05

Влияние частоты переменного магнитного поля на дисперсионные зависимости спектров спин-волнового резонанса в многослойных пленках

© А.М. Зюзин, М.А. Бакулин, С.В. Безбородов, В.В. Радайкин, С.Н. Сабаев

Мордовский государственный университет им. Н.П. Огарева, Саранск E-mail: zyuzin.am@rambler.ru

Поступило в Редакцию 14 апреля 2015 г.

Обнаружено уменьшение рассогласования дисперсионных кривых для спектров спин-волнового резонанса (СВР) при перпендикулярной и параллельной ориентациях постоянного магнитного поля относительно плоскости пленки с ростом частоты СВЧ-поля. Установлено, что основной фактор, обусловливающий возрастание угла наклона кривой при перпендикулярной ориентации, связан с переходом слоя закрепления из состояния реактивной среды в дисперсивную. Показано, что для корректного определения константы обменного взаимодействия и обменной жесткости по спектру СВР необходимо использовать дисперсионную кривую, построенную для ориентации, при которой слой закрепления является дисперсивной средой.

Дисперсионная зависимость спектра стоячих спиновых волн в тонких пленках является важнейшей характеристикой спин-волнового резонанса (СВР). Она позволяет определять фундаментальный параметр магнитных материалов — константу обменного взаимодействия A и обменную жесткость D=2A/M [1,2], а также получить другую информацию, в частности, о структуре пленок методом корреляционной спин-волновой спектроскопии [3,4].

В работах [5,6] было обнаружено рассогласование (различие углов наклона) дисперсионных кривых, построенных для спектров СВР при перпендикулярной и параллельной ориентациях **H** относительно плоскости пленки. Закрепление спинов в исследуемых пленках было обусловлено одновременным действием диссипативного [7] и динамического механизмов. Указанное рассогласование объясняется различием

Образец	№ слоя	Состав	h, μm	$4\pi M$, G	α	$\begin{array}{c} \gamma, 10^7 \\ \text{Oe}^{-1} \cdot \text{s}^{-1} \end{array}$	H_k^{eff} , Oe
1	1*	$Sm_{0.45}Er_{2.55}Fe_5O_{12}$	2.5	1330	0.2	1.38	96
	2*	$Y_{2.98}Sm_{0.02}Fe_5O_{12}$	0.72	1740	0.003	1.76	-1715
2	1*	$Sm_{0.45}Er_{2.55}Fe_5O_{12}$	1.6	1330	0.2	1.38	96
	2*	$Y_{2.98}Sm_{0.02}Fe_5O_{12}$	0.72	1740	0.003	1.76	-1715
3	3*	$Sm_{0.45}Er_{2.55}Fe_5O_{12}$	2.1	1330	0.2	1.38	96
	1*	$Sm_{0.45}Er_{2.55}Fe_5O_{12}$	1.8	1330	0.2	1.38	96
	2*	$Y_{2.98}Sm_{0.02}Fe_5O_{12}$	0.82	1740	0.003	1.76	-1715

Примечание: 1^* , 3^* — слой закрепления; 2^* — слой возбуждения.

значений волнового числа для одной и той же спин-волновой (CB) моды, но для разных ориентаций $\mathbf H$ относительно пленки.

Целью данной работы являлось исследование влияния частоты СВЧ-поля на дисперсионные кривые спектров СВР при перпендикулярной и параллельной ориентациях внешнего постоянного магнитного поля **H** относительно плоскости пленки.

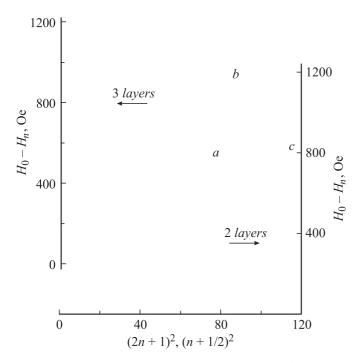
Исследования проводились на двух- и трехслойных монокристаллических пленках ферритов-гранатов с кристаллографической плоскостью (111), полученных методом жидкофазной эпитаксии. Состав и параметры слоев исследуемых пленок (толщина h, намагниченность насыщения M, параметр затухания Гильберта α , гиромагнитное отношение γ , эффективное поле одноосной анизотропии H_k^{eff}) приведены в таблице. Параметры H_k^{eff} и γ определялись по значениям полей однородного резонанса H_0 при перпендикулярной и параллельной ориентациях. Намагниченность насыщения определялась по интенсивности и ширине линии поглощения нулевой моды соответствующего слоя, а также линии ферромагнитного резонанса однослойного аналога [8].

Спектры СВР регистрировались на ЭПР-спектрометре X и Q диапазонов EMX Plus (Bruker) на частотах СВЧ-поля $f_1=9.4\,\mathrm{GHz}$ и $f_2=34\,\mathrm{GHz}$ при комнатной температуре.

Уравнения, определяющие резонансные поля H_n СВ-мод, возбуждаемых однородным СВЧ-полем при перпендикулярной и параллельной ориентациях \mathbf{H} , соответственно имеют следующий вид

$$\frac{\omega}{v} = H_n + H_k^{eff} + \frac{2A}{M}k^2 - \frac{2}{3}H_{k1},\tag{1}$$

$$\left(\frac{\omega}{\gamma}\right)^2 = \left(H_n + \frac{2A}{M}k^2\right)\left(H_n - H_k^{eff} + \frac{2A}{M}k^2 - \frac{1}{2}H_{k1}\right),\tag{2}$$


где $\omega=2\pi f$ — круговая частота, k — волновое число СВ-моды, H_{k1} — поле кубической анизотропии.

Отметим, что при регистрации спектров СВР на постоянной частоте СВЧ-поля, как правило, в качестве дисперсионной кривой, принимается зависимость $H_0-H_n=f(k^2)$ [2,9,10], где H_0 и H_n — резонансные поля нулевой и n-й СВ-мод. Как следует из (1) и (2), в случае полного закрепления спинов на границе раздела слоев, разность H_0-H_n так же, как и разность частот (при постоянном \mathbf{H}), возбуждаемых СВ-мод, должна быть квадратичной по k. При построении дисперсионных кривых значения волновых чисел СВ-мод принимаются равными $\left(n+\frac{1}{2}\right)\frac{\pi}{h_2}$ для двухслойных и $(2n+1)\frac{\pi}{h_2}$ для трехслойных пленок [11]. Такая схема соответствует тому, что крайний узел стоячей спиновой волны, локализованной в слое возбуждения, находится на границе раздела между слоями.

Как следует из эксперимента, на частоте $f_1 = 9.4\,\mathrm{GHz}$ величина рассогласования дисперсионных кривых в трехслойной пленке примерно в 2 раза превышает величину рассогласования для двухслойной, с аналогичным слоем возбуждения (рис. 1, a и b). С уменьшением толщины слоя возбуждения величина рассогласования дисперсионных кривых возрастает (рис 1, a и c).


Проведенные эксперименты показали, что при увеличении частоты СВЧ-поля с $f_1 = 9.4\,\mathrm{GHz}$ до $f_2 = 34\,\mathrm{GHz}$ происходят существенные изменения в спектре СВР. Во всех исследованных образцах — как в двухслойных, так и в трехслойных — с увеличением f обнаружено значительное возрастание угла наклона дисперсионных кривых для перпендикулярной ориентации $\mathbf H$ относительно пленки. При параллельной ориентации угол наклона кривой изменяется в значительно меньшей степени. В результате сильно уменьшается рассогласование между дисперсионными кривыми. Как видно из рис. 1, дисперсионные кривые при обеих ориентациях на частоте $f_2 = 34\,\mathrm{GHz}$ практически совпадают. Причем это совпадение наблюдалось во всех исследованных пленках, несмотря на то, что на частоте $f_1 = 9.4\,\mathrm{GHz}$ величина рассогласования, как отмечено выше, была существенно различной.

Как показал проведенный расчет спектров СВР, наблюдаемые с ростом частоты СВЧ-поля изменения связаны с изменением пространственной фазы СВ-моды на границе раздела слоев, а следова-

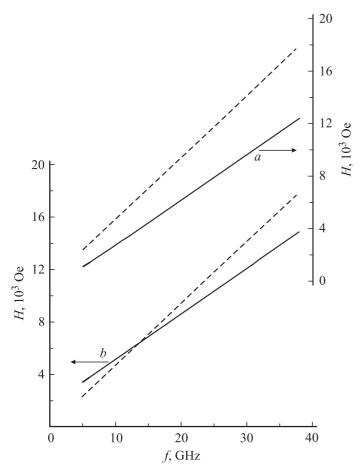


Рис. 1. Дисперсионные зависимости $H_0-H_n=f(n+1/2)^2$ для двухслойных пленок (a — образец № 1; c — образец № 3) и $H_0-H_n=f(2n+1)^2$ для трехслойной пленки (b — образец № 2). Сплошные линии соответствуют частоте $f_1=9.4\,\mathrm{GHz}$, штриховые — $f_2=34\,\mathrm{GHz}$. I — перпендикулярная ориентация \mathbf{H} , 2 — параллельная.

тельно, и с изменением ее волнового числа k. При параллельной ориентации внешнего магнитного поля ${\bf H}$ относительно пленки слой закрепления является дисперсивной средой как на частоте f_1 , так и на f_2 . Узел СВ-моды расположен вблизи межслойной границы на обеих частотах (рис. 2,a), что соответствует практически полному закреплению. Поэтому увеличение угла наклона дисперсионной кривой для этой ориентации не столь заметно с ростом частоты. Как следует из рис. 2,b, при перпендикулярной ориентации ${\bf H}$ пространственная фаза СВ-моды на границе раздела слоев с ростом частоты изменяется

Рис. 2. Распределение переменной намагниченности по толщине пленки m(z) для моды n=3 вблизи границы раздела слоев возбуждения и закрепления: a — параллельная ориентация $\mathbf{H},\ b$ — перпендикулярная. Сплошные линии соответствуют частоте $f_1=9.4\,\mathrm{GHz}$, штриховые — $f_2=34\,\mathrm{GHz}$. A — слой возбуждения, B — слой закрепления.

Рис. 3. Расчетная зависимость полей однородного резонанса в слоях от f (сплошные линии — слой возбуждения, штриховые — слой закрепления): a — параллельная ориентация \mathbf{H}, b — перпендикулярная.

значительно более существенно. Как показал проведенный анализ, такая трансформация в определяющей степени обусловлена переходом слоя закрепления из состояния реактивной среды в дисперсивную в области магнитных полей, в которой наблюдается спектр СВР. Данный

переход обусловлен различием значений γ для слоя возбуждения и слоя закрепления. На рис. З приведены расчетные зависимости полей однородного резонанса в слоях со значениями γ и H_k^{eff} , соответствующими исследуемым образцам от частоты СВЧ-поля. Видно, что при параллельной ориентации $\mathbf H$ относительно пленки с ростом f разность полей однородного резонанса в слое закрепления H_{01} и слое возбуждения H_{02} возрастает. При перпендикулярной ориентации величина $H_{01}-H_{02}$ на частоте $f_1=9.4\,\mathrm{GHz}$ отрицательна. С ростом частоты она уменьшается по модулю и при $f\approx 13.5\,\mathrm{GHz}$ изменяет знак. Это означает, что и при перпендикулярной ориентации, в области частот СВЧ-поля $f\geqslant 13.5\,\mathrm{GHz}$, слой закрепления в интервале магнитных полей, соответствующих возбуждаемому спектру СВР, становится для спиновых колебаний дисперсивной средой.

Таким образом, влияния реактивных или дисперсивных свойств слоя закрепления, кроме действия диссипативного механизма закрепления спинов, приводит с ростом частоты СВЧ-поля к изменению пространственных фаз стоячих спиновых волн на межслойной границе слоев. Такая трансформация приводит к изменению значений волновых чисел мод СВР с одинаковым порядковым номером n и, как следствие, к изменению угла наклона дисперсионных кривых.

На основе результатов, полученных в данной работе, можно сделать следующие выводы:

- 1. Обнаружено, что увеличение частоты СВЧ-поля приводит к уменьшению величины рассогласования дисперсионных кривых для спектров СВР, соответствующих перпендикулярной и параллельной ориентации **H** относительно плоскости пленки.
- 2. Угол наклона дисперсионных кривых при параллельной ориентации **H** с увеличением частоты СВЧ-поля практически не изменяется, в то время как при перпендикулярной ориентации заметно возрастает. Данная трансформация обусловлена переходом слоя закрепления из состояния реактивной среды в дисперсивную.
- 3. Для корректного определения константы обменного взаимодействия A и обменной жесткости D по спектру спиновых волн необходимо использовать дисперсионную кривую, построенную для той ориентации $\mathbf H$ относительно пленки, при которой слой закрепления является дисперсивной средой. $\mathbf B$ случае исследованных нами пленок это соответствует параллельной ориентации $\mathbf H$ относительно плоскости пленки на частоте $\mathbf C\mathbf B\mathbf V$ -поля $\mathbf f_1=9.4\,\mathrm{GHz}$ и обеим ориентациям на частоте $\mathbf f_2=34\,\mathrm{GHz}$.

Список литературы

- [1] Зюзин А.М., Бажанов А.Г. // Письма в ЖЭТФ. 1996. Т. 63. № 7. С. 528.
- [2] Klinger S., Chumak A.V., Mewes T. et al. // J. Phys. D: Appl. Phys. 2015. V. 48. N 1. P. 015 001.
- [3] *Исхаков Р.С., Столяр С.В., Чижик М.В., Чеканова Л.А.* // Письма в ЖЭТФ. 2011. Т. 94. № 4. С. 325.
- [4] Игнатченко В.А., Исхаков Р.С. // ЖЭТФ. 1978. Т. 75. № 4. С. 1438.
- [5] Зюзин А.М., Сабаев С.Н., Радайкин В.В., Куляпин А.В. // ФТТ. 2002. Т. 44. В. 5. С. 893.
- [6] Зюзин А.М., Сабаев С.Н., Куляпин А.В. // ФТТ. 2003. Т. 45. В. 12. С. 2208.
- [7] Зюзин А.М., Бажанов А.Г., Радайкин В.В. // ЖТФ. 1999. Т. 69. В. 11. С. 97.
- [8] Зюзин А.М., Ваньков В.Н., Радайкин В.В. // Письма в ЖТФ. 1991. Т. 17. В. 23. С. 65.
- [9] Schreiber F., Frait Z. // Phys. Rev. B. 1996. V. 54. N 9. P. 6473.
- [10] Liu X., Zhou Y.Y., Furdyna J.K. // Phys. Rev. B. 2007. V. 75. N 19. P. 195220.
- [11] Hoekstra B., van Stapele R.P., Robertson J.M. // J. Appl. Phys. 1977. V. 48. N 1. P. 382.