11

## Электрометрический метод определения поверхностного импеданса двухслойной структуры "лед—морская вода"

© Ю.Б. Башкуев, И.Б. Нагуслаева, В.Б. Хаптанов, М.Г. Дембелов

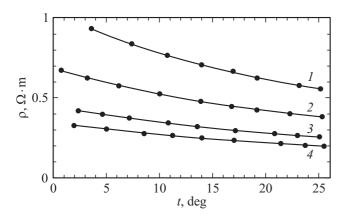
Институт физического материаловедения СО РАН, 670047 Улан-Удэ, Россия

e-mail: idam@mail.ru

(Поступило в Редакцию 7 апреля 2015 г. В окончательной редакции 30 июня 2015 г.)

Предложен электрометрический метод определения поверхностного импеданса двухслойной структуры "лед—морская вода". Метод заключается в определении комплексной величины поверхностного импеданса (модуля и фазы) структуры "лед—морская вода" в очень низкочастотном—низкочастотном—среднечастотном (ОНЧ—НЧ—СЧ) диапазонах радиоволн по результатам не радиоволновых, а электрометрических измерений. Для структуры "лед—морская вода" достаточно измерить электропроводность пробы воды  $\sigma_w$  и толщину льда  $h_i$  по данным бурения.

В задачах распространения радиоволн вдоль земной поверхности основным параметром, характеризующим электрические свойства нижней стенки волновода "Земля—ионосфера", является поверхностный импеданс  $\delta$ , учитывающий совокупное воздействие слоистой Земли на электромагнитное поле. Учет влияния подстилающей среды на распространение радиоволн основан на понятии приведенного поверхностного импеданса вертикально поляризованной электромагнитной волны на поверхности горизонтально-слоистой структуры:  $\delta = E_{\tau}/(H_{\tau} \cdot Z_0)$ , где  $E_{\tau}$ ,  $H_{\tau}$  — горизонтальные составляющие электрического и магнитного полей на границе раздела "воздух-Земля",  $Z_0 = \sqrt{\mu_0/\varepsilon_0} = 377~\Omega$  — характеристический импеданс свободного пространства (вакуума).


Интересными с точки зрения электрических свойств слоистой подстилающей среды представляются структуры типа "лед-морская вода". В Сибири с суровыми климатическими условиями такие структуры образуются и существуют более полугода. Здесь имеется большое количество как пресных, так и соленых озер различной площади, последние из которых могут быть использованы также как аналоги структуры "лед-море" в Арктическом бассейне. Следует отметить, что в настоящее время, хотя и имеются некоторые работы по изучению ледовых покровов как индикаторов климатических и физико-механических воздействий по их электромагнитным параметрам, данная задача еще практически не исследована.

Известно [1,2], что двухслойные структуры типа "изолятор на проводнике" и "проводник на изоляторе" с сильно контрастными величинами удельного электрического сопротивления  $\rho$  и относительной диэлектрической проницаемости  $\varepsilon$  позволяют изменять импеданс от сильно-индуктивных до сильно-емкостных значений  $(-90^{\circ} < \phi_{\delta} < +90^{\circ})$ . В классе природных слоистых сред примером сильно-индуктивной структуры является двухслойная среда "лед—морская вода", занимающая значительные площади Мирового океана. Шельфовые

ледники Антарктиды толщиной  $100-350\,\mathrm{m}$  и площадью в сотни тысяч квадратных километров также дают сильно-индуктивные импедансы в сверх-низкочастотном (СНЧ —  $30-300\,\mathrm{Hz}$ ) и ОНЧ-диапазонах. Значения фазы импеданса  $\phi_\delta$  достигают  $-89^\circ$  и являются практически предельными для природных слоистых сред [3].

При исследованиях электрических свойств подстилающей слоистой среды, проводимых применительно к задачам распространения радиоволн над реальными слоисто-неоднородными средами, широкое применение находит радиоволновой метод радиоимпедансного зондирования (РИЗ) [4,5]. Сущность радиоволнового метода состоит в том, что производится измерение тангенциальных составляющих электрического и магнитного полей  $E_{\tau}$  и  $H_{\tau}$  ОНЧ-НЧ-СЧ-радиостанций на границе раздела "воздух-подстилающая среда" и определяются значения модуля  $|\delta|$  и фазы  $\varphi_{\delta}$  приведенного поверхностного импеданса. Недостатком метода РИЗ является то, что он определяет поверхностный импеданс подстилающей среды с использованием полей действующих ОНЧ-НЧ-СЧ-радиостанций. В районах Арктики и Антарктики сеть действующих радиостанций очень редка (в основном радиомаяки) и уровни измеряемого  $E_{\tau}$  и  $H_{\tau}$  электромагнитного поля соизмеримы с уровнем естественных радиопомех, что не позволяет точно измерить величину поверхностного импеданса.

На основе теории распространения радиоволн [1] нами предложен новый электрометрический метод определения поверхностного импеданса слоистой структуры "лед—морская вода" на любой частоте в ОНЧ-НЧ-СЧ-диапазонах радиоволн на основе не радиоволновых методов. Новизна предлагаемого метода определения поверхностного импеданса слоистой структуры "лед—морская вода" заключается в измерении электропроводности пробы соленой воды  $\sigma_w$  и толщины слоя льда  $h_i$  по данным бурения и последующем расчете поверхностного импеданса  $\delta$  слоистой структуры



**Рис. 1.** Температурные зависимости удельного электрического сопротивления  $\rho$  вод озера Сульфатное (1), Черного (2), Желтого (3) и Средиземного (4) морей.



**Рис. 2.** Частотные зависимости  $|\delta_s|$  и  $\varphi_\delta$  для озера Сульфатное (1), Черного (2), Желтого (3) и Средиземного (4) морей.

"лед-соленая (морская) вода" по формуле

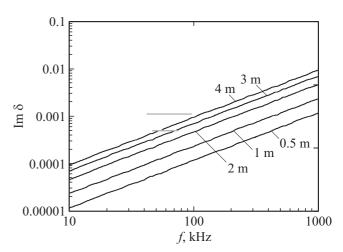
$$\delta = \delta_s - i(2\pi/\lambda)h_i,\tag{1}$$

где

$$\delta_s = \frac{1}{\sqrt[4]{(\varepsilon_w + 1)^2 + (60\lambda\sigma_w)^2}} \exp\left(-i \arctan\frac{60\lambda\sigma_w}{\varepsilon_w + 1}\right). \tag{2}$$

Здесь  $\delta_s$  — поверхностный импеданс моря,  $\varepsilon_w$  — относительная диэлектрическая проницаемость морской воды,  $\varepsilon_w=87$  при температуре воды  $0.2-1^{\circ}\mathrm{C},~\lambda$  — длина электромагнитной волны, m.

На рис. 1 для примера представлены температурные зависимости удельного электрического сопротивления  $\rho$  ( $\rho=1/\delta$  — величина, обратная электропроводности воды) для вод Черного, Желтого и Средиземного морей


и соленого озера Сульфатное в Селенгинском районе Республики Бурятия по результатам собственных измерений литровых проб воды [3].

По формуле (1) рассчитаны частотные зависимости  $|\delta_s|$  и  $\phi_\delta$  в диапазоне  $10-1000\,\mathrm{kHz}$  для представленных на рис. 1 морей и соленого озера (рис. 2).

На рис. З представлены результаты расчетов частотных зависимостей мнимой аддитивной добавки  $i(2\pi/\lambda)h_i=i(2\pi/300)f$  [MHz]  $\cdot h_i$  [m] для толщин льда  $h_i$  0.5, 1, 2, 3 и 4 m.

Практический результат определения комплексной величины поверхностного импеданса достигается благодаря следующему из теории электромагнитных волн в слоистых средах [1] свойству двухслойной структуры "диэлектрик на проводнике", согласно которому из-за наличия тонкого плохопроводящего слоя на сильно проводящей среде в поверхностном импедансе двуслойной среды появляется аддитивная к импедансу проводника (морской воды)  $\delta_w$  добавка  $i(2\pi/\lambda)h_i$ , линейно зависящая от толщины слоя диэлектрика (льда) и смещающая фазу импеданса в сильно-индуктивную область. При выводе рабочих формул использованы соотношения для поверхностного импеданса двуслойной среды для плоской вертикально поляризованной электромагнитной волны [1].

Методика определения поверхностного импеданса слоистой структуры "лед—соленая вода" заключается в следующем: 1) на слоистой структуре "лед—соленая вода" с помощью ручного или бензоэлектрического ледобура проводится бурение слоя льда на всю толщину до воды, 2) с помощью измерителя толщины льда, аналогичного штангенциркулю, определяется толщина слоя льда в метрах (с точностью  $0.5-1\,\mathrm{cm}$ ), 3) с помощью сеточной ложки очищают отверстие во льду от остатков льда и снега и погружают сосуд объемом (0.5-1)L на всю толщину слоя льда для взятия пробы воды, 4) взятую пробу соленой воды переливают в стеклянную или пластмассовую емкость объемом около 0.5L, 5) кон-



**Рис. 3.** Частотные зависимости мнимой аддитивной добавки поверхностного импеданса для толщин льда от 0.5 до  $4\,\mathrm{m}$ .

Таблица 1. Результаты измерений поверхностного импеданса

| f, kHz                   | 22.2   | 50     | 180    | 279    |
|--------------------------|--------|--------|--------|--------|
| $ \delta $               | 0.0016 | 0.0025 | 0.0062 | 0.0086 |
| $\varphi_{\delta}$ , deg | -60    | -58    | -64    | -70    |

**Таблица 2.** Результаты расчетов поверхностного импеданса и измерения толщины льда и электропроводности соленой волы

| $h_i$ , m | $\sigma_w$ , S/m | f, kHz            | 22.2    | 50     | 180    | 279     |
|-----------|------------------|-------------------|---------|--------|--------|---------|
| 1.01      | 0.9              | $ \delta $        | 0.00154 | 0.0026 | 0.0066 | 0.00915 |
|           |                  | $\varphi_0$ , deg | -57.3   | -61    | -66    | 66.9    |

дуктометром (например, типа Aquameter) определяют электропроводность  $\sigma_w$  пробы соленой воды, а также ее температуру и минерализацию, 6) полученные величины  $\sigma_w$  и  $h_i$  подставляют в формулы (1) и (2) для расчетов поверхностного импеданса, задав  $\varepsilon_w$  и длину волны  $\lambda$  (или частоту f), 7) полученные значения модуля и фазы поверхностного импеданса используют для расчетов распространения ОНЧ-НЧ-СЧ-радиоволн над структурой "лед—соленая вода".

Проверка электрометрического метода определения поверхностного импеданса слоистой структуры "лед—соленая вода" проведена в зимний период на соленом озере Сульфатное. Методика сравнительных измерений заключалась в следующем: 1) проводились непосредственные измерения модуля и фазы поверхностного импеданса методом РИЗ с использованием полей радиостанций 22.2, 50, 180 и 279 kHz, 2) проводились бурение льда ледобуром "Gifry-30", определение толщины льда  $h_i$  и электропроводности  $\sigma_w$  пробы соленой воды. По измеренным величинам  $h_i$  и  $\sigma_w$  определялся поверхностный импеданс на рабочих частотах 22.2, 50, 180 и 279 kHz ( $\lambda=13\,500,\,6000,\,1666,\,1067\,\mathrm{m}$ ).

В табл. 1 приведены результаты измерений поверхностного импеданса методом РИЗ [4,5].

Из табл. 1 следует, что фаза поверхностного импеданса на всех частотах попадает в сильно-индуктивную область. В табл. 2 приведены результаты измерения толщины льда  $h_i$  и электропроводности  $\sigma_w$  пробы воды при температуре 0.2-1 deg, а также результаты расчетов по формуле (1) поверхностного импеданса  $\delta$  на четырех частотах действующих радиостанций.

Сравнение измеренных методом РИЗ и рассчитанных предложенным электрометрическим методом значений поверхностного импеданса показало их хорошую сходимость. Погрешность измерений не превышает 7% по модулю и 3 deg по фазе поверхностного импеданса, что вполне допустимо при прогнозировании распространения ОНЧ—НЧ—СЧ-радиоволн [3].

## Заключение

Предложенный электрометрический метод определения поверхностного импеданса слоистой структуры "лед—морская вода" позволяет определить поверхностный импеданс на любой частоте ОНЧ—НЧ—СЧ-диапазонов (10—1000 kHz) по результатам не радиоволновых измерений. Этот метод может быть использован при составлении карт геоэлектрического разреза различных типов ледового покрова, необходимых для проектирования радиолиний связи и навигации над двухслойной структурой "лед—морская вода" [6—9] в Арктическом и Антарктическом бассейнах.

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-19-01079) в Институте физического материаловедения СО РАН.

## Список литературы

- [1] *Макаров Г.И., Новиков В.В., Рыбачек С.Т.* Распространение электромагнитных волн над земной поверхностью. М.: Наука, 1991.
- [2] Wait J.R. Electromagnetic waves in stratified media. Oxford—Paris: Pergamon Press. 1962.
- [3] Башкуев Ю.Б. Электрические свойства природных слоистых сред. Новосибирск: Изд-во СО РАН, 1996.
- [4] Авт.св. № 296059 (СССР) Вешев А.В., Егоров В.А., Ивочкин В.Г., Пертель М.И. Способ определения эффективной комплексной диэлектрической проницаемости // Бюл. гос. комитета СССР по делам изобр. и откр. "Открытия, изобретения, промышленные образцы, товарные знаки". 1971. № 8. С. 141–142.
- [5] *Парфентьев П.А., Пертель М.И.* Низкочастотный волновод "Земля—ионосфера", Алма-Ата: изд-во Гылым, 1991. С. 133—135.
- [6] Нагуслаева И.Б., Башкуев Ю.Б. Электромагнитная диагностика неоднородных сред сейсмоактивной области. Saarbrucken: LAP LAMBERT Academic Publishing GmbH&Co Germany, 2012.
- [7] Башкуев Ю.Б., Хаптанов В.Б., Дембелов М.Г., Ангархаева Л.Х. // Вестник Бурятского научного центра СО РАН. 2014. № 4 (16). С. 151—156.
- [8] Башкуев Ю.Б., Буянова Д.Г., Хаптанов В.Б., Дембелов М.Г., Ангархаева Л.Х., Нагуслаева И.Б. // Вестник Бурятского научного центра СО РАН. 2014. № 4 (16). С. 166—180.
- [9] Башкуев Ю.Б., Дембелов М.Г., Ангархаева Л.Х., Нагуслаева И.Б., Хаптанов В.Б., Буянова Д.Г. VIII Всероссийская научно-техническая конференция "Радиолокация и радиосвязь", 24—26 ноября 2014. Москва: Доклады. Издание JRE-ИРЭ им. В.А. Котельникова РАН, 2014. С. 200—204.