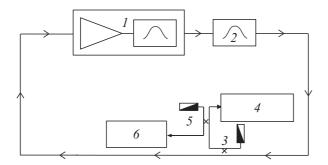
01;11;13

Генерация диссипативных временных солитонов в кольцевых автоколебательных системах с клистронами-усилителями


© С.В. Гришин, Б.С. Дмитриев, В.Н. Скороходов, Ю.П. Шараевский

Саратовский государственный университет E-mail: grishfam@sgu.ru

Поступило в Редакцию 27 марта 2015 г.

Представлены теоретические и экспериментальные результаты, демонстрирующие возможность формирования периодических последовательностей импульсных сигналов с профилем, аналогичным профилю светлых солитонов в кольцевой автоколебательной системе с клистроном-усилителем. Генерируемые импульсные последовательности являются диссипативными временными солитонами, которые формируются в кольце за счет установления баланса как между усилением и потерями, так и между временной дисперсией и кубической нелинейностью клистрона. Получены аналитические решения для генераторной модели с двухрезонаторным клистроном-усилителем и дополнительным объемным резонатором, которые подтверждают возможность генерации указанных диссипативных структур.

На протяжении последних десятилетий не ослабевает интерес к кольцевым автоколебательным системам микроволнового диапазона, демонстрирующим сложную динамику, включая динамический хаос [1–7]. В указанных автоколебательных системах в качестве нелинейных элементов используются либо вакуумные усилители [1–3], либо пассивные линии передачи на основе ферромагнитных пленок [4–7], обладающие кубической нелинейностью. Недавно было показано [6], что кубическая нелинейность, обусловленная параметрической связью спиновых волн в ферромагнитной пленке, совместно с временной дисперсией, создаваемой в кольце клистроном-усилителем, работающим в линейном режиме, приводят к генерации диссипативных структур, являющихся аналогами временных светлых солитонов. Формирование данных структур наблюдается на огибающей сверхвысокочастотного (СВЧ) сигнала за много

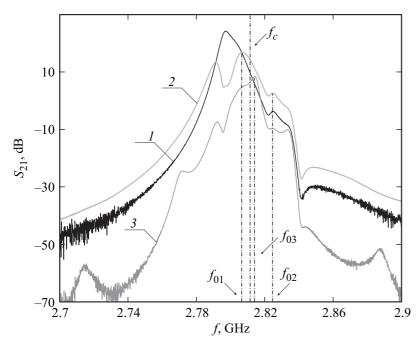


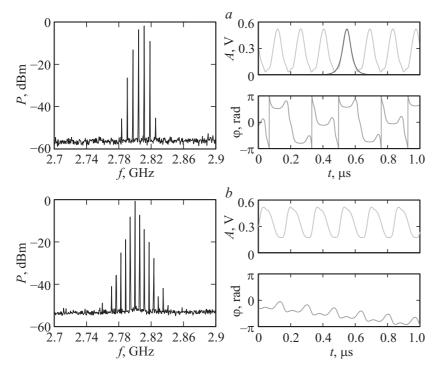
Рис. 1. Блок-схема кольцевой автоколебательной системы: 1 — клистронусилитель, 2 — объемный резонатор, 3, 5 — направленные ответвители, 4 — анализатор спектра, 6 — осциллограф реального времени.

оборотов сигнала по кольцу в результате установления баланса как между усилением и потерями, так и между дисперсией и нелинейностью. Длительность временных солитонов намного превышает время задержки сигнала в кольце [6,7]. Из полученных в [6] результатов следует, что кольцевая автоколебательная система представляет собой некую ячейку "искусственной среды" (с усилением, потерями, временной дисперсией и кубической нелинейностью), характерный временной масштаб которой связан с резонансной частотой клистрона. Для циркулирующего в кольце сигнала автоколебательная система является распределенной линией передачи, состоящей из бесконечного числа таких ячеек, что обусловливает бесконечное время распространения в ней сигнала в случае превышения усиления над общим уровнем потерь. Как показано в [7], временной солитон формируется в любой точке кольца, а его длительность остается практически постоянной.

Помимо резонансных свойств, клистрон-усилитель обладает и кубической нелинейностью, которая обусловлена перегруппировкой электронов в пучке. В этом случае в автоколебательной системе с нелинейным клистроном, по аналогии с автоколебательными системами с нелинейными элементами в виде ферромагнитных пленок, открывается возможность для генерации диссипативных временных солитонов. Выяснению такой возможности и посвящена данная работа.

Исследуемая автоколебательная система, блок-схема которой приведена на рис. 1, состоит из многорезонансного активного элемента с ку-

Рис. 2. АЧХ клистрона-усилителя (кривые I, 2) и цепочки "клистронусилитель — объемный резонатор" (кривая 3), измеренные вне кольца при разных уровнях мощности входного сигнала: $P_{in}=-5$ dBm (кривая I — линейный режим) и $P_{in}=+22.5$ dBm (кривые 2, 3 — нелинейный режим). Результаты получены при фиксированных значениях тока пучка $I_0=45.5$ mA и ускоряющего напряжения $U_0=2060$ V клистрона.


бической нелинейностью, в качестве которого используется пятирезонаторный пролетный клистрон-усилитель. Вход и выход клистрона-усилителя соединены посредством внешней положительной обратной связи, которая содержит дополнительный объемный резонатор. Амплитудночастотная характеристика (AЧX) клистрона, измеренная в линейном режиме (рис. 2), имеет два резонансных пика, один из которых (с наибольшим значением коэффициента усиления) является основным пиком с резонансной частотой $f_{01}^l=2797.3\,\mathrm{MHz}$ и добротностью $Q_{01}'=386$, а другой — дополнительным пиком с частотой $f_{02}^l=2824.8\,\mathrm{MHz}$. При

увеличении мощности входного сигнала P_{in} наблюдается расширение АЧХ клистрона-усилителя, что обусловлено уменьшением нагруженных добротностей резонаторов клистрона вследствие перегруппировки электронов в пучке. В нелинейном режиме резонансная частота основного пика увеличивается до $f_{01}^{nl}=f_{01}=2806.5\,\mathrm{MHz}$, а его добротность уменьшается до $Q_{01}^{nl}=326.\,$ При этом резонансная частота дополнительного пика остается практически постоянной ($f_{02}^{nl}=f_{02}=2824.6\,\mathrm{MHz}$). Как будет показано далее, уменьшение нагруженных добротностей резонаторов клистрона-усилителя в нелинейном режиме не приводит к генерации временных солитонов в автоколебательной системе с одним клистроном.

Для повышения добротности резонансной кривой клистрона используется дополнительный объемный резонатор с частотой $f_{03}=2814\,\mathrm{MHz}$ и нагруженной добротностью $Q_{03}=281.$ На рис. 2 приведена АЧХ цепочки "клистрон-усилитель—объемный резонатор", измеренная в нелинейном режиме. Из представленных результатов следует, что резонансная частота основного пика в этом случае совпадает с частотой f_{03} , а его добротность становится равной $Q_{kr}^{nl}=426.$ Таким образом, присутствие объемного резонатора приводит к увеличению добротности основного пика $(Q_{kr}^{nl}>Q_{01}^{nl}),$ вблизи которого и будет наблюдаться генерация диссипативных временных солитонов.

Управление режимами генерации осуществляется с помощью тока пучка I_0 и ускоряющего напряжения U_0 клистрона. СВЧ-сигнал выводится из кольца с помощью направленных ответвителей и поступает на входы анализатора спектра и осциллографа реального времени с шириной полосы $10\,\mathrm{GHz}$ для анализа и последующей обработки.

На рис. З приведены спектры мощности, а также временны́е зависимости амплитуды и фазы огибающей генерируемого сигнала, полученные при наличии и в отсутствие в кольце объемного резонатора. Амплитудные и фазовые профили огибающей были рассчитаны на основе экспериментальных временны́х рядов, к которым вначале применялась цифровая обработка, необходимая для фильтрации шумов квантования, а затем — преобразование Гильберта. В результате математической обработки СВЧ-заполнение и мгновенная фаза были исключены из дальнейшего рассмотрения. Фаза огибающей φ определяется как $\varphi = \psi - \omega_c t[8]$, где ψ — полная фаза сопряженного по Гильберту сигнала, а ω_c — частота, соответствующая центральной частоте спектра генерируемого сигнала.

Рис. 3. Спектры мощности (левая колонка) и временные реализации (правая колонка) профиля амплитуды (верхние реализации) и фазы (нижние реализации), полученные при наличии в цепи обратной связи объемного резонатора (a) и в его отсутствие (b). Для (a) ток пучка $I_0=45.5\,\mathrm{mA}$, для $(b)-I_0=45\,\mathrm{mA}$. Ускоряющее напряжение в обоих случаях $U_0=2060\,\mathrm{V}$. Пунктирной линией на временной реализации (a) показано солитонное решение $A=a\times\mathrm{sch}(t)$, где $a=0.5189\,\mathrm{V}$.

Из представленных на рис 3, a результатов следует, что при определенных значениях ускоряющего напряжения, тока пучка и средней мощности сигнала на входе клистрона-усилителя $P_{in}=+22.5\,\mathrm{dBm}$, когда клистрон работает в нелинейном режиме, наблюдается генерация диссипативных временных солитонов. В этом случае генерируемый СВЧ-сигнал имеет линейчатый спектр, расстояние между спектральными компонентами которого определяет частоту автомодуляции $f_{am}=7\,\mathrm{MHz}$. Центральная частота спектра $f_c=2811.5\,\mathrm{MHz}$

находится вблизи основного пика на АЧХ цепочки "клистрон-усилитель—объемный резонатор" (см. рис. 2). Во временной области формируется периодическая последовательность импульсов с профилем, аналогичным профилю светлого солитона (рис. 3, a) [9]. Период следования таких импульсов есть $T_{rep}=1/f_{am}=143$ ns, а их длительность ($T_d\sim T_{rep}$) превышает время обхода сигнала по кольцу $\tau_{del}=91$ ns. О солитонной природе генерируемых структур свидетельствует также отсутствие временной зависимости у фазы огибающей внутри импульсов [10]. Как следует из представленных на рис. 3, b результатов, в отсутствие в кольце объемного резонатора генерация периодической последовательности солитоноподобных импульсов не наблюдается. В этом случае при аналогичном уровне P_{in} наблюдается генерация амплитудномодулированного сигнала.

Для построения модели исследуемой кольцевой автоколебательной системы используется двухрезонаторная модель клистрона-усилителя [2] с расстроенными входным и выходным резонаторами и укороченное уравнение линейного осциллятора, описывающее дополнительный объемный резонатор. Будем полагать, что наличие запаздывания в исследуемом автогенераторе связано с распространением электронов в пространстве дрейфа между входным и выходным резонаторами клистрона со скоростью v_0 , отличной от фазовой скорости сигнала в цепи обратной связи. В модели клистрона запаздывание сигнала можно описать с помощью линии задержки, которая задается дифференциальным уравнением в частных производных. С учетом сделанных предположений предлагаемая модель кольцевой автоколебательной системы запишется в виде

$$\frac{\partial A_1}{\partial t} + \gamma_1 A_1 = \chi_1 A_4,$$

$$\frac{\partial A_2}{\partial t} + v_0 \frac{\partial A_2}{\partial x} + (\alpha_0 + j\delta) A_2 = \chi_2 A_1 \exp(-j\delta t),$$

$$\frac{\partial A_3}{\partial t} + \gamma_2 A_3 = -j\alpha J_1(X) \frac{A_2}{|A_2|} \exp[j(\varphi_0 - \theta_0)] \exp(j\delta t),$$

$$\frac{\partial A_4}{\partial t} + \gamma_3 A_4 = \chi_3 A_3,$$
(1)

где A_1 , A_2 , A_3 и A_4 — безразмерные медленные комплексные амплитуды входного резонатора клистрона-усилителя, линии задержки,

выходного резонатора клистрона и дополнительного объемного резонатора соответственно; $\gamma_{1,2,3}=\alpha_{1,2,3}+j\Delta\omega_{1,2,3},\ \alpha_{1,2,3}$ — активные потери в резонаторах, $\Delta\omega_{1,2,3}=\omega-\omega_{01,03,03}$ — частотные отстройки, $\omega_{01,02,03}$ — резонансные частоты резонаторов; $\chi_1,\,\chi_3$ — коэффициенты возбуждения входного резонатора клистрона-усилителя и объемного резонатора соответственно; $\alpha = \omega_{01} KM I_0$ — параметр усиления, K характеристическое сопротивление входного резонатора клистрона, M — коэффициент эффективности модуляции, I_0 — ток пучка; J_1 функция Бесселя 1-го порядка, которая при учете только первых двух членов ряда есть $J_1 = X(8-X^2)/16$, где $X = M\xi\theta_0/2$ — параметр группировки, $\xi = |A_2(t)|/U_0$, U_0 — ускоряющее напряжение клистрона, $heta_0 = \omega_{01} l/v_0$ — невозмущенный угол пролета, l — длина пространства дрейфа, $v_0 = \sqrt{2eU_0/m}$ — начальная скорость электрона, e и m заряд и масса покоя электрона, φ_0 — фаза сигнала на выходе линии задержки; α_0 — активные потери в линии задержки, δ — частотный рассинхронизм между центральной частотой волнового пакета, распространяющегося в линии задержки, и частотой входного резонатора клистрона, χ_2 — коэффициент возбуждения линии задержки.

Из (1) в пренебрежении быстро осциллирующими членами, полагая, что $\Delta\omega_{1,2,3}\gg\alpha_{1,2,3},\,\delta$ и $\alpha_0\sim0,\,$ получаем

$$\delta = -j\alpha \frac{\chi_1 \chi_2 \chi_3}{\Delta \omega_1 \Delta \omega_2 \Delta \omega_3} \frac{\chi_0}{2} \exp[j(\varphi_0 - \theta_0)], \tag{2}$$

где $X_0 = M\theta_0/(2U_0)$. Из (1) с учетом (2) получаем следующее уравнение для A_2 :

$$j\left(\frac{\partial A_2}{\partial x} + \frac{1}{v_0}\frac{\partial A_2}{\partial t}\right) + \frac{1}{2}D\frac{\partial^2 A_2}{\partial t^2} + N|A_2|^2 A_2 = 0,\tag{3}$$

где $D=rac{2[\Delta\omega_1(\Delta\omega_2+\Delta\omega_3)+\Delta\omega_2\Delta\omega_3]}{\Delta\omega_1\Delta\omega_2\Delta\omega_3v_0}$ — коэффициент временной дисперсии, $N=jlpha\,rac{\chi_1\chi_2\chi_3}{\Delta\omega_1\Delta\omega_2\Delta\omega_3v_0}rac{\chi_0^3}{16}\exp[j(arphi_0- heta_0)]$ — коэффициент нелинейности.

Уравнение (3) является аналогом нелинейного уравнения Шредингера, одно из стационарных решений которого может иметь вид временного светлого солитона [9]. Коэффициент нелинейности в (3) является действительной величиной, если $\varphi_0 - \theta_0 = \pm \pi/2 \pm \pi n$, где

n = 0, 1, 2, ... Если выполняется условие DN > 0, то полученное уравнение (3) имеет стационарное решение в виде светлого солитона [9]. В эксперименте генерация светлых солитонов наблюдается, когда $\omega_{01} < \omega_c < \omega_{03} < \omega_{02} \ (\Delta\omega_1 > 0, \ \Delta\omega_2 < 0, \ \Delta\omega_3 < 0)$. При данных условиях из (3) следует, что N < 0, если $\varphi_0 - \theta_0 = \pi/2 + \pi n$, где $n=0,\,2,\,4,\,\dots$ или $arphi_0- heta_0=-(\pi/2+\pi n)$, где $n=1,\,3,\,5,\,\dots$ Для нахождения областей частот, в которых D может иметь противоположные знаки, необходимо положить D=0. В результате получаем пороговое значение частоты $f_{th} = 2809.8 \, \mathrm{MHz}$, которая, находясь в интервале частот $\omega_{01} < \omega_{th} < \omega_{03},$ определяет смену знака у D в этом интервале. Так, при $\omega_{01} < \omega < \omega_{th} - D > 0$, а при $\omega_{th} < \omega < \omega_{03} - D < 0$. Таким образом, генерация светлых солитонов может наблюдаться в диапазоне частот $\omega_{01}<\omega_{th}<\omega_{c}<\omega_{03}<\omega_{02},$ что полностью согласуется с экспериментальными результатами (см. рис. 3, a). Кроме того, из полученного выражения для D следует, что увеличение числа резонаторов приводит к увеличению количества членов (частотных отстроек) в произведении, находящемся в знаменателе D. При малых значениях частотных отстроек увеличение их числа приводит к увеличению значения D, что и обусловливает генерацию временных солитонов в эксперименте.

В заключение отметим, что полученные результаты представляют практический интерес при разработке мощных источников импульсных сигналов на основе пучковых или пучково-плазменных устройств без использования внешних модулирующих цепей.

Работа выполнена в рамках государственного задания Минобрнауки РФ (задание № 2014/203), при частичной финансовой поддержке РФФИ (грант № 14-02-00329) и президентской программы поддержки ведущих научных школ РФ (проект № НШ-828.2014.2).

Список литературы

- [1] *Анисимова Ю.В., Воронцов Г.М., Залогин Н.Н.* и др. // Радиотехника. 2000. № 2. С. 19–25.
- [2] Дмитриев Б.С., Жарков Ю.Д., Рыскин Н.М., Шигаев А.М. // Радиотехника и электроника. 2001. Т. 46. № 5. С. 604–610.
- [3] Дмитриев Б.С., Жарков Ю.Д., Садовников С.А. и др. // Письма в ЖТФ. 2011. Т. 37. В. 22. С. 86–94.

- [4] Kalinikos B.A., Kovshikov N.G., Patton C.E. // Phys. Rev. Lett. 1998. V. 80. N 19. P. 4301–4304.
- [5] Кондрашов А.В., Устинов А.Б., Калиникос Б.А. // Письма в ЖТФ. 2010. Т. 36. В. 5. С. 62–70.
- [6] *Гришин С.В., Скороходов В.Н., Шараевский Ю.П.* // Письма в ЖТФ. 2014. Т. 40. В. 9. С. 32–40.
- [7] Romanenko D.V., Grishin S.V., Sadovnikov A.V. et al. // IEEE Trans. Magn. 2014. V. 50. N 11. P. 4006 304.
- [8] Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Сов. радио, 1977. 608 с.
- [9] Кившарь Ю.С., Агравал Г.П. Оптические солитоны. От волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005. 648 с.
- [10] Nash J.M., Kabos P., Staudinger R., and Patton C.E. // J. Appl. Phys. 1998. V. 83. N 5. P. 2689–2699.