Сверхтонкие взаимодействия в кластерах $Pb^{3+}F_8^-F_a^-$ в кристаллах флюорита

© В.И. Муравьев

НПП "Измеритель", 432008 Ульяновск, Россия

(Поступила в Редакцию 11 августа 2003 г.)

Рассмотрена интерпретация параметров сверхтонких взаимодействий (СТВ) в тетрагональных кластерах $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2 (M=Ca, Sr, Ba). В приближении слабой связи иона-компенсатора заряда F_a^- с кубическим фрагментом в тетрагональном кластере рассчитаны вклады от спиновой поляризации (СП) в параметры собственного СТВ и дополнительных (лигандных) СТВ (ДСТВ). Показано, что последовательный учет вкладов СП в лигандное изотропное СТВ (ИСТВ) на ионе F_a^- приводит к аномально высоким значениям параметра этого взаимодействия для ряда кристаллов MF_2 , что согласуется с экспериментом.

При исследовании ЭПР $6s^1$ -йона Pb^{3+} : MF_2 (M = Ca, Sr, Ba) в кристаллах флюорита при $T < 100\,\mathrm{K}$ были обнаружены тетрагональные кластеры ${\rm Pb^{3+}F_8^-F_a^-},$ где ион-компенсатор заряда F_a^- находится в междоузлии второй сферы, и установлены особенности сверхтонких взаимодействий (СТВ) в этих соединениях. В частности, оказалось [1], что измерение q-фактор, параметр собственного СТВ А и параметры дополнительных лигандных СТВ (ДСТВ) на ионах фтора кубического фрагмента тетрагонального кластера F_i^- (компоненты A^{F_i} -тензора) совпадают по значениям с этими величинами для кубического кластера $Pb^{3+}F_8^-$ [2], в то время как параметры ДСТВ на ионе \mathbf{F}_a^- (компоненты A^{F_a} -тензора) превышают (в среднем для ряда кристаллов МГ2) в полтора раза значения компонент A^{F_i} -тензора. С одной стороны, эксперимент можно интерпретировать более близким расположением к иону Pb^{3+} иона F_a^- по сравнению с ионами $F_i^-[3]$, но, с другой стороны, наблюдаемая изотропия д-фактора и А, а также эквивалентность (в пределах точности эксперимента) ионов F_i^- относительно центра кубического фрагмента в тетрагональном кластере позволяют полагать, что ближайшее окружение иона Pb^{3+} — кубическое, а ион-компенсатор связан с кубическим фрагментом более слабой (по сравнению с внутрифрагментной) ковалентной связью $(Pb^{3+}F_{8}^{-}-F_{a}^{-}).$

Эксперимент показывает (табл. 1), что основными слагаемыми в параметрах ДСТВ, определяющими их поведение, являются изотропные части компонент A^{F_a} -и A^{F_a} -тензоров. В [4,5] обсуждалось влияние спиновой поляризации (СП) на параметры A и лигандных изотропных СТВ (ИСТВ) в кубических кластерах $Me^{n+}F_8^-$ ($Me^{n+}=ns^1$ -ион) в кристаллах флюорита. В настоящей работе в приближении слабой связи рассмотрено влияние СП на эти параметры для тетрагональных кластеров $Pb^3+F_8^-F_a^-$ в кристаллах MF_2 .

1. Энергетический спектр тетрагонального кластера может быть представлен в виде взаимодействующих систем уровней кубического фрагмента и иона \mathbf{F}_a^- . Последовательность электронных оболочек, СП которых вносит ненулевые вклады в параметры A и лигандных

ИСТВ, следующая (C_{4v} , S = I/2):

$$[a_1^b(2s_\sigma^i)]^2[a_1^b(2s_\sigma^a)]^2[a_1^b(2p_\sigma^i)]^2[a_1^b(2p_\sigma^a)]^2[a_1^*(6s)]^1 = {}^2\!A_1, \eqno(1)$$

где в круглых скобках записан характер молекулярной орбитали (MO) электронов соответствующей оболочки (характер оболочки), индекс * относится к разрыхляющему (связывающему) состоянию. МО тетрагонального кластера представлен суперпозицией МО кубического фрагмента и атомной орбитали (AO) иона F_a^- . В раскрытой форме МО имеют следующий вид (в методе МО ЛКАО $2p_\sigma$ - и $2s_\sigma$ -АО ионов фтора смешиваются в нулевом приближении):

$$a_{1}^{*}(6s) = \{x_{0}(6s) - x_{1}(2p_{\sigma}^{i}) - x_{2}(2s_{\sigma}^{i})\}_{\text{cub}} - x_{3}(2p_{\sigma}^{a}) - x_{4}(2s_{\sigma}^{a}),$$

$$a_{1}^{b}(2p_{\sigma}^{a}) = \{v_{0}(6s) - v_{1}(2p_{\sigma}^{i}) - v_{2}(2s_{\sigma}^{i})\}_{\text{cub}} + v_{3}(2p_{\sigma}^{a}) - v_{4}(2s_{\sigma}^{a}),$$

$$a_{1}^{b}(2p_{\sigma}^{i}) = \{y_{0}(6s) + y_{1}(2p_{\sigma}^{i}) - y_{2}(2s_{\sigma}^{i})\}_{\text{cub}} + y_{3}(2p_{\sigma}^{a}) - y_{4}(2s_{\sigma}^{a}),$$

$$a_{1}^{b}(2s_{\sigma}^{a}) = \{w_{0}(6s) + w_{1}(2p_{\sigma}^{i}) - w_{2}(2s_{\sigma}^{i})\}_{\text{cub}} + w_{3}(2p_{\sigma}^{a}) + w_{4}(2s_{\sigma}^{a}),$$

$$a_{1}^{b}(2s_{\sigma}^{i}) = \{z_{0}(6s) + z_{1}(2p_{\sigma}^{i}) + z_{2}(2s_{\sigma}^{i})\}_{\text{cub}} + z_{3}(2p_{\sigma}^{a}) + z_{4}(2s_{\sigma}^{a}),$$

$$(2)$$

где МО кубического фрагмента заключены в фигурные скобки; x, y, z, v, w — коэффициенты разложения МО по базису ЛКАО (коэффициенты МО); знаковые комбинации коэффициентов МО соответствуют (I); $a_1^*(6s)$ — МО основного состояния (неспаренный электрон).

2. Рассмотрим кубический фрагмент тетрагонального кластера. Выражения для параметров СТВ и ДСТВ в случае куба $Me^{n+}F_8^-$ ($Me^{n+}=Zn^+$, Cd^+ , Pb^{3+} , O_h , S=1/2) с учетом СП оболочки с $2p_\sigma^i$ -характе-

Кристалл	A, GHz	$A_{\parallel}^{F_i}$, Gs	$A_{\perp}^{F_i}$, Gs	A_i , Gs	B_i , Gs	$A_{\parallel}^{F_a}$, Gs	$A^{F_a}_{\perp}$, Gs	A_a , Gs	B_a , Gs
GaF ₂	52.85	+200	+69	+112.7	+43.7	+340	(+188.8)	(+239.2)	(+50.4)
SrF_2	51.7	+190	+60	+103.3	+43.3	+290	(+138.8)	(+189.2)	(+50.4)
BaF_2	49.6	+171	+50	+90.3	+40.3	+220	+68.8	+119.2	+50.4

Таблица 1. Экспериментальные данные по ЭПР кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2 [1]*

Таблица 2. Параметры ковалентности кубических фрагментов кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2

Кристалл	x_0^2	x_1^2	x_{2}^{2}	y_0^2	y_1^2	y_{2}^{2}	z_{0}^{2}	z_1^2	z_2^2
CaF ₂	0.73	0.56	0.05	0.44	0.69	0.01	0.01	~ 0	0.96
SrF_2	0.72	0.55	0.04	0.33	0.51	0.01	0.03	~ 0	0.94
BaF_2	0.72	0.52	0.04	0.30	0.52	0.04	0.04	~ 0	0.93

ром получены в [5]. Учитывая также СП оболочки с $2s_{\sigma}^{i}$ -характером и используя МО (2), получаем для параметров СТВ и ДСТВ в пренебрежении влиянием иона \mathbf{F}_{a}^{-} и в одноцентровом приближении следующие выражения:

$$A = A_0 x_0^2 (1 + \delta), \tag{3}$$

$$A_{\parallel}^{F_i} = A_i + 2B_i; \quad A_{\perp}^{F_i} = A_i - B_i,$$
 (4)

где изотропные (A_i) и анизотропные (B_i) части компонент A^{F_i} -тензора определены формулами (9) из [5], а параметр лигандного ИСТВ есть

$$A_{s_i} = A_{0_i} f_{s_i} (1 + \delta_i). \tag{5}$$

В (3) и (5) $A_{0_{(i)}}$ — параметр ИСТВ свободного иона; $f_{s_i}=(x_2/\sqrt{8})^2$ — спиновая плотность на $3s^i_\sigma$ -АО в основном состоянии; $\delta_{(i)}$ — поляризационная поправка, выражение которой для иона F_i^- представляется в следующем виде (для иона Pb^{3+} аналогично):

$$\delta_i = \alpha_i x_0^2 + \beta_i x_1^2 + \gamma_i x_2^2, \tag{6}$$

где

$$\alpha_{i} = 2K(6s, 6s) \left(\frac{x_{0}}{x_{2}}\right) \left(\frac{y_{0}y_{2}}{\Delta_{p_{i}}} - \frac{z_{0}z_{2}}{\Delta_{s_{i}}}\right),$$

$$\beta_{i} = -\frac{1}{4}K(2p_{\sigma}, 2p_{\sigma}) \left(\frac{x_{1}}{x_{2}}\right) \left(\frac{y_{1}y_{2}}{\Delta_{p_{i}}} - \frac{z_{1}z_{2}}{\Delta_{s_{i}}}\right),$$

$$\gamma_{i} = \frac{1}{4}K(2s_{\sigma}, 2s_{\sigma}) \left(\frac{y_{2}^{2}}{\Delta_{p_{i}}} + \frac{z_{2}^{2}}{\Delta_{s_{i}}}\right). \tag{7}$$

Здесь K(j,j) — обменные интегралы, $\Delta_{p(s)_i}$ — интервалы переходов $b \to *$. В (3) первое слагаемое соответствует ИСТВ 6s-электрона, локализованного на ионе Pb^{3+} в основном состоянии, с собственным ядром, а в (5) первое слагаемое — делокализационный вклад. Из (6) следует, что поправка δ_i обязана СП ковалентной связи $Pb^{3+}-F_i^-$ неспаренным электроном, локализованным на 6s-, $2p_{\sigma}^i$ - и $2s_{\sigma}^i$ -АО, соответственно; коэффи-

циенты α_i , β_i и γ_i отражают обменное взаимодействие неспаренного электрона с α -электронами на оболочках $[a_{1g}^b(2p_\sigma^i)]^2$ и $[a_{1g}^b(2s_\sigma^i)]^2$, что относится к первому и второму слагаемым в (7) соответственно.

Необходимые для расчета вкладов в параметры СТВ и ДСТВ коэффициенты МО вычисляем по экспериментальным данным (табл. 1), используя выражения (3)-(5), дополнив их условиями ортонормированности МО и не принимая во внимание орбитальные вклады (вторые слагаемые) в формулах (9) из [5]; значения обменных интегралов и интегралов перекрывания рассчитываем с AO из [6,7]; значения $\Delta_{p(s)_i}$ варьируем в интервале (0.1-1) at.un.; атомные параметры — из [8]. Значения квадратов коэффициентов МО (параметров ковалентности) приведены в табл. 2. При расчете используем различные знаковые комбинации параметров ДСТВ, знаковая комбинация в табл. 1 выбрана в соответствии со структурой делокализованных связей из табл. 2. На различных оболочках электронная плотность распределена по-разному: если на оболочках $[a_{1o}^*(6s)]^1$ и $[a_{1g}^{b}(2p_{\sigma}^{i})]^{2}$ она заметно перераспределена между ионами Pb^{3+} и F_i^- и на лиганде локализована в основном на $2p_{\sigma}^{i}$ -AO, то на оболочке $[a_{1\sigma}^{b}(2s_{\sigma}^{i})]^{2}$ электронная плотность смещена на лиганд и на $\sim 100\%$ локализована на $2s^i_{\sigma}$ -АО ионов фтора. Расчет показывает, что орбитальные вклады в A_i и B_i составляют не более трех процентов экспериментальных значений компонент A^{F_i} -тензора, так что $A_i = A_{s_i}$, а основной вклад в B_i обязан дипольному взаимодействию неспаренного электрона, локализованного на $2p_{\sigma}^{i}$ -АО ионов фтора, с ядром лиганда.

В табл. 3 приведены значения поляризационных поправок, и они разделены на вклады от оболочек с $2p_{\sigma}^{i}$ и $2s_{\sigma}^{i}$ -характером в соответствии с первым и вторым слагаемыми в формулах (7); их значения отмечают преобладание СП оболочки $[a_{1g}^{b}(2p_{\sigma}^{i})]^{2}$. Характер и масштаб изменения теоретических значений A и $A_{s_{i}}$ с учетом поляризационных поправок соответствует

^{*} В круглых скобках — предполагаемые значения параметров ДСТВ на ионе F_a^- , определенные по аналогии с $B_i pprox$ const в ряде кристаллов MF_2 .

832 В.И. Муравьев

Таблица 3. Поляризационные поправки, параметры СТВ A и параметры лигандных ИСТВ A_{s_i} кубических фрагментов кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2

Кристалл	δ_p	δ_s	$\delta = \delta_p + \delta_s$	A, GHz	δ_{p_i}	δ_{s_i}	$\delta_i = \delta_{p_i} + \delta_{s_i}$	A_{s_i} , Gs
CaF ₂ SrF ₂	-0.11 -0.12	$^{+0.01}_{\sim~0}$	-0.10 -0.12	+53.6 +52.2	-0.05 -0.13	+0.01 +0.03	$-0.04 \\ -0.10$	+108.7 +93.4
BaF_2	-0.14	-0.01	-0.15	+49.7	-0.23	-0.03	-0.26	+70.0

Таблица 4. Параметры ковалентности основного состояния, поляризационные поправки и параметры A_{s_a} лигандных ИСТВ на ионе F_a^- для кластеров $Pb^{3+}F_8^-F_a^-$ в кристаллах MF_2

Кристалл	x_0^2	x_{1}^{2}	x_{2}^{2}	x_{3}^{2}	x_4^2	δ_{p_a}	δ_{s_a}	$\delta_a = \delta_{p_a} + \delta_{s_a}$	A_{s_a} , Gs
CaF ₂	0.70	0.56	0.05	0.08	0.01	-0.05	+0.09	+0.04	+255.1
SrF_2	0.65	0.55	0.04	0.08	0.01	-0.13	+0.15	+0.02	+192.5
BaF_2	0.66	0.52	0.04	0.08	0.01	-0.23	+0.23	0	+113.5

эксперименту (табл. 1). Вклад от СП составляет в A \approx 10%, а в A_{s_i} он достигает 30%. Неэффективность СП оболочки $[a_{1g}^b(2s_\sigma^i)]^2$ связана как с незначительной локализацией спиновой плотности на $2s^{i}_{\sigma}$ -AO ионов фтора в основном состоянии, так и с $\Delta_{s_i} > \Delta_{p_i}$ (в свободном атоме фтора интервал $\Delta E(2s, 2p) =$ $= 220 \times 10^{3} \,\mathrm{cm}^{-I}$ [9]). Вклад первого в (6) невелик вследствие $K(6s, 6s) \approx$ ≈ 0.1 at.un. $\langle K(2p_{\sigma}, 2p_{\sigma}) \approx K(2s_{\sigma}, 2s_{\sigma}) \approx I$ at.un.. Ochobной вклад в (6) вносит второе слагаемое и в "хорошем" приближении $\delta_i = \beta_i x_1^2$, где в (7) для β_i следует учесть вклад с Δ_{p_i} . Таким образом, несмотря на слабую примесь $2s_{\sigma}^{i}$ -АО в МО электронов оболочки с $2p_{\sigma}^{i}$ -характером, поведение A_{s_i} зависит от СП именно этой оболочки, что является следствием значительной локализации спиновой плотности на $2p_{\sigma}^{i}$ -АО ионов фтора в основном состоянии.

3. Рассмотрим тетрагональный кластер. Выражения для параметров ДСТВ на ионе F_a^- совпадает (замена $i \to a$) с формулами (4) и (5); поляризационная поправка δ_a с учетом СП оболочек с $2p_\sigma^a$ - и $2s_\sigma^a$ -характером записывается соотношением

$$\delta_a = (\alpha_a x_0^2 + \beta_a x_3^2 + \gamma_a x_4^2) + (\varepsilon_a x_1^2 + \omega_a x_2^2), \quad (8)$$

где первое слагаемое в скобках — аналог (6) с коэффициентами (7), а второе слагаемое — дополнительный вклад, обязанный СП оболочек спиновой плотностью на $2p_{\sigma}^{i}$ - и $2s_{\sigma}^{i}$ -АО ионов фтора в основном состоянии; коэффициенты ε_{a} и ω_{a} равны

$$\varepsilon_a = \frac{1}{4} K(2p_\sigma, 2p_\sigma) \left(\frac{x_1}{x_4}\right) \left(\frac{v_1 v_4}{\Delta_{p_a}} + \frac{w_1 w_4}{\Delta_{s_a}}\right),$$

$$\omega_a = \frac{1}{4} K(2s_\sigma, 2s_\sigma) \left(\frac{x_2}{x_4}\right) \left(\frac{v_2 v_4}{\Delta_{p_a}} - \frac{w_2 w_4}{\Delta_{s_a}}\right). \tag{9}$$

МО электронов поляризующихся оболочек представляем в следующей форме:

$$a_1^b(2p_\sigma^a) \approx v_0(6s) + v_3(2p_\sigma^a) - v_4(2s_\sigma^a),$$

$$a_1^b(2s_\sigma^a) \approx w_0(6s) + w_1(2p_\sigma^i) + w_4(2s_\sigma^a).$$
(10)

Параметры ковалентности основного состояния тетрагонального кластера (табл. 4) вычислены по экспериментальным значениям параметров ДСТВ с использованием условия нормированности MO $a_1^*(6s)$. Неспаренный электрон в тетрагональном кластере заметно локализован на кубическом фрагменте; на связах $Pb^{3+}-F_{a,i}^{-}$ основная часть спиновой плотности на лигандах находится на $2p_{\sigma}^{a,i}$ -АО ионов фтора. С использованием (10) первое слагаемое в (8) представляем в виде: $\delta_{p_a} = \beta_a x_3^2$, где выражение для β_a следует из аналогичной (7) формулы при $w_3 = 0$ и учитывает СП оболочки с $2p_{\sigma}^a$ -характером. Из (9) и (10) получаем: $\omega_a = 0$ и второе слагаемое в (8) есть $\delta_{s_a} = \varepsilon_a x_1^2$, где выражение для ε_a следует из (9) при $v_1 = 0$ и учитывает СП оболочки с $2s_{\sigma}^a$ -характером. Поскольку $\beta_a < 0$ и $\varepsilon_a > 0$, для $\delta_a = \delta_{p_a} = \delta_{s_a}$ имеет место взаимная компенсация вкладов. При оценке значений поправок выбираем $\delta_{p_a} \approx \delta_{p_i}$, что следует из совпадения характеров делокализации спиновой плотности на связях $Pb^{3+}-F_{a,i}^{-}$; значения δ_{s_a} оцениваем в предположении, что $w_0^2 \approx z_0^2$ и доля $2p_\sigma^i$ -АО в МО $a_1^b(2s_{\sigma}^a)$ порядка одного процента. Расчет показывает совпадение масштабов δ_{p_a} и δ_{s_a} , поэтому компенсация вкладов в δ_a от СП оболочек с $2p_{\sigma}^a$ - и $2s_{\sigma}^a$ -характером соответственно приводит к значениям $A_{s_a} > A_{s_i}$ (ср. данные табл. 3 и 4). Поскольку второе слагаемое в (9) из [5] мало (меньше трех процентов), то $A_a = A_{s_a}$, и аномальные значения изотропных частей компонент A^{F_a} -тензора следует объяснить влиянием на параметр лигандного ИСТВ дополнительного вклада в (8), т.е. СП оболочки с $2s_{\sigma}^{a}$ -характером спиновой плотности, локализованной на $2p_{\sigma}^{i}$ -АО ионов F_{i}^{-} в основном состоянии тетрагонального кластера. Вполне возможно, что

¹ Выводы настоящей работы совпадают с качественными результатами [4,5].

и анизотропные части компонент $A^{F_{a,i}}$ -тензоров помимо дипольных содержат вклады от СП, влияние которых объясняет поведение B_a и B_i .

В заключение отметим, что в кластерах $Pb^{3+}F_{8}^{-}F_{a}^{-}$ СП имеет отчетливо выраженный лигандный характер — следствие специфики электронного строения кластеров ns^{1} -ионов, так как и основным, и поляризующимися состояниями являются ковалентные σ -состояния, что способствует значительному обменному взаимодействию на лигандах.

Список литературы

- [1] Ю.А. Михеев, В.Г. Степанов. ФТТ, **27**, 1, 253 (1985); **27**, *10*, 3177 (1985).
- [2] В.Ф. Крутиков, Н.И. Силкин, В.Г. Степанов. Парамагнитный резонанс. КГУ, Казань (1978). В. 10. С. 113; В. 13. С. 79.
- [3] Ю.А. Михеев. Автореф. канд. дис. КГУ, Казань (1987).
- [4] В.И. Муравьев, В.Г. Степанов. ФТТ, 25, II, 3495 (1983).
- [5] В.И. Муравьев. ФТТ, 29, 2, 567 (1987).
- [6] A.A. Misetich, R.E. Watson. Phys. Rev. 43, 2, 335 (1966).
- [7] E. Clementy, D.L. Raumondi, W.P. Reinhard, J. Chem. Phys. 47, 4, 1300 (1967).
- [8] J.R. Morton, K.F. Preston. J. Magn. Res. 30, 2, 577 (1978).
- [9] И.Б. Берсукер. Строение и свойства координационных соединений. Химия, Л. (1971). С. 89.