04

Сравнительный анализ механизмов пробоя тонких окислов SiO₂ в структурах металл-окисел-полупроводник при воздействии тяжелых заряженных частиц и импульсного электрического напряжения

© В.Ф. Зинченко, К.В. Лаврентьев, В.В. Емельянов, А.С. Ватуев

Научно-исследовательский институт приборов Госкорпорации "Росатом" 140080 Лыткарино, Московская обл., Россия e-mail: vfzinchenko@niipribor.ru

(Поступило в Редакцию 29 апреля 2015 г.)

Проведены экспериментальные исследования закономерностей пробоя тонких окислов SiO_2 в структурах металл-окисел-полупроводник мощных полевых транзисторов при воздействии одиночных тяжелых заряженных частиц и импульсного электрического напряжения. В рамках феноменологического подхода выполнен сравнительный анализ физических механизмов, а также энергетических критериев пробоя SiO_2 при предельных уровнях возбуждения электронной подсистемы за времена в субпикосекундном диапазоне.

Введение

Исследование эффектов пробоя тонких слоев диоксида кремния SiO₂ в структурах металл-окиселполупроводник (МОП) при воздействии тяжелых заряженных частиц (ТЗЧ) и импульсного электрического напряжения (ИЭН) представляет большой теоретический и практический интерес. Пробой подзатворного окисла мощных полевых транзисторов (SEGR — Single Event Gate Rupture в зарубежной литературе) при воздействии ТЗЧ космического пространства является одним из основных эффектов, определяющих стойкость мощных МОП-транзисторов в составе бортовой аппаратуры космических аппаратов. Начиная с 1980-х годов теоретическим и экспериментальным исследованиям SEGR посвящено значительное количество работ (см., например, работу [1] и ссылки в ней), однако физическая модель SEGR до сих пор находится в стадии разработки. Это обусловлено тем, что характерное время развития начальной стадии эффекта SEGR лежит в субпикосекундном временном диапазоне, что затрудняет детальное описание процессов, протекающих в окисле, и экспериментальную проверку предлагаемых теоретических моделей.

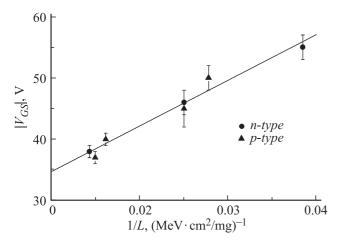
Наряду с ТЗЧ, пробой тонких подзатворных окислов в МОП-структурах может вызывать также ИЭН [2,3], что является актуальной проблемой с точки зрения повышения надежности функционирования современных изделий микроэлектроники высокой степени интеграции. Следует отметить, что анализ результатов экспериментов по электрическому пробою МОП-структур позволяет получить детальную информацию о заключительной стадии пробоя, приводящей к формированию низкоомного проводящего канала в окисле SiO₂.

Несмотря на различную физическую природу первичных факторов, вызывающих пробой МОП-структур при воздействии ТЗЧ и ИЭН, необратимое разрушение окисла SiO_2 в конечном итоге происходит вследствие

расплава окисла, а также материалов затвора и кремниевой подложки, вызванного протеканием мощного импульса тока через плазменный канал с начальным диаметром около 5 nm [4,5]. Сказанное выше дает основание полагать, что можно выбрать определенные энергетические критерии пробоя окисла, позволяющие установить корреляцию между линейными потерями энергии (ЛПЭ) тяжелой заряженной частицы и амплитудой и длительностью импульсного электрического напряжения. В настоящей работе предлагается феноменологический подход к решению сформулированной задачи, основанный на результатах экспериментальных исследований закономерностей пробоя окисла мощных МОП-транзисторов р- и n-типа при воздействии ТЗЧ и ИЭН.

Прежде чем переходить к детальному рассмотрению полученных результатов, отметим, что при нулевом напряжении сток-исток $V_{\rm DS}$ и ненулевом напряжении затвор-исток $V_{\rm GS}$ мощные МОП-транзисторы ведут себя подобно обычным МОП-конденсаторам [6]. Для простых МОП-структур опубликовано значительное количество работ, посвященных исследованиям физических механизмов пробоя окисла ${\rm SiO_2}$ как при воздействии ТЗЧ, так и различных электрических нагрузок. Поэтому результаты, полученные в указанных работах, могут также использоваться при анализе основных закономерностей пробоя подзатворного окисла в мощных МОП-транзисторах при воздействии ТЗЧ и ИЭН.

Эксперимент


Тяжелые ионы

Экспериментальные исследования эффекта SEGR в мощных МОП-транзисторах проводились на испытательном стенде БИС ОИ-А (400М) изохронного циклотрона U-400М в Объединенном институте ядерных исследований (г. Дубна Московской обл.). Характеристики ионов на выходе из циклотрона представлены в таблице.

Тип иона	Энергия ионов на поверхности кристалла МОП-транзистора, MeV	Линейные потери энергии в кремнии, MeV · cm²/mg*	Средний пробег в кремнии, $\mu { m m}^*$
⁴⁰ Ar	140	15.7	36.8
⁵⁶ Fe	227	26.2	38.8
$^{84}\mathrm{Kr}$	356	39.5	45
¹³² Xe	436	69.1	38
¹³² Xe	915	64.7	68

Характеристики ионов

Примечание. * — рассчитаны в программном пакете SRIM [7].

Рис. 1. Зависимость напряжения пробоя мощных МОПтранзисторов p- и n-типов, $V_{\rm GS}$, от ЛПЭ тяжелых ионов при $V_{\rm DS}=0$.

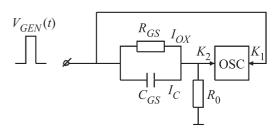
В качестве объекта исследований были выбраны мощные МОП-транзисторы n- и p-типов с максимальной величиной статического напряжения пробоя $VGS_{\rm GS\,max}=100\,{\rm V}$ и толщиной окисла ${\rm SiO_2}$ около $100\,{\rm nm}$. Учитывая небольшие пробеги ионов, облучение транзисторов проводилось при удаленной крышке (корпусе) в вакуумной камере, чтобы обеспечить доступ ионов к активной области транзисторов.

На рис. 1 представлены полученные на ускорителе U-400M зависимости напряжения пробоя мощных МОП-транзисторов $V_{\rm GS}$ от ЛПЭ тяжелых заряженных ионов при напряжении $V_{\rm DS}=0$. Видно, что зависимости $V_{\rm GS}(L^{-1})$ для n- и p-канальных транзисторов практически совпадают и имеют линейный характер в диапазоне ЛПЭ тяжелых ионов выше $15~{\rm MeVcm^2/mg}$.

Отметим, что в качестве критерия пробоя МОП-транзисторов принимался резкий невосстанавливаемый рост тока затвор-исток, $I_{\rm GS}$, в процессе облучения сверх принятой нормы 100 nA.

Импульсное электрическое напряжение

Как следует из современных представлений, первичная стадия пробоя окисла при действии как ТЗЧ, так


и ИЭН, приводящая к необратимой перестройке его структуры вследствие диффузии атомов окружающих материалов, протекает за времена $\leq 1\,\mathrm{ns}$ [4]. Техника эксперимента с таким высоким временным разрешением достаточно сложная, что затрудняет получение достоверной информации о динамике характеристик МОП-транзисторов на данной стадии пробоя SiO_2 .

После завершения первичной стадии окисел в зоне пробоя ведет себя как обычный резистор с проводимостью, зависящей от выделяемой в нем протекающим импульсным током мощности. Поэтому можно ожидать, что измеряемые на данной стадии пробоя МОП-транзистора электрические переходные процессы при действии ИЭН позволят получить определенную информацию о поглощенной энергии в сформировавшемся проводящем канале и провести сравнительный анализ физических механизмов пробоя окисла при действии ТЗЧ и ИЭН.

В настоящей работе проведены экспериментальные исследования импульсной электрической прочности мощных МОП-транзисторов с помощью генератора одиночных импульсов напряжения (ОИН), который позволял получать импульсы напряжения с амплитудой до $1000 \, \mathrm{V}$ при длительности от $60 \, \mathrm{ns}$ до $1 \, \mu \mathrm{s}$.

Схема измерения параметров мощных МОП-транзисторов при действии ОИН представлена на рис. 2.

В случае транзисторов p-типа ОИН положительной полярности $V_{\rm GEN}(t)$ подавался на затвор транзистора при

Рис. 2. Схема включения мощных МОП-транзисторов при исследованиях импульсного электрического пробоя: $R_{\rm GS}$ — сопротивление подзатворного окисла, $C_{\rm GS}$ — конструктивная емкость затвор–исток, R_0 — сопротивление в цепи исток-земля, OSC — цифровой осциллограф, K_1 , K_2 — входы осциллографа для измерения импульсов напряжения $V_{\rm GEN}(t)$ и $V_0(t)$ соответственно.

 $V_{
m DS}=0$. При действии ОИН регистрировались временные зависимости $V_{
m GEN}(t)$ и напряжения $V_0(t)$ на токоизмерительном сопротивлении R_0 в цепи исток-земля. Напряжение затвор-исток $V_{
m GS}(t)=V_{
m GEN}(t)-V_0(t)$, а полный ток в цепи затвор-исток $I_{
m GS}(t)=V_0(t)/R_0$.

Используя $I_{\rm GS}(t)$ и $V_{\rm GS}(t)$, можно получить полную энергию $W_{\rm GS}(t)$, выделенную в окисле ${\rm SiO_2}$ за определенный интервал времени, т.е.

$$W_{\rm GS}(t) = \int_{0}^{t} I_{\rm GS}(\tau) V_{\rm GS}(\tau) d\tau. \tag{1}$$

Типичные осциллограммы параметров p-канального МОП-транзистора при действии ОИН длительностью 60 ns и 1 μ s представлены на рис. 3, 4.

Прежде чем переходить к обсуждению полученных результатов, отметим, что ток в цепи затвор-исток $I_{\rm GS}(t)$ является суммой тока заряда-разряда конструктивной емкости затвор-исток, $I_C(t)$ и тока утечки через окисел $I_{\rm OX}(t)$ (рис. 2). При малых напряжениях $V_{\rm GS}$ основной вклад в полный ток $I_{\rm GS}$ дает ток I_C , который определяется реакцией дифференциальной RC-цепи на ОИН и имеет знакопеременный характер. При напряжении $V_{\rm GS}$, близком к напряжению пробоя, ток $I_{\rm GS}$ определяется током утечки через окисел I_{OX} .

При коротких длительностях ОИН оценить вклад в $W_{\rm GS}$ (1) от тока утечки I_{OX} в момент пробоя окисла достаточно сложно ввиду низкого временного разрешения регистрирующей аппаратуры (рис. 3). Поэтому в качестве оценки полной энергии, выделившейся в окисле при его пробое, $W_{\rm BD}$, в этом случае можно взять разность величин $W_{\rm GS}$ при ОИН, вызвавшем пробой, и при максимальной амплитуде ОИН, предшествующего пробою.

При длительности ОИН $1\,\mu$ s вклад I_{OX} в W_{GS} и соответственно в энергию W_{BD} , выделившуюся при пробое окисла, можно оценить более надежно, поскольку временные диапазоны формирования реакции дифференциальной RC-цепи и пробоя окисла, характеризующегося резким ростом тока утечки через окисел, четко разделены во времени (рис. 4).

Как показывает обработка результатов экспериментов, полная энергия $W_{\rm BD}$, выделяющаяся при пробое окисла для рассматриваемой выборки транзисторов p-типа при различных длительностях ОИН, составляет $\sim 2-3\,\mu{\rm J}$. Энергия пробоя, очевидно, должна обеспечиваться энергией, запасенной при заряде конструктивной емкости затвор-исток $C_{\rm GS}$. Действительно, для рассматриваемой выборки транзисторов $C_{\rm GS}$ лежит в диапазоне $400-700\,{\rm pF}$, что при величине статического напряжения пробоя окисла $\sim 100\,{\rm V}$ дает величину энергии заряда емкости $2.0-3.5\,\mu{\rm J}$.

Характерный радиус области пробоя в окисле для исследованных транзисторов, полученный с помощью электронного микроскопа, составляет около 4μ m, что согласуется с соответствующими экспериментальными

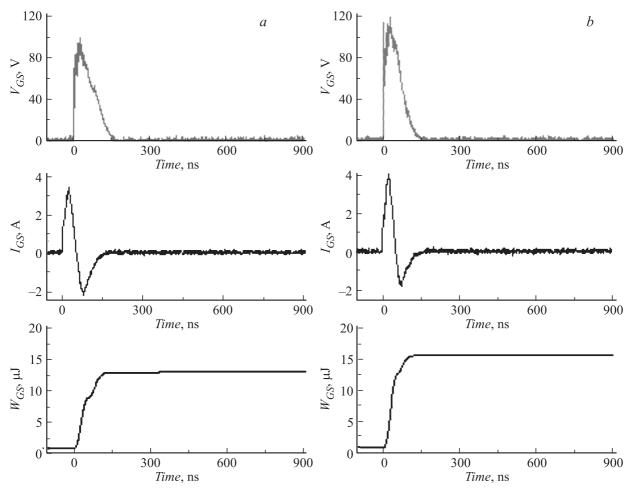
данными для МОП-конденсаторов в случае воздействия ТЗЧ [4].

Аналогичные закономерности динамики параметров и величина энергии $W_{\rm BD}$ получены также при проведении исследований импульсной электрической прочности n-канальных мощных МОП-транзисторов.

Теория и обсуждение результатов экспериментов

SEGR

Согласно современным представлениям [1], возникновение эффекта SEGR в мощных МОП-транзисторах сопровождается следующими физическими процессами.


Тяжелый заряженный ион, проходя через окисел, образует плотный трек с максимальной начальной концентрацией электрон-дырочных пар до $10^{25}\,\mathrm{cm}^{-3}$ [8]. При этом около 90% энергии ТЗЧ выделяется в центральном ядре трека диаметром $\sim 5\,\mathrm{nm}$ ([4,9]) и тратится на возбуждение электронной подсистемы, которая затем передает ее решетке через механизм электрон-фононного взаимодействия.

Подвижность генерируемых электронов превышает подвижность дырок на несколько порядков, поэтому при анализе переходных процессов, сопровождающих SEGR в МОП-структурах, можно считать, что дырки остаются неподвижными. Вероятность возникновения необратимых структурных повреждений и формирования проводящего канала в тонких окислах определяется следующими основными процессами: термализацией электронов, рекомбинацией электрон-дырочных пар, а также переносом электронов через окисел под действием приложенного электрического поля.

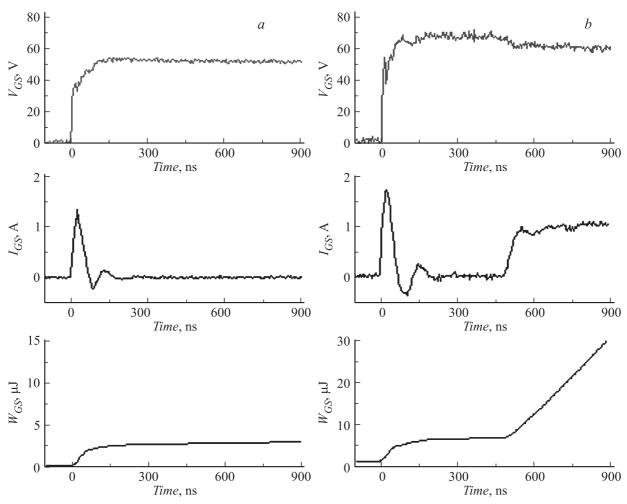
Характерное время термализации электронов, т.е. время, за которое энергия электронов достигает минимального значения в зоне проводимости, лежит в диапазоне от 10^{-14} до 10^{-13} s [10].

Одновременно с термализацией в треке ТЗЧ в окисле протекает колонная рекомбинация электрон-дырочных пар с характерным временем $\sim 10^{-13}\,\mathrm{s}$ [11]. При этом доля электронов (дырок), избежавших рекомбинации, уменьшается с ростом ЛПЭ ТЗЧ, т. е. начальной плотности электрон-дырочных пар, и увеличивается с ростом электрического поля в окисле за счет усиления роли конкурирующего процесса дрейфового переноса электронов через окисел.

Таким образом, одним из ключевых параметров, необходимых для построения модели пробоя МОП-структур при действии ТЗЧ, является скорость переноса электронов через окисел. Поскольку надежной теории переноса носителей заряда в SiO_2 при сильных полях ($E \sim 10^6 - 10^7 \, \text{V/cm}$) не существует, мы использовали экспериментальные данные по скорости распространения фронта высоковольтного пробоя в аморфном кварце при субнаносекундных временах [12]. Как следует из

Рис. 3. Зависимости $I_{GS}(t)$, $V_{GS}(t)$ и $W_{GS}(t)$ при действии ОИН длительностью 60 ns: a — до пробоя, амплитуда ОИН 95 V; b — пробой, амплитуда ОИН 110 V.

результатов экспериментов, представленных в [12], при напряженностях электрического поля в окисле, близких к пробойным, скорость переноса электронов через окисел, v, не зависит от напряженности электрического поля и составляет $\sim 1.1\cdot 10^8$ cm/s. Для данной величины v характерное время образования проводящего канала при толщине окисла ${\rm SiO_2}$ до $100\,{\rm nm}$ не превышает $\sim 10^{-13}\,{\rm s}$. Это согласуется с результатами работы [10], в которой показано, что время формирования проводящего канала в окисле толщиной $10\,{\rm nm}$ при действии ${\rm T34}$ составляет $\sim 10^{-14}\,{\rm s}$.


На основании рассмотрения представленных результатов можно сделать вывод, что характерное время переноса электронов через тонкие окислы толщиной от единиц до 100 nm не превышает времени колонной рекомбинации электрон-дырочных пар в ядре трека ТЗЧ. Поэтому в первом приближении потерями электронов на рекомбинацию с "неподвижными" дырками можно пренебречь.

Вследствие разогрева протекающим током плазменный канал в ядре трека расширяется в радиальном направлении от начального диаметра порядка 5 nm

до ~ 100 nm. Область вокруг трека радиусом до 5000 nm нагревается до температуры плавления фотонами с энергиями в диапазоне $5-10\,\mathrm{eV}$, эмитируемыми из высокотемпературного плазменного канала ($T>40000^\circ\mathrm{C}$).

Согласно модели, предложенной в [4], необратимые структурные повреждения SiO₂ возникают вследствие диффузии атомов из расплавленных окружающих материалов (алюминия, кремния) в окисел. Из проведенных в [4] оценок следует, что для необратимого пробоя окисла в МОП структуре проводящий канал, образующийся в ядре трека ТЗЧ, должен поддерживаться при температуре не ниже температуры плавления в течение интервала времени порядка 1 ns при толщине окисла до 100 nm. Необходимая температура обеспечивается за счет джоулева тепла, выделяющегося при протекании через канал мощного импульса тока. В течение указанного интервала времени можно пренебречь уменьшением температуры плазменного канала за счет диффузии тепла из ядра трека, т.е. теплообмен с окружающими материалами идет только за счет эмиссии фотонов.

Представляет интерес в рамках упрощенного феноменологического подхода оценить энергетические кри-

Рис. 4. Зависимости $I_{GS}(t)$, $V_{GS}(t)$ и $W_{GS}(t)$ при действии ОИН длительностью 1 μ s: a — до пробоя, амплитуда ОИН 55 V; b — пробой, амплитуда ОИН 70 V.

терии возникновения эффекта SEGR, используя полученные зависимости напряжения пробоя мощных МОП-транзисторов от ЛПЭ тяжелых ионов (рис. 1).

Удельное количество тепла q, выделяющееся в единицу времени в окисле при протекании тока через плазменный канал в ядре трека ТЗЧ, можно записать в виде

$$q = jE, \qquad j = en_0\mu E = en_0v, \tag{2}$$

где j — плотность тока в канале, e — абсолютная величина заряда электрона, E — напряженность электрического поля в окисле, μ , v — подвижность и скорость носителей заряда в канале соответственно, n_0 — средняя начальная концентрация электрон-дырочных пар в ядре трека ТЗЧ.

Поскольку для данных ЛПЭ, L, $n_0 \propto L$, то, согласно (2), удельная мощность $q \propto LE^2$ в случае постоянной подвижности носителей заряда и $q \propto LE$ при постоянной скорости носителей заряда в канале. Отсюда следует, что напряжение пробоя $V_{\rm BD} \propto 1/L^{1/2}$ при постоянной подвижности носителей заряда в плазменном канале, либо $V_{\rm BD} \propto 1/L$, если скорость переноса носителей заряда

через окисел, v, не зависит от напряженности электрического поля, т.е. выходит на насыщение. Поскольку, как показано выше, в нашем случае величину v можно считать постоянной, то зависимость $V_{\rm BD}(L^{-1})$ является линейной, что согласуется с представленными выше на рис. 1 экспериментальными данными.

Таким образом, при средней концентрации носителей заряда в плазменном канале $n_0 \sim 10^{23}\,\mathrm{cm}^{-3}$ [8] и $v \sim 10^8\,\mathrm{cm/s}$ получаем плотность тока $j \sim 1.6 \cdot 10^{12}\,\mathrm{A/cm^2},$ отсюда полный ток через канал радиусом 2.5 nm составляет $\sim 0.3\,\mathrm{A}.$

Для типичной величины напряженности электрического поля при пробое окисла $E \sim 10^7 \, \text{V/cm}$ удельная мощность энерговыделения в ядре трека $q=jE\approx 1.6\cdot 10^{19}\, \text{J/cm}^3\cdot \text{s}\approx 6\cdot 10^{15}\, \text{kJ/gs}$ при плотности SiO_2 $\rho=2.6\, \text{g/cm}^3$. При этом удельная энергия, поглощенная за время $\sim 1\, \text{ns}$, необходимое для развития необратимого пробоя МОП-структуры вследствие диффузии атомов окружающих материалов (алюминия, кремния) в окисел, составит около $6\cdot 10^6\, \text{kJ/g}$. Энергия, выделившаяся в ядре трека диаметром 5 nm и высо-

той $100\,\mathrm{nm}$ в указанном интервале времени составит $\sim 3\cdot 10^{-2}\,\mu\mathrm{J}$. С учетом дополнительной энергии, требуемой для расплава окружающих окисел материалов (кремний, алюминий), полная энергия пробоя возрастет примерно в 2 раза и составит $\sim 6\cdot 10^{-2}\,\mu\mathrm{J}$.

Полученная величина удельной поглощенной энергии в плазменном канале значительно превышает удельную энергию плавления SiO_2 ($\sim 1.4 \, \mathrm{kJ/g}$) и может обеспечить расплав области вокруг ядра трека радиусом до $5000 \, \mathrm{nm}$. Этот факт согласуется с экспериментальными данными по радиусу зоны расплава в окисле, полученными при исследованиях пробоя МОП-конденсаторов тяжелыми заряженными ионами [4].

Электрический пробой

Исходя из анализа опубликованных экспериментальных данных, можно выделить следующие характерные особенности развития электрического пробоя окисла в МОП-структурах [13]:

- начальная область пробоя локализована в пятне радиусом несколько нанометров;
- при напряженности поля в окисле ниже критической ток утечки через окисел определяется туннелированием электронов из затвора (ток Фаулера-Нордгейма, I_{FN});
- лавинный рост тока утечки через окисел вызывает его необратимый пробой, сопровождающийся плавлением окисла и окружающих материалов в области радиусом несколько μ m;
- типичная величина критического поля в окисле при необратимом пробое составляет $\sim 10^7\,\mathrm{V/cm}$, ток утечки через окисел непосредственно перед пробоем достигает единиц $\mu\mathrm{A}$.

Как показывают теоретические исследования [13], локализация области электрического пробоя в окисле может быть связана с наличием на границе раздела окисел—затвор микроскопических неоднородностей (филаментов), в которых происходит значительное усиление напряженности электрического поля по сравнению со средним значением в объеме окисла. Диаметр филамента, согласно [13], может быть представлен в виде $d=(T_{OX}\alpha)^{1/2},\ \alpha=0.25\ \mathrm{nm},\ \mathrm{что}\ \mathrm{при}\ \mathrm{толщинe}\ \mathrm{окисла}$ в окисла $T_{OX}=100\ \mathrm{nm}\ \mathrm{дл}\ \mathrm{д}\ \mathrm{дл}\ \mathrm{д}\ \mathrm{$

В обычных условиях при относительно слабых электрических полях плотность тока утечки через окисел описывается формулой Фаулера-Нордгейма

$$j_{FN} = AE^2 \exp(-B/E), \tag{3}$$

где $A=1.7\cdot 10^{-6}$ A/V², $B=2.38\cdot 10^8$ V/cm, E — напряженность электрического поля, V/cm.

Согласно (3), в предпробойной области напряженностей электрического поля $E\sim 10^7\,{\rm V/cm}$ величина j_{FN} составляет $\sim 10^{-2}\,{\rm A/cm^2}.$

Вследствие локального усиления электрического поля на границе филамента плотность тока в филаменте резко возрастает [10]

$$j_{F\mu} = A(\mu E)^2 \exp(-B/\mu E), \qquad \mu = 1-6.$$
 (4)

При средней величине $\mu=4$ и напряженности электрического поля $E=10^7\,\mathrm{V/cm}$ величина $j_{F\mu}$, согласно (4), составляет $\sim 10^7\,\mathrm{A/cm^2}$. Для филамента диаметром 5 nm полный ток через филамент, $I_{F\mu}$, непосредственно в начале развития пробоя достигает $\sim 2\,\mu\mathrm{A}$, что согласуется с результатами экспериментов [14].

Из представленных экспериментальных данных видно (рис. 4), что амплитуда скачка тока $\Delta I_{\rm GS}$ в процессе пробоя окисла составляет около 0.8 A, что близко к оценке тока в плазменном канале, образованном ТЗЧ. При этом полная энергия, поглощенная в окисле во время развития пробоя, наблюдаемого как резкий скачок тока в течение времени порядка 30 ns, составляет $\sim 2-3\,\mu{\rm J}$.

Как следует из сделанных выше оценок, необходимая для пробоя SiO_2 энергия при воздействии ТЗЧ выделяется в плазменном канале диаметром 5 nm в течение ~ 1 ns и составляет $\sim 6\cdot 10^{-2}\,\mu\text{J}$. Данная величина согласуется с энергией пробоя, выделенной в окисле при действии ОИН за аналогичный интервал времени ($\sim 6\cdot 10^{-2}\!-\!10\cdot 10^{-2}\,\mu\text{J}$).

Таким образом, при электрическом пробое наличие филаментов на границе металл-окисел инициирует, в результате развития лавинного процесса, образование проводящего канала в окисле, ток через который возрастает в процессе пробоя до величины, сравнимой с соответствующей величиной тока в плазменном канале, образованном ТЗЧ. Наблюдаемый в экспериментах с ОИН рост тока в течение интервала времени $\sim 30\,\mathrm{ns}$ (рис. 4) обусловлен разогревом проводящего канала протекающим током, что вызывает рост проводимости канала и увеличение тока, приводящих к увеличению температуры канала и т. д. По мере увеличения температуры в объеме филамента возрастает роль электронфононного взаимодействия, что приводит в итоге к выходу на насыщение скорости носителей заряда и прекращению дальнейшего роста тока [15].

Избыточная энергия, выделенная в проводящем канале при действии ОИН, может привести к расширению границ поврежденной области окисла до диаметра, значительно превышающего диаметр начального филамента. Этот вывод подтверждается экспериментальными данными [8], из которых следует, что характерный радиус области пробоя окисла, как и в случае действия ТЗЧ, составляет порядка $5\,\mu{\rm m}$.

Заключение

Как показывает анализ физических механизмов, пробой окисла МОП-транзисторов инициирует протекание импульса тока через плазменный канал, образующийся

в ядре трека ТЗЧ, либо лавинное нарастание тока через микронеоднородности (филаменты) на границе металлокисел при действии ИЭН.

В рамках феноменологического подхода проведены оценки параметров, которые можно использовать в качестве энергетических критериев пробоя МОП-структур при действии ТЗЧ и ИЭН.

Оценки максимального тока через окисел и полной энергии, выделенной в окисле при пробое мощных МОП-транзисторов при действии ОИН, согласуются с соответствующими величинами при действии ТЗЧ.

Можно ожидать, что дальнейший анализ совокупности экспериментальных данных по пробою МОП-структур при действии ТЗЧ и ОИН будет способствовать лучшему пониманию физических механизмов и развитию теоретических моделей процессов, протекающих в наноразмерных объемах окисла SiO_2 при предельных уровнях возбуждения электронной подсистемы за времена в субпикосекундном диапазоне.

Список литературы

- Ferlet-Cavrois V., Binois C., Carvalho A. // IEEE T. Nucl. Sci. 2012. Vol. 59. N 6. P. 2920–2929.
- [2] Malobabic S., Ellis D.F., Salcedo J.A. // Proc. of the 7th Int. Caribbean Conf. on Devices, Circuits and Systems. Mexico., 2008.
- [3] Lombardo S., Crupi F., La Magna A. // J. Appl. Phys. 1998.Vol. 84. N 1. P. 472–479.
- [4] Wrobel T.F. // IEEE T. Nucl. Sci. 1987. Vol. 34. N 6. P. 1262– 1268.
- [5] Chen D.N., Cheng Y.C. // J. Appl. Phys. 1987. Vol. 61. P. 1592–1600.
- [6] Fischer T.A. // IEEE T. Nucl. Sci. 1987. Vol. NS-34. N 6. P. 1786–1791.
- [7] Biersack J.P., Haggmark L.G. // Nucl. Instrum. Meth. 1980.Vol. 74. N 1–2. P. 257–269.
- [8] Raine M., Valentin A., Gaillardin M. // IEEE T. Nucl. Sci. 2012. Vol. 59. N 6. P. 2697–2703.
- [9] Комаров Ф.Ф. // УФН. 2003. Т. 173. Вып. 12. С. 1287–1318.
- [10] Cellere G., Paccagnella A., Visconti A. // IEEE T. Nucl. Sci. 2004. Vol. NS-51. N 6. P. 3304–3311.
- [11] Oldham T.R. // J. Appl. Phys. 1985. Vol. 57. N 8. P. 2695– 2702.
- [12] *Емлин Р.В., Гилев А.С.* // ЖТФ. 2009. Т. 79. Вып. 1. С. 140–143.
- [13] Readley B.K. // J. Appl. Phys. 1975. Vol. 46. N 3. P. 998–1007.
- [14] Heimann P.A. // IEEE T. Electron. Dev. 1983. Vol. ED-30, P. 1366–1368.
- [15] Ferry D.K. // J. Appl. Phys. 1979. Vol. 50. P. 1422–1427.