиаторе, и, таким образом, пик спектра не был дополнительно смещен в длинноволновую область за счет самонагрева СД. Нами установлено, что для данных гетероструктур в диапазоне обратных напряжений от начала свечения МП (—18 В) до —50 В смещение пика КЯ отсутствует [12]. Отсутствие смещения при увеличении напряжения в нашем случае объясняется, возможно, компенсацией коротковолнового смещения за счет уменьшения суммарного поля [6] длинноволновым смещением вследствие сужения ширины запрещенной зоны при повышении температуры в локальных дефектных областях.

На рис. 4 приведены зависимости смещения  $\Delta\lambda$  от содержания индия x и материала подложки согласно рис. 2 и 3:  $\Delta\lambda=0$ , 9 нм (53 мэВ), 18 нм (104 мэВ), 36 нм (176 мэВ) для x=0.05, 0.15, 0.2, 0.3 соответственно; при x=0.2  $\Delta\lambda=20$  нм (120 мэВ) для подложки AuSn/Si и 34 нм (200 мэВ) для подложки  $Al_2O_3$ .

Теоретически при увеличении x от 0.05 к 0.3 суммарное пьезоэлектрическое поле внутри КЯ возрастет практически линейно [1–3], этому и соответствует зависимость  $\Delta\lambda(x)$  на рис. 4. Что касается зависимости  $\Delta\lambda$  от материала подложки, то буферный слой GaN на подложке SiC находится в состоянии растяжения, деформация  $\varepsilon(\text{GaN/SiC}) > 0$ , а на подложке  $\text{Al}_2\text{O}_3$  — в состоянии сжатия,  $\varepsilon(\text{GaN/Al}_2\text{O}_3) < 0$ , в плоскости роста, причем



**Рис. 4.** Зависимость величины смещения  $\Delta\lambda$  от содержания индия и от материала подложки (согласно рис. 2 и 3).

 $|\varepsilon(\text{GaN/SiC})| < |\varepsilon(\text{GaN/Al}_2\text{O}_3)|$ , рассогласование решеток составляет 3.4 и 14.8% соответственно. Поэтому смещение практически в 2 раза больше для структуры на сапфировой подложке. При лазерном отслоении структуры с сапфировой подложки согласно методике [13] и перенесении ее на Si-подложку с промежуточным слоем эвтектики AuSn часть напряжений снимается, и смещение уменьшается от 34 до 20 нм, т.е. близко к значению  $\Delta\lambda$  для структуры  $\ln_{0.2}\text{Ga}_{0.8}\text{N/GaN/SiC}$  (рис. 4).

В работе [4] теоретически рассчитанное максимальное смещение пика спектра ЭЛ в КЯ  $In_x Ga_{1-x} N/GaN$  толщиной 3 нм за счет КРЭШ составляет 8, 25, 58.5 нм для  $x=0.1,\ 0.2,\ 0.3$  соответственно. В работе [2] рассчитанное смещение пика для такой структуры составляет  $\Delta E=0.23-0.25,\ 0.33-0.37,\ 0.43-0.49,\ 0.53-0.62$  эВ для  $x=0.1,\ 0.15,\ 0.2,\ 0.25,\ т.е.$  приблизительно от 34 до 93 нм для интервала x=0.1-0.25. В работе [5] смещение пика фотолюминесценции для  $Al_{0.3}Ga_{0.7}N/AlN/Al_2O_3$  (выращен в условиях обогащения Al) за счет КРЭШ составляет 150 мэВ (12 нм).

Таким образом, полученные нами экспериментальные значения  $\Delta\lambda$  занижены в сравнении с теоретическими [2,4]. Согласно [1,2,5], это можно объяснить экранировкой электрического поля в реальной структуре свободными носителями и заряженными примесями. Кроме того, величина электрической поляризации в КЯ InGaN (гетероструктура AlGaN/GaN/InGaN/GaN/nодложка) с сильными модуляциями состава и протяженными дефектами может отличаться от расчетной за счет отличия поля упругих деформаций [5]. Векторы пьезоэлектрической и спонтанной поляризации в этом случае могут быть направлены не параллельно оси [0001], а их величина и направление могут меняться случайным образом, отражая флуктуации состава твердого раствора [5].

Электрическое поле внутри КЯ  $In_xGa_{1-x}N$  возрастает с концентрацией индия и при x=0.4 дости-

гает 3—4 МэВ/см [1–3], а для КЯ  $In_{0.05}Ga_{0.95}N/GaN$  равно 0.55 МэВ/см [1,3], т.е. достаточно для проявления КРЭШ. Отсутствие смещения для гетероструктуры  $In_{0.05}Ga_{0.95}N/GaN$  ( $\lambda_{peak}=400\,\mathrm{hm}$ ) в нашем случае, возможно, объясняется поверхностной сегрегацией индия, которая преобладает при малом содержании индия в твердом растворе  $In_xGa_{1-x}N$ , что приводит к "синему" сдвигу энергии перехода (70 мэВ для длины сегрегации 1 нм на каждом гетероинтерфейсе) [14].

По нашим расчетам согласно данным [1–4] для модельной структуры GaN/InGaN/GaN величина поляризации за счет подложки существенна и соизмерима с величинами спонтанной  $(P_{SP})$  и пьезоэлектрической  $(P_{PZ})$  поляризации: значения  $P_{SP}(InGaN)$ ,  $P_{PZ}$ (InGaN/GaN),  $P_{PZ}$ (GaN/SiC) соизмеримы. По модулю  $|P_{PZ}(InGaN/GaN)| = 0.0076 (x = 0.5), 0.023 (x = 0.15),$ 0.0237 (x = 0.2), 0.036 (x = 0.3);  $|P_{SP}(InGaN)| = 0.0326$ (x = 0.5), 0.0304 (x = 0.15), 0.0295 (x = 0.2), 0.0284  $(x = 0.3); |P_{PZ}(GaN/SiC)| = 0.045.$  Величина суммарной поляризации в КЯ с учетом деформации от подложки  $P = P_{SP}(InGaN) + P_{PZ}(InGaN/GaN) + P_{PZ}(GaN/SiC)$  coставляет -0.015, 0.00052, 0.0088, 0.027 (Кл/м<sup>2</sup>) для x = 0.05, 0.15, 0.2, 0.3, т.е. возрастает с ростом x. При этом величины  $P_{SP}(InGaN)$  и  $P_{PZ}(InGaN/GaN)$  очень близки (для x = 0.15 - 0.3), но их вектора антипараллельны. Таким образом, вклад в смещение пика Δλ дают все вышеперечисленные причины поляризации.

Здесь важно отметить, что пьезоэлектрическая поляризация определяется в первую очередь механическими напряжениями, а спонтанная поляризация — внутренней асимметрией в связях кристалла при равновесии, т.е. в нашем случае существует зависимость смещения  $\Delta\lambda$  от напряжений.

### 4. Заключение

Смещение между максимумами спектров электролюминесценции структур  $In_x Ga_{1-x} N/GaN$  мощных светодиодов при прямом и обратном напряжении обусловлено квантово-размерным эффектом Штарка и зависит как от содержания индия x в квантовой яме, так и от материала подложки — SiC, AuSn/Si,  $Al_2O_3$ . Экспериментально определены величины данных смещений.

В структурах InGaN/GaN на одинаковых подложках (SiC) смещение между максимумами спектров электролюминесценции при прямом и обратном напряжении возрастает с величиной концентрации In и с величиной напряжений в квантовой яме.

В структурах InGaN/GaN на различных подложках (SiC, AuSn/Si,  $Al_2O_3$ ) при неизменном составе квантовой ямы возрастают как ширина запрещенной зоны InGaN, так и смещение между максимумами спектров электролюминесценции при прямом и обратном напряжении при увеличении деформации на границе подложка/буферный слой.

# Список литературы

- [1] C. Wood, D. Jena. *Polarization Effects in Semiconductors.* From Ab Initio Theory to Device Applications (N.Y.-London, Springer, 2008).
- [2] Ursula M.E. Christmas, A.D. Andreev, D.A. Faux. J. Appl. Phys., 98, 073 522 (2005).
- [3] L. Guo, X.W. Hongling Xiao, B. Wang. J. Cryst. Growth, 298, 522 (2007).
- [4] S. Morawiec, R.P. Sarzała, W. Nakwaski. Appl. Phys. A, 113, 801 (2013).
- [5] Е.А. Шевченко, В.Н. Жмерик, А.М. Мизеров, А.А. Ситникова, С.В. Иванов, А.А. Торопов. ФТП, **46**, 1022 (2012).
- [6] H.-S. Chen, Z. H. Liu, P.-Y. Shih, C.-Y. Su, C.-Y. Chen et al. Opt. Express, 22, 8367 (2014).
- [7] И.А. Супрядкина, К.К. Абгарян, Д.И. Бажанов, И.В. Мутигуллин. ФТП, 47, 1647 (2013).
- [8] Ю.Г. Шретер, Ю.Т. Ребане, В.А. Зыков, В.Г. Сидоров. *Широкозонные полупроводники* (СПб., Наука, 2001).
- [9] M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, E. Zanoni. Appl. Phys. Lett., 95, 173 507 (2009).
- [10] M. Meneghini, S. Vaccari, N.Trivellin, Z. Dandan, C. Humphreys, R. Butendheich, C. Leirer, B. Hahn, G. Meneghesso, E. Zanoni. IEEE Trans. Electron Dev., 59 (5), 1416 (2012).
- [11] А.Н. Ковалев, Ф.И. Маняхин, В.Э. Кудряшов, А.Н. Туркин, А.Э. Юнович. ФТП, 32, 63 (1998).
- [12] В.П. Велещук, А.И. Власенко, М.П. Киселюк, О.В. Ляшенко. ЖПС, 80 (1), 121 (2013).
- [13] V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Plössl, D. Eisert. Phys. Status Solidi A, 201, 2736 (2004).
- [14] M.V. Klymenko, S.I. Petrov, O.V. Shulika. Photoelectron., 19, 125 (2010).

Редактор Л.В. Шаронова

# Caused by the Stark effect and strains the shift of the electroluminescence spectrums of $In_x Ga_{1-x} N/GaN$ structures with different indium content and different substrate material

V.P. Veleschuk, A.I. Vlasenko, M.P. Kisselyuk, Z.K. Vlasenko, D.N. Khmil', V.V. Borshch+

Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine

 Poltava National Technical Yuri Kondratyuk University, 36011 Poltava, Ukraine

**Abstract** In the paper the shift between the maximums of electroluminescence spectrums of  $In_xGa_{1-x}N/GaN$  structures was measured at forward and reverse voltage depending both on the indium content x in quantum well and on the substrate — SiC, AuSn/Si, Al<sub>2</sub>O<sub>3</sub>. It was determined that this shift increased both with growth of the indium concentration in the  $In_xGa_{1-x}N$  layer and with increase of the substrate-induced strains.