05,08

Суперсверхтонкая структура спектров ЭПР примесных ионов в системе $LiYF_4:Nd^{3+}$, обогащенной изотопами ¹⁴³Nd

© Л.К. Аминов, М.Р. Гафуров, С.Л. Кораблева, И.Н. Куркин, А.А. Родионов

Институт физики Казанского (Приволжского) федерального университета, Казань, Россия

E-mail: marat.gafurov@kpfu.ru

(Поступила в Редакцию 18 мая 2015 г.)

Приводятся результаты измерения спектров ЭПР в системе LiYF₄: Nd^{3+} , обогащенной изотопами ^{143}Nd с ядерным спином I=7/2. На исследованных образцах удалось наблюдать суперсверхтонкое расщепление спектров ЭПР при ориентациях магнитного поля **B** как вдоль оси симметрии c кристалла, так и при $b \perp c$ на линиях, относящихся и к четным изотопам неодима, и к изотопам c

Работа выполнена в рамках проекта бюджетного финансирования и программы повышения конкурентоспособности Казанского федерального университета.

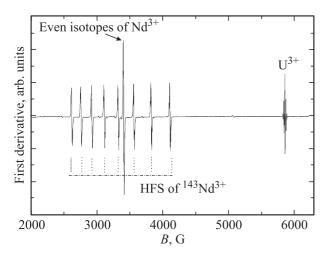
1. Введение

Настоящая работа представляет собой продолжение серии исследований спектров ЭПР трехвалентных редкоземельных ионов RE^{3+} , внедренных в монокристаллы двойных фторидов LiRF₄ в позиции матричных ионов R = Y, Lu, Tm. Эти кристаллы используются в качестве рабочих материалов в квантовой электронике. Разнообразие спектров ЭПР по числу компонент, их расщеплению и относительным интенсивностям делает указанные системы перспективными и для других приложений. В значительной мере это разнообразие обусловлено сверхтонкими взаимодействиями парамагнитных ионов с ядрами ионов фтора, составляющих их ближайшее окружение. Ионы фтора занимают в решетке кристаллов общие позиции, не обладающие никакой симметрией, в силу чего спектры ЭПР сильно анизотропны относительно ориентации магнитных полей. Подробный обзор предыдущих публикаций по этой теме вместе с деталями теоретического анализа спектров был приведен в нашей работе [1]. Здесь мы приводим результаты исследований спектров ЭПР в системах $LiYF_4 : Nd^{3+}$, обогащенных изотопами 143 Nd с ядерным спином I = 7/2.

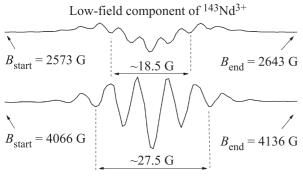
Кристаллы LiYF₄: Nd^{3+} интересны тем, что в них впервые наблюдалось проявление суперсверхтонкого взаимодействия в оптических спектрах [2]. Суперсверхтонкое расщепление спектров ЭПР в такой системе ранее наблюдалось лишь при ориентации магнитного поля **B** вдоль оси симметрии кристалла [3]. На образцах, исследованных в настоящей работе, удалось наблюдать это расщепление и при ориентации $\mathbf{B} \perp c$, причем на линиях, относящихся как к изотопам ^{143}Nd , так и к четным изотопам.

В следующем разделе приводится ряд деталей, касающихся условий экспериментов, связанных с изготовлением образцов и измерением спектров. Далее следует краткое обсуждение результатов измерений и подводятся итоги работы.

2. Экспериментальные условия


Монокристаллы LiYF4, активированные ионами неодима и урана, выращивались методом Бриджмена в графитовых тиглях в атмосфере особо чистого аргона. Скорость выращивания составляла примерно $1.2 \, \mathrm{mm/h}$. Шихта для выращивания кристаллов состояла из фторидов иттрия и лития квалификации осч и была предварительно проплавлена в атмосфере CF4. Примеси изотопов неодима вводились в виде соответствующего оксида в количестве $\sim 0.01 \, \mathrm{at.\%}$, урана — в виде фторида UF3 в количестве $\sim 0.01 \, \mathrm{at.\%}$.

Спектры ЭПР регистрировались стационарным методом в X-диапазоне ($\sim 9.4\,\mathrm{GHz}$) на спектрометре ESP-300 фирмы BRUKER при температурах $T\approx 5-15\,\mathrm{K}$ в магнитных полях $0.2-10.0\,\mathrm{kG}$. Нами исследовалось несколько образцов LiYF4 с примесью ионов Nd^{3+} и U^{3+} . Основные результаты были получены на образце LiYF4 с примесью $0.01\,\mathrm{at.\%}^{143}\mathrm{Nd_2O_3}$ и образце с двойной активацией: $\mathrm{LiYF_4}-0.01\,\mathrm{at.\%}^{143}\mathrm{Nd_2O_3}-0.01\,\mathrm{at.\%}$ UF3.


3. Результаты измерений

На рис. 1 приведен спектр ЭПР образца ${\rm LiYF_4-0.01}$ at.% ${}^{143}{\rm Nd_2O_3-0.01}$ at.% ${}^{44}{\rm UF_3}$ при ориентации внешнего магнитного поля ${\bf B}\parallel{\bf c}$. Наблюдается ЭПР ионов ${\rm U}^{3+}$ с очень хорошо разрешенной суперсверхтонкой структурой (ССТС), обусловленной взаимодействием ионов ${\rm U}^{3+}$ с ядерными спинами ионов ${\rm Hom}^{19}{\rm F}^-$. Также наблюдается интенсивный спектр ЭПР различных изотопов ионов ${\rm Nd}^{3+}$. Обратим внимание на то, что интенсивность линий сверхтонкой структуры изотопов ${\rm Hom}^{143}{\rm Nd}^{3+}$ значительно превышает наблюдаемую в образцах с естественным содержанием изотопов неодима. Соотношение амплитуды линий сверхтонкой

Образцы были выращены в лаборатории магнитной радиоспектроскопии им. С.А. Альтшулера Казанского федерального университета.

Рис. 1. Спектр ЭПР образца LiYF₄-0.01 ат.% 143 Nd₂O₃-0.01 ат.% UF₃ в ориентации $\mathbf{B} \parallel \mathbf{c}, T = 15$ К. Пунктирными линиями обозначена сверхтонкая структура (HFS) изотопа 143 Nd.

High-field component of ¹⁴³Nd³⁺

Рис. 2. Сравнение вторых производных низкополевой (верхняя кривая) и высокополевой (внизу) компонент СТС иона $^{143}\mathrm{Nd}$ в образце LiYF₄-0.01 ат.% $^{143}\mathrm{Nd}_2\mathrm{O}_3-0.01$ ат.% UF₃ при ориентации **В** \parallel **c**, $T=15\,\mathrm{K}$. Величина развертки магнитного поля для обеих компонент одинакова и равна 70 G.

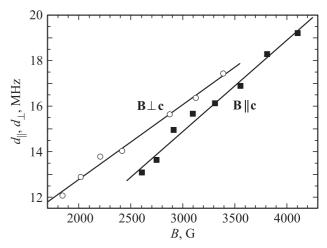
структуры (СТС) и амплитуды линии от четных изотопов равно примерно 1:2.3, а для образцов с естественным содержанием изотопов это соотношение составляет 1:50. Большая интенсивность линий изотопа 143 Nd позволила наблюдать ССТС на отдельных компонентах СТС спектра этого изотопа. Уже из рис. 1 видно, что разрешение ССТС увеличивается с ростом магнитного поля при переходе от слабополевых компонент СТС к сильнополевым. Для количественной оценки разрешения каждая линия СТС ионов 143 Nd $^{3+}$ детально анализировалась отдельно. Для наглядности на рис. 2 приведен спектр ЭПР двух крайних компонент СТС. На рис. 3 показана зависимость величины интервала между компонентами ССТС (которая далее обозначается как d_{\parallel} и d_{\perp} для ориентаций $\mathbf{B} \parallel \mathbf{c}$ и $\mathbf{B} \perp \mathbf{c}$ соответственно) от

внешнего магнитного поля. Данная зависимость близка к линейной и описывается следующими выражениями: для $\mathbf{B} \parallel \mathbf{c}$

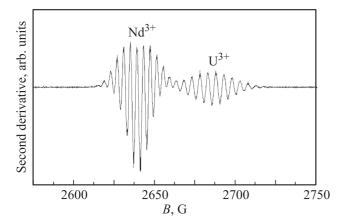
$$d_{\parallel}$$
 (MHz) = 2.8(7) + 0.0040(2) B_0 (G),

для $\mathbf{B} \perp \mathbf{c}$

$$d_{\perp}$$
 (MHz) = 6.2(3) + 0.0033(2) B_0 (G).


Приведем значения g-факторов ионов Nd^{3+} и U^{3+} в LiYF₄, которые мы используем для перевода величин, измеряемых в гауссах, в мегагерцы. Они известны из литературы [1] и составляют в случае LiYF₄: Nd^{3+} :

$$g_{\parallel} = 1.987, \qquad g_{\perp} = 2.554;$$


в случае LiYF₄: U^{3+}

$$g_{\parallel} = 1.149, \qquad g_{\perp} = 2.508.$$

Измерения спектров ЭПР при ориентации магнитного поля $\mathbf{B} \perp \mathbf{c}$ показали наличие ССТС как на ионах \mathbf{U}^{3+} , так и на ионах Nd^{3+} . Это существенно отличается от результатов работы [3], в которой ССТС при ${\bf B} \perp {\bf c}$ наблюдалась только на ионах U³⁺. Возможно, что этот результат обусловлен малой концентрацией примесных ионов (~ 0.01 at.%). На рис. 4 приведен спектр ЭПР ионов Nd^{3+} и U^{3+} в $LiYF_4$ при $\mathbf{B} \perp \mathbf{c}$. Анализ приведенных на рисунке спектров показывает, что интервалы между компонентами ССТС для ионов Nd³⁺ равны 4.0 G $(14.3 \, \text{MHz})$, а для ионов U^{3+} они составляют 5.1 G (17.9 МНz). Следует отметить, что хорошее разрешение ССТС, приведенное на рис. 4, получено при ${\bf B} \perp {\bf c}$ лишь при некоторых ориентациях магнитного поля в плоскости ав кристалла. При других ориентациях поля в этой плоскости разрешение значительно хуже. Существуют

Рис. 3. Зависимость величины интервала между компонентами ССТС от значения внешнего магнитного поля для ориентаций **В** \parallel **c** и **В** \perp **c**.

Рис. 4. Вторая производная части спектра ЭПР образца LiYF $_4$ -0.01 at.% 143 Nd $_2$ O $_3$ -0.01 at.% UF $_3$ в ориентации **B** \parallel **c** при T=15 K, демонстрирующая наличие ССТС ионов Nd $^{3+}$ и U $^{3+}$.

ориентации, в которых ССТС наблюдается на ионах U^{3+} и не наблюдается на ионах Nd^{3+} .

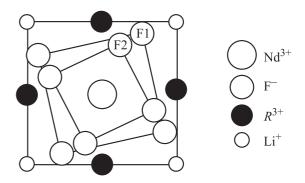
При ${\bf B} \perp {\bf c}$ нами наблюдалась ССТС на всех линиях СТС ионов $^{143}{
m Nd}^{3+}$. Были проведены измерения интервалов между компонентами ССТС, результаты которых приведены на рис. 3 вместе с результатами, полученными для ${\bf B} \parallel {\bf c}$.

Ранее нами были выполнены измерения ССТС ионов Nd^{3+} и U^{3+} в монокристаллах $\mathrm{LiYF_4}$ при ориентации внешнего магнитного поля $\mathbf{B} \parallel \mathbf{c}$. Было установлено, что для Nd^{3+} компоненты ССТС разделены интервалами 5.5 G (15.4 MHz), а для U^{3+} интервалы составляют 14.9 G (24.0 MHz). Таким образом, для изоэлектронных ионов Nd^{3+} (4 f^3) и U^{3+} (5 f^3) суперсверхтонкое взаимодействие иона группы актиноидов заметно больше, чем для иона группы лантаноидов.

4. Обсуждение результатов

Исследуемые в работе парамагнитные центры обладают эффективным электронным спином S=1/2, нечетные изотопы неодима и урана обладают собственным ядерным моментом $I^{(0)}$, и эффективный гамильтониан систем можно представить в виде

$$H = H_Z + H_{hf} + H_{shf} = \tilde{\mathbf{g}}\mu_{\mathrm{B}}\mathbf{B}\mathbf{S} + \mathbf{A}\mathbf{I}^{(0)}\mathbf{S} + H_{Zn} + H_Q$$
$$+ \sum_{i} \left(-\hbar \gamma^{(i)}\mathbf{B}\mathbf{I}^{(i)} + \mathbf{T}^{(i)}\mathbf{I}^{(i)}\mathbf{S}\right), \tag{1}$$


где первое слагаемое (H_Z) — электронная зеемановская энергия центра, второе $(H_{\rm hf})$ включает сверхтонкое взаимодействие парамагнитных электронов с собственным ядром $({\bf AI}^{(0)}{\bf S})$, а также зеемановскую (H_{Zn}) и квадрупольную (H_Q) энергию собственного ядра. Третье слагаемое $(H_{\rm shf})$ в (1) представляет собой сумму по лигандам — ионам фтора с ${\bf I}^{(i)}=1/2$ — и включает

ядерную зеемановскую энергию и суперсверхтонкое взаимодействие с параметрами, определяемыми тензором $\mathbf{T}^{(i)}$. Обычное соотношение между различными вкладами в гамильтониан редкоземельных парамагнитных центров таково

$$|H_Z| \gg |A| \gg |H_{Zn}| \sim |T|. \tag{2}$$

Линия ЭПР для спина S=1/2 при наличии момента $I^{(0)}$ расщепляется на $2I^{(0)}+1$ сверхтонких компонент, разделенных интервалами $\sim |A|$. Каждая из сверхтонких компонент приобретает суперсверхтонкую структуру, являющуюся суперпозицией вкладов всех лигандов, связанных с центральным ионом магнитными взаимодействиями. Эта структура в общем случае оказывается очень сложной и разрешается лишь при некоторых ориентациях внешнего магнитного поля относительно кристаллических осей, когда лиганды объединяются в группы магнитно-эквивалентных ионов.

В LiYF₄ ближайшее окружение парамагнитного центра состоит из восьми ионов фтора, расположенных в вершинах двух тетраэдров с общей осью S_4 , параллельной оси c кристалла, один из которых сжат (F1), а другой (F2) вытянут вдоль этой оси. На рис. 5 приведена проекция на плоскость ав половины ячейки Браве кристалла с центром на редкоземельном ионе, замещающем ион Y^{3+} . За исключением оси S_4 , как видно из рисунка, остальные оси и плоскости симметрии двух тетраэдров не совпадают, не совпадают они и с соответствующими элементами симметрии самого кристалла. Однако углы между плоскостями симметрии двух тетраэдров очень малы (< 4°), что позволяет с достаточной точностью описывать симметрию ближайшего окружения редкоземельных ионов группой D_{2d} [4]. При таком описании благоприятными для наблюдения суперсверхтонкой структуры являются ориентации внешнего поля как вдоль оси c кристалла, так и вдоль "усредненной" оси второго порядка F-тетраэдров, расположенной примерно под углом 10° к оси a или b ($\mathbf{B} \perp \mathbf{c}$). Во всех этих случаях каждый из двух F-тетраэдров ближайшего окружения парамагнитного центра представляет собой четверку магнитно-эквивалентных лигандов.

Рис. 5. Проекция половины ячейки Браве кристалла $LiRF_4$ с центром на примесном ионе Nd^{3+} , замещающем позицию R^{3+} , на плоскость ab.

ССТС на каждой сверхтонкой линии спектра ЭПР внешне почти одинакова, за исключением того, что интервалы между компонентами ССТС несколько возрастают по мере перехода от слабополевых к сильнополевым линиям СТС. Это обстоятельство было отмечено еще Рэноном и Хайдом [5] в их фундаментальном анализе спектра ЭПР системы $\text{CaF}_2: \text{Yb}^{3+}$. Измеренная в настоящей работе зависимость интервалов между компонентами ССТС от поля в спектре ЭПР иона $^{143}\text{Nd}^{3+}$, изображенная на рис. 3, заметно сильнее, чем наблюдавшаяся ранее для других ионов с собственными магнитными моментами: $^{171}\text{Yb}^{3+}$, $^{173}\text{Yb}^{3+}$, $^{235}\text{U}^{3+}$.

5. Заключение

Отметим, что оптимальные условия наблюдения ССТС в спектрах ЭПР в монокристаллах помимо возможности точной ориентации образца во внешнем магнитном поле включают ряд требований, связанных с температурой, уровнем СВЧ-мощности, скоростью протяжки поля (см. [1]). При варьировании этих условий часто удается расширить круг систем с четко разрешенной ССТС. Нам удалось наблюдать такое разрешение в системе LiYF₄: Gd³⁺ для ряда компонент тонкой структуры спектра ЭПР в широком диапазоне температур. Результаты этих измерений готовятся к публикации.

Авторы благодарны Б.З. Малкину за ценные советы.

Список литературы

- [1] Л.К. Аминов, И.Н. Куркин, Б.З. Малкин. ФТТ **55**, 1249 (2013)
- [2] R.M. Macfarlane, R.S. Meltzer, B.Z. Malkin. Phys. Rev. B 58, 5692 (1998).
- [3] Л.К. Аминов, А.А. Ершова, С.Л. Кораблева, И.Н. Куркин, Б.З. Малкин, А.А. Родионов. ФТТ 53, 2129 (2011).
- [4] Y. Vaills, J.Y. Buzare, J.Y. Gesland. Solid State Commun. 45, 1093 (1983).
- [5] U. Ranon, J.S. Hyde. Phys. Rev. 141, 259 (1966).