06

Вклад спонтанной поляризации и ее флуктуаций в преломление света в сегнетоэлектриках

© П.А. Марковин 1, В.А. Трепаков 1,2, А.К. Таганцев 1,3, А. Дейнека 2, Д.А. Андреев 4

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Институт физики Академии наук Чехии,

Прага, Чехия

³ Швейцарский федеральный институт технологий (EPFL),

Лозанна, Швейцария

4 Санкт-Петербургский государственный политехнический университет Петра Великого,

Санкт-Петербург, Россия

E-mail: P.Markovin@mail.ioffe.ru

(Поступила в Редакцию 16 июля 2015 г.)

В рамках фенологического подхода рассмотрены с учетом флуктуаций поляризации выражения для спонтанного полярного вклада δn_i^S в главные значения показателя преломления, возникающего за счет квадратичного электрооптического эффекта в сегнетоэлектриках. Предложен метод вычисления из температурных изменений спонтанного полярного вклада $\delta n_i^S(T)$ величины и температурной зависимости среднеквадратичных флуктуаций поляризации (ближний, локальный полярный порядок) $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ ниже температуры сегнетоэлектрического перехода T_c , если независимыми измерениями (например, из петель диэлектрического гистерезиса) определено среднее значение спонтанной поляризации $P_{\rm s} = \langle P \rangle$, характеризующей дальний порядок. Для случая изотропных флуктуаций метод позволяет вычислить $P_{\rm sh}$ и $P_{\rm s}$ только из рефрактометрических измерений. Показано, что при интерферометрических измерениях развитый в работе метод позволяет проводить вычисления $P_{\rm sh}$ и $P_{\rm s}$ непосредственно из измеряемых температурных и электрополевых изменений относительного оптического пути света.

Работа выполнена при частичной поддержке гранта Академии наук Чешской Республики 15-137785 (GACR 15-137785).

1. Введение

Исследования температурных изменений показателя преломления $\delta n(T)$ и двупреломления света $\Delta n(T)$ являются эффективным методом изучения фазовых переходов, в первую очередь из-за большой точности современных экспериментальных методов измерения этих величин. К настоящему времени развиты обоснованные методы выделения спонтанного вклада в показатель преломления δn^{η} , связанного с параметром порядка η из температурных изменений показателя преломления и двупреломления света [1-8]. Конкретный вид связи спонтанного вклада в главные значения показателя преломления δn_i^{η} и параметра порядка η анализировался [9-14] для структурных, в том числе сегнетоэлектрических, и магнитных фазовых переходов (анализ δn_i^{η} для последних приведен в [1,2,10,11] и не затрагивается в настоящей статье). В большинстве случаев δn_i^{η} связан квадратично с параметром порядка и спонтанное изменение показателя преломления пропорционально среднему (по времени и измеряемому объему кристалла) значению квадрата параметра порядка $\delta n^{\eta}(T) \propto \langle \eta^2 \rangle$. Это обстоятельство позволяет извлекать из измерений δn_i^{η} величину $\langle \eta^2 \rangle$, в которую дают вклад, как дальний порядок, так и ближний порядок, обусловленный флуктуациями η . Связь температурных изменений показателя преломления с $\langle \eta^2 \rangle$ приводит к вкладу флуктуаций (локального порядка) в $\delta n_i^\eta(T)$ и выше и ниже температуры фазового перехода. Такой вклад появляется также и в температурной зависимости кристаллографического двупреломления кристаллов, некубических в высокосимметричной фазе. Общей проблемой для рефрактометрических исследований систем с сосуществованием ближнего и дальнего порядка, в том числе полярного, является отсутствие метода вычисления из эксперимента величины $\eta_{\rm sh} = \langle \eta_{\rm fl}^2 \rangle^{1/2}$, обусловленной только ближним порядком (флуктуациями параметра порядка, локальным порядком) при температурах ниже T_c .

В собственных сегнетоэлектриках параметром порядка является спонтанная поляризация P и спонтанный вклад $\delta n_i^s(T)$ в $\delta n_i(T)$ обусловлен квадратичным электрооптическим (ЭО) эффектом $\delta n^s(T) \propto \langle P^2 \rangle$ [9,12–14]. Значение поляризации, характеризующей только ближний порядок $P_{\rm sh}$, как и величина среднего значения спонтанной поляризации $P_{\rm s} = \langle P \rangle$, определяющей дальний порядок ниже T_c , является важным количественным параметром для теоретического описания полярной фазы. Как отмечено выше, количественная характеристика ближнего порядка $P_{\rm sh}$ (флуктуаций различного типа, локального порядка) определяется как корень квадратный из среднего значения квадрата флуктуаций поляризации $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ (среднеквадратичная флуктуация), поскольку $\langle P_{\rm fl} \rangle = 0$. До настоящего времени величина $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ вычислялась и анализировалась из рефрак-

тометрических измерений только для частных случаев, когда отсутствует дальний порядок — спонтанная поляризация $P_{\rm s}=\langle P\rangle=0$ и $\langle P^2\rangle^{1/2}=P_{\rm sh}$. Такая ситуация реализуется в сегнетоэлектриках выше T_c , в релаксорах для фазы Бернса, в стеклоподобных фазах. Поведение $\langle P^2 \rangle^{1/2} = P_{\rm sh}$ выше T_c ("precursor polarization" — "хвосты" температурных зависимостей $\delta n_i^S(T)$ в парафазе) из рефрактометрических измерений было исследовано для классических сегнетоэлектриков ВаТіО₃ [15], KNbO₃ [16], PbTiO₃ [17] в TITiOPO₄ [18] и др. Изучение $\delta n(T)$ и выделение спонтанного полярного вклада $\delta n^S(T)$ в модельных релаксорах привело к обнаружению локального полярного состояния в нанообластях без образования дальнего порядка, которое назвали фазой Бернса [19–22]. Поляризация в нанообластях $P_{\rm d}$ ($P_{\rm sh}$ в наших обозначениях) была оценена как $P_{\rm d} = \langle P^2 \rangle^{1/2}$ из спонтанного полярного вклада $\delta n^S(T)$, возникающего гораздо выше температуры максимума диэлектрической проницаемости.

Выделение величины $P_{\rm sh}$, связанной только с ближним порядком (локальным порядком, флуктуациями), ниже T_c не проводилось из-за отсутствия метода ее выделения для случаев, когда в получаемую из эксперимента величину $\langle P^2 \rangle$ дает вклад как $P_{\rm sh}$, так и $P_{\rm s}$. В общем случае, как будет ясно из дальнейшего, $P_{\rm sh}=\langle P_{\rm fl}^2\rangle^{1/2}$ не может быть вычислено простым вычитанием $P_{\rm sh}=\langle P_{\rm fl}^2\rangle^{1/2}=\langle P^2\rangle^{1/2}-P_{\rm s}$ или $P_{\rm sh}^2=\langle P_{\rm fl}^2\rangle$ $=\langle P^2\rangle-P_s^2$. Аномальное поведение спонтанного вклада параметра порядка $\langle \eta^2 \rangle$ в рефракцию света, связанное с флуктуациями наблюдалось и для многих типов структурных переходов (см. [3,23-25] и ссылки в них). Ниже T_c вклад $\langle \eta_{\rm fl}^2 \rangle$ не выделялся. Отметим работу [23], в которой на основе анализа температурных производных кристаллографического двупреломления обсуждалось поведение $\langle \eta^2 \rangle_{\text{loc}}$ выше и ниже температуры T_i несоразмерного фазового перехода в Rb₂ZnBr₄. При анализе $\langle \eta^2 \rangle_{\rm loc}$ в [23] отмечалась необходимость учета дальнего порядка ниже T_i , но обсуждение эксперимента касалось только $\langle \eta^2 \rangle_{\text{loc}}$ выше T_i .

Вычисление $P_{\rm sh}$ ниже T_c особенно актуально для исследования систем с сосуществованием дальнего и ближнего порядка ниже T_c , когда вклады ближнего и дальнего порядка сравнимы по величине. К таким объектам, в частности, относятся квантовые параэлектрики SrTiO₃ и KTaO₃ с примесями (Sr_{1-x}Ca_xTiO₃, Sr_{1-x}Ba_xTiO₃, SrTi($^{16}O_{1-x}^{-18}O_x$)₃, KTa_{1-x}Nb_xO₃ и др.). В них выше некоторой критической концентрации примеси x_c индуцируется сегнетофаза. Величина $\langle P^2 \rangle^{1/2}$, включающая и дальний и ближний порядок оказывается значительно больше $P_s = \langle P \rangle$, что указывает на развитые пространственные флуктуации параметра порядка, характер которых качественно отличается от поведения классических термодинамических флуктуаций вблизи T_c .

Целью настоящей работы является развитие метода количественного вычисления величин $P_{\rm sh}$ и $P_{\rm s}$ из спонтанного полярного вклада δn^S в температурные изменения главных значений показателя преломления

сегнетоэлектриков. Рассмотрение проводиться в рамках феноменологического подхода [12-14] на основе модификации выражений для изменений показателя преломления под действием спонтанной поляризации с учетом флуктуаций. Из полученных формул следует, что из температурных зависимостей спонтанного полярного вклада в главные значения показателя преломления можно вычислить величину и температурную зависимость $P_{\rm sh}=\langle P_{\rm fl}^2\rangle^{1/2}$, характеризующую только ближний полярный порядок, возникающий за счет флуктуаций поляризации (локального упорядочения) как выше, так и ниже температуры сегнетоэлектрического перехода T_c , если из независимых измерений определена величина среднего значения спонтанной поляризации $P_{\rm s}$, характеризующая дальний полярный порядок. Для случая изотропных флуктуаций метод позволяет вычислить $P_{\rm sh}$ и $P_{\rm s}$ только из рефрактометрических измерений. Метод адаптирован для нахождения $P_{\rm s}$ и $P_{\rm sh}$ из интерферометрических измерений. Показано, что при интерферометрических измерениях метод позволяет проводить вычисления $P_{\rm sh}$ и $P_{\rm s}$ непосредственно из измеряемых температурных и электрополевых изменений относительного оптического пути света в кристалле.

2. Обобщенные выражения для спонтанного полярного вклада в главные значения показателя преломления с учетом флуктуаций поляризации

В рамках феноменологического подхода спонтанный полярный вклад в преломляющие свойства сегнетоэлектриков описывается на основе разложения изменений компонент тензора диэлектрической непроницаемости $\delta \varepsilon_{ij}^{-1}$ по степеням компонент спонтанной поляризации P_k , P_l . Для квадратичного электрооптического эффекта

$$\delta \left(\varepsilon_{ij}^{-1}\right)^s = \sum_{kl} g_{ijkl}^* P_k P_l, \tag{1}$$

где g_{ijkl}^* — квадратичные по поляризации электрооптические (ЭО) коэффициенты в полярной фазе, $\delta(\varepsilon_{ij}^{-1})^s$ — спонтанный полярный вклад в изменение тензора диэлектрической непроницаемости.

В главной системе координат для изменений $\delta \varepsilon_{ii}^{-1} = \delta \varepsilon_i^{-1}$ для актуальных полярных групп симметрии 4mm, mm2 и ряда других, с учетом правил пересчета индексов можно написать

$$\delta\left(\varepsilon_{i}^{-1}\right)^{s} = \sum_{i=1}^{3} g_{ij}^{*} P_{j}^{2}. \tag{2}$$

Между главными значениями показателя преломления n_i и компонентами тензора диэлектрической проницаемости ε имеет место простая связь: $\varepsilon_{ii} = \varepsilon_i = n_i^2$. Для

малых добавок за счет спонтанного вклада в главные значения показателя преломления δn_i^s

$$\delta n_i^s = -\left(\frac{n_i^3}{2}\right)\delta\left(\varepsilon_i^{-1}\right)^s = -\sum_{i=1}^3 \left(\frac{n_i^3}{2}\right)g_{ij}^*P_j^2.$$
 (3)

Учитывая, что спонтанное изменение δn_i^s пропорционально среднему (по времени и пути света) значению квадрата компонент поляризации $\langle P_j^2 \rangle$, выражение (3) должно быть модифицировано

$$\delta n_i^s = -\left(\frac{n_i^3}{2}\right)\delta\left(\varepsilon_i^{-1}\right)^s = -\sum_{i=1}^3 \left(\frac{n_i^3}{2}\right)g_{ij}^*\langle P_j^2\rangle. \tag{4}$$

В выражение (4) должны входить флуктуации компонент поляризации P_{flj} . В этом случае из (4) получаем (учтено, что можно приближенно заменить $n_i \cong n$)

$$\delta n_i^s = -\sum_{j=1}^3 \left(\frac{n^3}{2}\right) g_{ij}^* \langle (P_{sj} \pm P_{flj})^2 \rangle.$$
 (5)

В выражении (5) P_{sj} — абсолютные значения компонент спонтанной поляризации, связанные с дальним порядком $P_{sj} = |\langle P_{sj} \rangle|$. P_{flj} — абсолютные значения флуктуационных компонент спонтанной поляризации, которые связаны только с ближним порядком. При преобразовании выражения (5), с учетом статистически равновероятного распределения P_{flj} с противоположным знаком $\langle \pm 2P_{sj}P_{flj} \rangle = 0$, обобщенные выражения для спонтанного полярного вклада в главные значения показателя преломления с учетом флуктуаций поляризации принимают вид

$$\delta n_i^s = -\sum_{i=1}^3 \left(\frac{n^3}{2}\right) g_{ij}^* \left(\left\langle P_{sj}^2 \right\rangle + \left\langle P_{flj}^2 \right\rangle\right). \tag{6}$$

В выражении (6) в каждом конкретном случае необходимо учитывать возможные реализуемые направления спонтанной поляризации и соответственно ее флуктуаций, определяемые симметрией кристалла. Обозначим это выделенное направление в монодоменном кристалле как ось 3. Далее будем использовать обозначения: $P_{\rm sh}{}_j = \langle P_{\rm fl}^2 \rangle^{1/2}, \, P_{\rm s} = |\langle P_{\rm s3} \rangle|$ и учтем, что в этих обозначениях $P_{\rm s}^2 = \langle P_{\rm s3}^2 \rangle$. В этом случае из (6) получаем

$$\delta n_3^s = -\frac{n^3}{2} \left[g_{33}^* \left(P_s^2 + P_{sh3}^2 \right) + g_{31}^* P_{sh1}^2 + g_{32}^* P_{sh2}^2 \right], \quad (7a)$$

$$\delta n_1^s = -\frac{n^3}{2} \left[g_{13}^* \left(P_s^2 + P_{sh3}^2 \right) + g_{11}^* P_{sh1}^2 + g_{12}^* P_{sh2}^2 \right], \quad (7b)$$

$$\delta n_2^s = -\frac{n^3}{2} \left[g_{23}^* \left(P_s^2 + P_{sh3}^2 \right) + g_{21}^* P_{sh1}^2 + g_{22}^* P_{sh2}^2 \right]. \tag{7c}$$

Для пояснения использования системы (7) рассмотрим пример: сегнетоэлектрический переход в $KNbO_3$ $m3m \rightarrow 4mm$ (C_{4v}). Спонтанная поляризация может лежать вдоль одного из направлений типа [100]. Для кислородно-октаэдрических сегнетоэлектриков ЭО-коэффициенты g_{i3}^* в полярной фазе могут быть выражены

через g_{ij} (g_{11} , g_{12} , g_{44}) в кубической парафазе [7,12,13] (см. таблицу).

Флуктуации в сегнетофазе C_{4v} (4mm) в монодоменном кристалле со спонтанной поляризацией вдоль оси 3 должны быть изотропны вдоль осей 1, 2. $P_{\rm sh1} = P_{\rm sh2} = P_{\rm sh}$. Тогда для спонтанного полярного вклада ниже T_c получаем

$$\delta n_3^s = -\frac{n^3}{2} \left[g_{11} \left(P_s^2 + P_{sh3}^2 \right) + 2g_{12} P_{sh}^2 \right],$$

$$\delta n_1^s = \delta n_2^s = -\frac{n^3}{2} \left[g_{12} \left(P_s^2 + P_{sh3}^2 \right) + (g_{11} + g_{12}) P_{sh}^2 \right].$$
(8)

В пренебрежении анизотропии флуктуаций ниже T_c

$$\delta n_3^s = -\frac{n^3}{2} \left[g_{11} P_s^2 + (g_{11} + 2g_{12}) P_{sh}^2 \right],$$

$$\delta n_1^s = \delta n_2^s = -\frac{n^3}{2} \left[g_{12} P_s^2 + (g_{11} + 2g_{12}) P_{sh}^2 \right]. \tag{9}$$

Выше T_c следует ожидать изотропные флуктуации вдоль всех трех осей типа [100]. Тогда $P_{shj}=P_{\rm sh}$ и для "precursor polarization" выше T_c ($P_{\rm s}=0$)

$$\delta n_1^s = \delta n_2^s = \delta n_2^s = -\frac{n^3}{n} (g_{11} + 2g_{12}) P_{\text{sh}}^2.$$
 (10)

Выражение для флуктуаций выше T_c , полученное нами из (7) для данного частного случая, естественно совпадает с выражением, использованным в [16] для описания "precursor polarization" в KNbO $_3$ (выражение (5) в [16]). Аналогичным образом можно получить выражение (1) из [19], использованное авторами для оценки локального полярного состояния $P_{\rm sh} = P_{\rm d} = \langle P^2 \rangle^{1/2}$ в нанообластях в релаксорах.

Выражения (7) являются системой из трех уравнений с четырьмя неизвестными. Измерения температурных изменений трех главных значений показателя преломления в монодоменном кристалле $\delta n_i(T)$, после вычитания регулярного вклада $\delta n_i^0(T)$ (не связанного с поляризацией) и выделения $\delta n_i^s(T)$, позволяют на основе системы (7) определить величину и температурную зависимость $P_{\rm sh}$ выше и ниже температуры Кюри, если из независимых измерений определена величина $P_{\rm s}$, а также получить $P_{\rm sh}$ в системах с локальным полярным упорядочением (без дальнего порядка). Конечно, если известны ЭО-коэффициенты. (Как правило, квадратичные по поляризации электрооптические коэффициенты слабо зависят от температуры [14]).

В случае изотропных флуктуаций для определения P_s и $P_{\rm sh}$ достаточно двух уравнений из системы (7). В этом случае (изотропные флуктуации), как легко видеть на рассмотренном примере (см. (9)), морфическое спонтанное двупреломдение $\Delta n_{13}^s(T) = \delta n_3^s(T) - \delta n_1^s(T)$ равно нулю выше T_c ($P_s=0$). Ниже T_c вклад флуктуаций в $\Delta n_{13}^s(T)$ отсутствует и из $\Delta n_{13}^s(T)$ в явном виде можно определить P_s с большей точностью, чем из системы (7), так как измерения двупреломления имеют

Симметрия сегнетофаз	g* ₁₃	g *23	g* ₃₃
C_{4v} (4mm) C_{2v} (mm2) C_{3v} (3m)	$g_{12} \\ g_{12} \\ (g_{11} + 2g_{12} - g_{44})$	$g_{12} (g_{11} + g_{12} - g_{44}) (g_{11} + 2g_{12} - g_{44})$	$g_{11} (g_{11} + g_{12} + g_{44}) (g_{11} + 2g_{12} + 2g_{44})$

Выражения для ЭО-коэффициентов g_{i3}^* в сегнетофазе через ЭО-коэффициенты g_{11}, g_{12}, g_{44} в кубической парафазе [7,12,13]

точность на порядок больше, чем измерения $\delta n_i(T)$. Для анизотропных флуктуаций из (7) определяется сумма $(P_s^2 + P_{sh3}^2)$. В этом случае конечно необходимы измерения P_s другими независимыми методами, например из петель диэлектрического гистерезиса.

3. Вычисление характеристик ближнего и дальнего полярного порядка из интерферометрических изменений

Наиболее точным методом измерения температурных изменений главных значений показателя преломления является интерферометрический метод. Метод позволяет измерять относительные изменения оптического пути света в кристалле $\delta\Psi(T)$, которые связаны с изменениями показателя преломления $\delta n(T)$

$$\delta\Psi_i(T) = \delta n_i(T) + (n_i - 1) \frac{\delta l_j(T)}{l_i}, \tag{11}$$

где l_j — толщина образца вдоль направления распространения света, δl_j — изменения толщины при внешнем воздействии (изменении температуры в данном случае), n_i — главные значения показателя преломления, индекс i относится к направлению поляризации света, а индекс j — к направлению распространения света в кристалле.

Спонтанный полярный вклад в относительные изменения оптического пути света, полученный после вычитания из (11) регулярного вклада $\delta\Psi^o_i(T)$ не связанного с поляризацией, дается выражением

$$\delta\Psi_i^s = \delta n_i^s + (n_i - 1) \frac{\delta l_j^s}{l_i}, \qquad (12)$$

где δn_i^s является спонтанным полярным вкладом в главные значения показателя преломления, а δl_j^s спонтанный вклад в тепловое расширение, возникающий за счет спонтанной стрикции. δn_i^s определяется выражением (4)

$$\delta n_i^s = -\sum_{k=1}^3 \left(\frac{n_i^3}{2}\right) g_{ik}^* \langle P_k^2 \rangle. \tag{13}$$

Второе слагаемое в (12) является вкладом спонтанной деформации вдоль направления распространения света и связан с величиной среднеквадратичной поляризации $\langle P_k^2 \rangle$ через электрострикционные коэффициенты Q_{ik}^*

$$\frac{\delta l_j^s}{l_j} = \sum_{k=1}^3 Q_{jk}^* \langle P_k^2 \rangle. \tag{14}$$

Тогда выражение для $\delta \Psi_i^s(T)$ принимает вид

$$\delta \Psi_{i}^{s} = \sum_{k=1}^{3} \left(-\frac{n_{i}^{3}}{2} g_{ik}^{*} + (n_{i} - 1) Q_{jk}^{*} \right) \langle P_{k}^{2} \rangle$$

$$= -\sum_{k=1}^{3} \left(\frac{n_{i}^{3}}{2} \right) \left[g_{ik}^{*} + \frac{2}{n_{i}^{3}} (n_{i} - 1) Q_{jk}^{*} \right] \langle P_{k}^{2} \rangle. \quad (15)$$

При интерферометрических измерениях квадратичного электрооптического эффекта в парафазе величина $\delta \Psi_i(E_k)$ при приложении поля вдоль оси k выражается как

$$\delta\Psi_{i}(E_{k}) = \left(-\frac{n_{i}^{3}}{2}g_{ik}^{*} + (n_{i} - 1)Q_{jk}^{*}\right)\varepsilon_{0}^{2}(\varepsilon_{k} - 1)^{2}E_{k}^{2}$$

$$= -\left(\frac{n_{i}^{3}}{2}\right)\left[g_{ik}^{*} + \frac{2}{n_{i}^{3}}(n_{i} - 1)Q_{jk}^{*}\right]\varepsilon_{0}^{2}(\varepsilon_{k} - 1)^{2}E_{k}^{2},$$
(16)

где $\varepsilon_0(\varepsilon_k-1)E_k=P_{\mathrm{ind}}(E_k)$ — индуцированная электрическим полем поляризация, ε_0 — электрическая постоянная, ε_k — диэлектрическая проницаемость вдоль оси k. В выражении (16) имеется в виду, что электрическое поле в парафазе прилагается к кристаллу вдоль возможного направления спонтанной поляризации в сегнетофазе, поэтому ЭО-коэффициенты обозначены как g_{ik}^* . Для кубических в парафазе кислородно-октаэдрических сегнетоэлектриков g_{ik}^* выражаются через стандартные обозначения g_{ik} для кубической симметрии согласно таблице.

Тензора Q_{ik}^* и g_{ik}^* имеют одинаковую симметрию и выражения в квадратных скобках в (15), (16) можно рассматривать как эффективные ЭО-коэффициенты

$$g_{ik}^{**} = \left[g_{ik}^* + \frac{2}{n_i^3} (n_i - 1) Q_{jk}^* \right]$$

для определения поляризации на основе изменений $\delta \Psi_i^s(T)$ и $\delta \Psi_i(E_k)$.

Тогда для спонтанных изменений $\delta \Psi_i^s(T)$ можно написать

$$\delta \Psi_i^s = -\sum_{k=1}^3 \left(\frac{n^3}{2}\right) g_{ik}^{**} \langle P_k^2 \rangle. \tag{17}$$

Используя те же рассуждения, на основе которых из выражения (4) было получено (6), а затем (7) с уже введенными ранее обозначениями, из (17) с учетом флуктуаций получаем

$$\delta \Psi_i^s = -\sum_{k=1}^3 \left[\frac{n^3}{2} \right] g_{ik}^{**} \left(\left\langle P_{sk}^2 \right\rangle + \left\langle P_{shk}^2 \right\rangle \right), \tag{18}$$

где эффективный ЭО-коэффициент

$$g_{ik}^{**} = \left[g_{ik}^* + \frac{2}{n_i^3}(n_i - 1)Q_{jk}^*\right].$$

Для $\delta \Psi_i^s(T)$ в монодоменном кристалле, в котором $P_s = |\langle P_{s3} \rangle|$ (аналог формул (7))

$$\begin{split} \delta\Psi_3^s(T) &= -\frac{n^3}{2} \left[g_{33}^{**} \left(P_{\rm s}^2 + P_{\rm sh3}^2 \right) + g_{31}^{**} P_{\rm sh1}^2 + g_{32}^{**} P_{\rm sh2}^2 \right], \\ \delta\Psi_1^s(T) &= -\frac{n^3}{2} \left[g_{13}^{**} \left(P_{\rm s}^2 + P_{\rm sh3}^2 \right) + g_{11}^{**} P_{\rm sh1}^2 + g_{12}^{**} P_{\rm sh2}^2 \right], \\ \delta\Psi_2^s(T) &= -\frac{n^3}{2} \left[g_{23}^{**} \left(P_{\rm s}^2 + P_{\rm sh3}^2 \right) + g_{21}^{**} P_{\rm sh1}^2 + g_{22}^{**} P_{\rm sh2}^2 \right]. \end{split}$$
(19c)

Таким образом, измеряя интерферометрическим методом $\delta\Psi_i(E_k)$ в соответствии с (16) определяются эффективные ЭО-коэффициенты g_{ik}^{**} , которые затем используются для вычисления поляризации и ее флуктуаций из $\delta\Psi_i^s(T)$ на основе (19), после вычитания из измеряемых $\delta\Psi_i(T)$ регулярного вклада $\delta\psi_i^o(T)$. В эксперименте, за исключением специальных задач, $\delta\Psi_i(T)$ и $\delta\Psi_i(E_k)$ измеряются для свободного кристалла. Соответственно формулы написаны для этого случая.

4. Заключение

В настоящей работе впервые развит метод, позволяющий из спонтанного вклада в главные значения показателя преломления вычислять величину и температурную зависимость среднеквадратичных флуктуаций поляризации $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$, характеризующих ближний полярный порядок (локальный порядок) ниже температуры сегнетоэлектрического перехода T_c , если независимыми измерениями определено среднее значение спонтанной поляризации $P_{\rm s} = \langle P \rangle$, характеризующей дальний порядок. Для случая изотропных флуктуаций метод позволяет вычислить $P_{\rm sh}$ и $P_{\rm s}$ только из рефрактометрических измерений.

Формулы (6), (7), (19) получены для собственного сегнетоэлектрика, в которых параметр порядка — спонтанная поляризация. Тем не менее, эти выражения остаются в силе для других типов сегнетоэлектриков, для которых спонтанный вклад в рефракцию света определяется квадратичным электрооптическим эффектом (формулами (1)—(3)).

Вычисление $P_{\rm s}$ и $P_{\rm sh}$ требует большой точности рефрактометрических измерений. Наиболее точным методом исследования изменений рефракции света являются интерферометрические измерения. Поэтому важным элементом работы является доказательство того, что $P_{\rm s}$ и $P_{\rm sh}$ могут быть вычислены непосредственно из интерферометрических измерений температурных и электрополевых изменений относительного оптического пути света без дополнительных измерений теплового расширения, необходимого для перехода от $\delta\Psi(T)$ к $\delta n(T)$ по формуле (11).

Как отмечалось во введении, развитый в работе метод вычисления $P_{\rm sh}$ ниже T_c особенно актуален для исследования систем с сосуществованием сравнимых по величине вкладов дальнего и ближнего порядка, к которым в частности, относятся квантовые параэлектрики SrTiO₃ и KTaO₃ с примесями. Для апробации метода авторами выполнены экспериментальные исследования интерферометрическим методом температурных и электрополевых изменений рефракции света в монокристаллах ${\rm Sr}_{1-x}{\rm Ca}_x{\rm TiO}_3$. Результаты исследования квадратичного электрооптического эффекта будут представлены в следующей статье, исследование температурных изменений рефракции света и их обработку на основе выражений (19) также планируется опубликовать в ближайшее время.

Список литературы

- [1] П.А. Марковин, Р.В. Писарев. ЖЭТФ 77, 2461 (1979).
- [2] Б.Б. Кричевцов, П.А. Марковин, С.В. Петров, Р.В. Писарев. ЖЭТФ 86, 2262 (1984).
- [3] R.V. Pisarev, B.B. Krichevtzov, P.A. Markovin, O.Yu. Korshunov, J.F. Scott. Phys. Rev. B 28, 2677 (1983).
- [4] P.A. Markovin, V.V. Lemanov, O.Yu. Korshunov, P.P. Syrnikov, U. Bianchi, R. Lindner, W. Kleemann. Ferroelectrics 184, 269 (1996).
- [5] P.A. Markovin, V.V. Lemanov, M.E. Guzhva, W. Kleemann. Ferroelectrics 199, 121 (1997).
- [6] P.A. Markovin, W. Kleemann, R. Lindner, V.V. Lemanov, O.Yu. Korshunov, P.P. Syrnikov. J. Phys.: Condens. Metter. 8, 2377 (1996).
- [7] М.Е. Гужва, В. Клееманн, В.В. Леманов, П.А. Марковин. ФТТ 39, 704 (1997).
- [8] П.А. Марковин, Р.В. Писарев, А.М. Калашникова, Тh. Rasing. Письма ЖЭТФ 86, 822 (2007).
- [9] J. Fousek, J. Petzelt. Phys. Status Solidi A 55, 11 (1979).
- [10] G.A. Gehring. J. Phys. C 10, 531 (1977).
- [11] J. Ferre, G.A. Gehring. Rep. Prog. Phys. 47, 513 (1984).
- [12] M. Di Domeniko, S.H. Wemple. J. Appl. Phys. 40, 720 (1969).
- [13] S.H. Wemple, M. Di Domenico. In: Applied Solid State Science / Ed. R. Wolfe. V. 3. Academic, N. Y. (1972).
- [14] А.С. Сонин, А.С. Василевская. Электрооптические кристаллы. Атомиздат, М. (1971) 328 с.
- [15] G. Burns, F.H. Dacol. Ferroelectrics 37, 661 (1981).
- [16] W. Kleemann, F.J. Schafer, M.D. Fontana. Phys. Rev. B 30, 1148 (1984).
- [17] W. Kleemann, F.J. Schafer, D. Rytz. Phys. Rev. B 34, 7873 (1986).
- [18] R.V. Pisarev, P.A. Markovin, B.N. Shermatov, V.I. Voronkova, V.K. Yanovskii, Ferroelectrics 96, 181 (1989).
- [19] G. Burns, F.H. Dacol. Solid State Commun. 48, 853 (1983).
- [20] О.Ю. Коршунов, П.А. Марковин, Р.В. Писарев. ФТТ 25, 2134 (1983).
- [21] O.Yu. Korshunov, P.A. Markovin, R.V. Pisarev. Ferroelectrics Lett. 13, 137 (1992).
- [22] O.Yu. Korshunov, P.A. Markovin, R.V. Pisarev, L.M. Sapoznikova. Ferroelectrics 90, 151 (1989).
- [23] N.R. Ivanov, A.P. Levanyuk, S.A. Minyukov, J. Kroupa, J. Fousek. J. Phys.: Condens. Matter 2 5777 (1990).
- [24] С.В. Мельникова, Л.И. Исаенко, А.А. Голошумова, С.И. Лобанов. ФТТ 56, 727 (2014).
- [25] С.В. Мельникова, Н.М. Лапташ. ФТТ 57 1180 (2015).