Роль акустоэлектронного взаимодействия в формировании нанометровой периодической структуры адатомов

© Р.М. Пелещак, И.И. Лазурчак, О.В. Кузык, О.О. Данькив, Г.Г. Зегря*

Дрогобычский государственный педагогический университет им. Ивана Франко, 82100 Дрогобыч, Украина

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: peleshchak@rambler.ru

(Получена 29 июля 2015 г. Принята к печати 7 августа 2015 г.)

Исследована роль акустоэлектронных эффектов в формировании наноразмерных структур адатомов, происходящих в результате самосогласованного взаимодействия адатомов с поверхностной акустической волной и электронной подсистемой, для случая заряженных и незаряженных адсорбированных атомов. По-казано, что при фиксированном значении средней концентрации адатомов увеличение степени легирования полупроводника донорными примесями приводит к увеличению критической температуры, ниже которой происходят процессы самоорганизации.

1. Введение

В последнее время предметом интенсивных исследований является получение полупроводниковых структур с самоорганизованными нанокластерами методами молекулярно-лучевой эпитаксии [1,2] и ионной имплантации [3,4], а также возможность управления их физическими свойствами. Для оптимизации технологического процесса и прогнозируемого управления физическими параметрами полупроводниковых структур с нанокластерами важной является информация о начальной стадии формирования (нуклеации) периодических наноструктур адсорбируемых атомов (адатомов) и имплантированных примесей.

В работе [5] развита нелинейная диффузионно-деформационная теория самоорганизации нанокластеров имплантированных примесей в объеме полупроводника, которая учитывает упругое взаимодействие имплантированных примесей между собой и с атомами матрицы. Примесь, которая попадает в матрицу, приводит к изменению ее объема и энергии, а начальная флуктуация деформации при определенных условиях предопределяет возникновение деформационно-индуцируемых потоков имплантированных примесей. В итоге в неоднородном деформационно-концентрационном поле появляются силы, пропорциональные градиентам концентрации и деформации, которые дополнительно деформируют матрицу. Эти силы являются причиной нарастания начальной флуктуации и приводят к самоорганизации кластеров примесей.

В работе [6] развита теория спонтанной нуклеации поверхностной нанометровой решетки, которая обусловлена неустойчивостью в системе нейтральных адатомов, взаимодействующих с самосогласованной поверхностной акустической волной (ПАВ). В пределах данной теории установлены условия формирования нанокластеров на поверхности твердых тел и определены периоды

нанометровой решетки как функции концентрации адатомов и температуры. Кроме неустойчивости в системе адатомов, возникающей за счет их взаимодействия через поле механической деформации [6], появляется дополнительная неустойчивость, обусловленная самосогласованным электрон-деформационным взаимодействием [7].

Периодическая деформация, которая возникает на поверхности полупроводника, приводит к модуляции дна зоны проводимости и соответственно к модуляции электронной плотности. В результате возникает неоднородное электрическое поле, которое приводит к неоднородному смещению узлов кристаллической решетки и соответственно к изменению амплитуды ПАВ. В процессах самоорганизации дефектов в полупроводниковых структурах важным является вопрос: адатомы нейтральны или являются ионизированными донорами (акцепторами). Во втором случае следует принимать во внимание и взаимодействие ионизированных адатомов с внутренним электрическим полем, которое возникает за счет их периодического пространственно-неоднородного перераспределения.

В данной работе исследовано влияние взаимодействия ПАВ с электронной подсистемой на условия формирования периодических нанометровых структур адатомов и их периоды.

2. Деформация на поверхности полупроводника с учетом акустоэлектронного взаимодействия

Уравнение для вектора смещения ${\bf u}$ упругой среды имеет вид [6,8]

$$\frac{\partial^2 \mathbf{u}}{\partial t^2} = c_t^2 \Delta \mathbf{u} + (c_l^2 - c_t^2) \operatorname{grad}(\operatorname{div} \mathbf{u}), \tag{1}$$

где c_l, c_t — продольная и поперечная скорости звука соответственно.

Пусть поверхность полупроводника совпадает с плоскостью z=0 (ось z направлена в глубину кристалла). Допустим, что вдоль оси x возникает поверхностное возмущение упругой среды, которое зададим в виде статической ПАВ, быстро затухающей вглубь полупроводника и имеющей нарастающую со временем амплитуду [6]:

$$u_x = -iqR \exp(iqx + \lambda t - k_l z) - ik_t Q \exp(iqx + \lambda t - k_t z),$$
(2)

$$u_z = k_l R \exp(iqx + \lambda t - k_l z) + qQ \exp(iqx + \lambda t - k_t z),$$
(3)

где $k_{l,t}^2 = q^2 + \frac{\lambda^2}{c_{l,t}^2}$, λ — инкремент дефектно-деформационной неустойчивости [6]; R, Q — амплитуды ПАВ.

Тогда деформация ε на поверхности полупроводника (z=0):

$$\varepsilon = \frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} = -\frac{\lambda^2}{c_I^2} R \exp(iqx + \lambda t). \tag{4}$$

Рассмотрим два случая:

- 1) легированный полупроводник *n*-типа, содержащий примеси (ионизированные доноры), свободные электроны и адатомы, которые также являются ионизированными донорами;
- 2) легированный полупроводник *n*-типа, содержащий примеси (ионизированные доноры), свободные электроны и нейтральные адатомы.

Для этих случаев должны соответственно выполняться условия электронейтральности:

$$n_0 = N_d^+ + N_0, (5)$$

$$n_0 = N_d, (6)$$

где N_d , n_0 , N_0 — поверхностная концентрация ионизированных доноров, пространственно-однородные значения поверхностной концентрации электронов и адатомов соответственно.

Периодическая поверхностная деформация приводит к пространственно-неоднородному перераспределению адатомов N(x), модуляции дна зоны проводимости и соответственно перераспределению концентрации электронов проводимости n(x) и электростатического потенциала $\varphi(x)$:

$$N(x) = N_0 + N_1(x) = N_0 + N_1(q) \exp(iqx + \lambda t), \quad (7)$$

$$n(x) = n_0 + n_1(x) = n_0 + n_1(q) \exp(iqx + \lambda t),$$
 (8)

$$\varphi(x) = \varphi(q) \exp(iqx + \lambda t), \tag{9}$$

где $N_1(q), n_1(q), \varphi(q)$ — амплитуды соответственных периодических возмущений.

В результате пространственного перераспределения электрического заряда на поверхности полупроводника вдоль оси x возникает неоднородное электрическое поле $E_s(x)$, которое приводит к неоднородному смещению узлов кристаллической решетки и соответственно

к появлению дополнительного механического напряжения σ_{rr}^{el} :

$$\sigma_{xx}^{el} = \frac{e}{a} \frac{\partial E_s(x)}{\partial x} = -\frac{e}{a} \frac{\partial^2 \varphi(x)}{\partial x^2},\tag{10}$$

где a — параметр кристаллической решетки. Тогда компоненты тензора деформации, обусловленной акустоэлектронным взаимодействием, имеют вид:

$$\varepsilon_{xx}^{el} = -\frac{e}{aE} \frac{\partial^2 \varphi(x)}{\partial x^2}, \quad \varepsilon_{zz}^{el} = \frac{ve}{aE} \frac{\partial^2 \varphi(x)}{\partial x^2}, \quad (11)$$

где E, ν — модуль Юнга и коэффициент Пуассона соответственно.

Уравнение Пуассона с учетом (5)—(9) примет вид: для случая заряженных адатомов

$$-q^2 \varphi(q) = \frac{e}{\varepsilon_0 \tilde{\varepsilon} a} \left(n_1(q) - N_1(q) \right), \tag{12a}$$

для случая нейтральных адатомов

$$-q^2\varphi(q) = \frac{e}{\varepsilon_0\tilde{\varepsilon}a} n_1(q), \qquad (12\,6)$$

где ε_0 , $\tilde{\varepsilon}$ — диэлектрическая постоянная и диэлектрическая проницаемость среды соответственно.

Тогда деформация на поверхности полупроводника, обусловленная акустоэлектронным взаимодействием, равна:

$$\varepsilon^{el} = \varepsilon_{xx}^{el} + \varepsilon_{zz}^{el}$$

$$= -\frac{e^2(1-\nu)}{\varepsilon_0 \tilde{\varepsilon} a^2 E} \left(n_1(q) - N_1(q) \right) \exp(iqx + \lambda t), \quad (13 \text{ a})$$

$$\varepsilon^{el} = -\frac{e^2(1-\nu)}{\varepsilon_0 \tilde{\varepsilon} a^2 E} n_1(q) \exp(iqx + \lambda t). \tag{136}$$

Как видно с формул (13 a) и (13 б), электрондеформационное взаимодействие приводит к дополнительному сжатию кристаллической решетки в областях накопления электронов и, наоборот, к дополнительному растяжению в областях с концентрацией электронов, меньшей среднего значения.

3. Формирование периодической структуры заряженных адатомов

Уравнение для концентрации заряженных адатомов с учетом акустоэлектронного взаимодействия имеет вид:

$$\frac{\partial N}{\partial t} = D_d \frac{\partial^2 N}{\partial x^2} + \frac{\partial}{\partial x} \left(\mu_d N \frac{\partial \varphi}{\partial x} \right)
- D_d \frac{\theta_d}{kT} \frac{\partial}{\partial x} \left(N \frac{\partial}{\partial x} \left(\varepsilon + \varepsilon^{el} + l_d^2 \frac{\partial^2 (\varepsilon + \varepsilon^{el})}{\partial x^2} \right) \right), (14)$$

где D_d и μ_d — поверхностный коэффициент диффузии и подвижность адатомов, которые связаны между собой

соотношением Эйнштейна $\mu_d = D_d \frac{e}{k_{\rm B}} T$ ($k_{\rm B}$ — постоянная Больцмана, T — температура), θ_d — деформационный потенциал, l_d — характеристическая длина взаимодействия адатомов с атомами решетки. Второе слагаемое учитывает взаимодействие адатомов с электрическим полем, возникающим за счет пространственно-неоднородного перераспределения электрического заряда; третье слагаемое выражает взаимодействие адатомов с деформационным полем с учетом нелокального взаимодействия [6].

С учетом (4), (7)—(9), (13) и в приближении $N_1 \ll N_0$ уравнение (14) запишем в виде

$$\lambda N_{1}(q) = -D_{d}q^{2}N_{1}(q) + \frac{D_{d}N_{0}\Phi}{kT} \left(n_{1}(q) - N_{1}(q)\right)$$

$$-\frac{D_{d}N_{0}\theta_{d}}{kT} \left(\frac{\lambda^{2}}{c_{l}^{2}}Rq^{2}(1 - q^{2}l_{d}^{2})\right)$$

$$+\frac{\Phi q^{2}(1 - q^{2}l_{d}^{2})}{2a\rho c_{l}^{2}\beta(3 - 4\beta)} \left(n_{1}(q) - N_{1}(q)\right), \tag{15}$$

где $\Phi=rac{e^2}{arepsilon_0 ilde{arepsilon}a},
ho$ — плотность среды, $eta=rac{c_t^2}{c_l^2}.$

Плотность электрического тока электронов равна

$$j = n\mu_n \frac{d\chi}{dx},\tag{16}$$

где μ_n — подвижность электронов. Электрохимический потенциал χ определяется соотношением

$$\chi(x) = k_{\rm B}T \ln \frac{n(x)}{N_i} - e\varphi(x) + a_c \left(\varepsilon(x) + \varepsilon^{el}(x)\right), \quad (17)$$

где $N_i=2\left(\frac{2\pi mkT}{h^2}\right)^{3/2}$ — эффективная плотность состояний, a_c — константа гидростатического деформационного потенциала зоны проводимости. Тогда уравнение непрерывности с учетом (16), (17) можно записать в виле

$$e \frac{\partial n}{\partial t} = k_{\rm B} T \mu_n \frac{\partial}{\partial x} \left(n \frac{\partial}{\partial x} \ln \frac{n}{N_i} \right) - e \mu_n \frac{\partial}{\partial x} \left(n \frac{\partial \varphi}{\partial x} \right) + a_c \mu_n \frac{\partial}{\partial x} \left(n \frac{\partial}{\partial x} (\varepsilon + \varepsilon^{el}) \right). \tag{18}$$

С учетом (4), (7)—(9), (13) уравнение (18) запишем в виле

$$n_1(q) \left(e\lambda + k_{\rm B}T\mu_n q^2 + n_0\mu_n \Phi(1 + q^2 r^2) \right)$$

$$= N_1(q)n_0\mu_n \Phi(1 + q^2 r^2) + a_c n_0\mu_n q^2 \frac{\lambda^2}{c_l^2} R, \quad (19)$$

где
$$r^2 = -\frac{a_c}{2a\rho c_1^2 \beta (3-4\beta)}$$
. Здесь учтено, что $a_c < 0$.

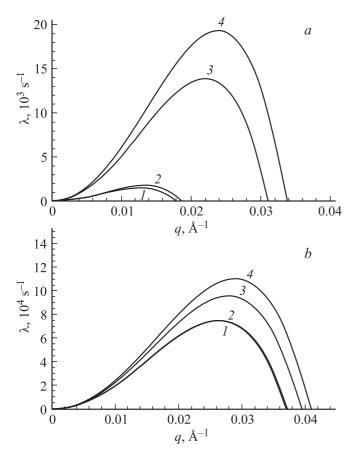
Решив систему уравнений (15) и (19), получим выражения для амплитуд поверхностной концентрации адатомов $N_1(q)$ и электронов проводимости $n_1(q)$.

Пространственно-неоднородное распределение адатомов модулирует поверхностную энергию F(x), что

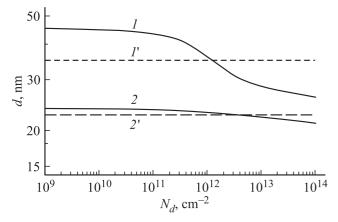
приводит к возникновению латерального механического напряжения $\sigma_{xz} = \frac{\partial F(N(x))}{\partial x}$, которое компенсируется напряжением сдвига в среде [6]. Граничное условие, выражающее баланс латеральных напряжений, имеет вил

$$\frac{E}{1+\nu} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right)_{z=0} = \frac{\partial F(N(x))}{\partial x} = \frac{\partial F}{\partial N} \frac{\partial N_1(x)}{\partial x}.$$
 (20)

Кроме этого, в результате взаимодействия адатомов с атомами полупроводника на поверхности возникает нормальное механическое напряжение; соответственное граничное условие имеет вид


$$\frac{E}{1+\nu} \left(\frac{\partial u_z}{\partial z} + \varepsilon_{zz}^{el} + \frac{\nu}{1-2\nu} \left(\frac{\partial u_x}{\partial x} + \varepsilon_{xx}^{el} \right) \right)_{z=0} = \frac{\theta_d}{a} N_1(x).$$
(21)

Таким образом, получаем систему линейных однородных уравнений (20), (21) относительно амплитуд R, Q. Тогда из условия нетривиальности решений можно получить дисперсионные зависимости $\lambda(q)$.


Расчеты $\lambda(q)$ проводились для полупроводника GaAs при следующих значениях параметров: $l_d=2.9$ нм, a=0.565 нм, $c_l=4400$ м/с, $c_t=2475$ м/с, $\rho=5320$ кг/м³, $a_c=-7.17$ эВ, T=300 К, $D_d=5\cdot 10^{-9}$ см²/с, $\theta_d=10$ эВ, $\tilde{\epsilon}=12,~\mu_n=8\cdot 10^3$ см²/В · с.

На рис. 1 приведены результаты расчета зависимости инкремента дефектно-деформационной неустойчивости от модуля волнового вектора при разных значениях концентрации ионизированных доноров N_d и разных значениях средней концентрации адатомов N_0 . Такая зависимость имеет максимум, который при увеличении концентрации ионизированных доноров (свободных электронов) сдвигается в сторону больших значений модуля волнового вектора. Значение $q_{\rm max}$, при котором инкремент дефектно-деформационной неустойчивости имеет максимум, определяет период доминирующей структуры $d=rac{2\pi}{q_{\max}}$ (рис. 2). При увеличении концентрации ионизированных доноров акустоэлектронные эффекты приводят к увеличению инкремента дефектнодеформационной неустойчивости. Таким образом, в полупроводнике с большей степенью легирования донорными примесями процессы формирования нанометровых периодических структур должны происходить быстрее. Роль акустоэлектронных эффектов в формировании периодической решетки адатомов более существенна при меньших концентрациях адсорбированных атомов (рис. 1). Например, для средней концентрации адатомов $N_0=3\cdot 10^{12}\,{\rm cm}^{-2}$ при увеличении концентрации доноров от 10^9 до $10^{14}\,{\rm cm}^{-2}$ инкремент дефектнодеформационной неустойчивости возрастает примерно в 13 раз (рис. 1, a), тогда как при концентрации адатомов $N_0 = 8 \cdot 10^{12} \,\mathrm{cm}^{-2}$ — только в 1.5 раза (рис. 1, *b*).

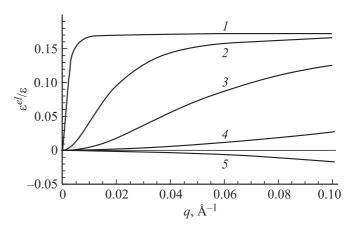

Такая же закономерность наблюдается и для периода доминирующей дефектно-деформационной решетки (рис. 2). Для средней концентрации адатомов

Рис. 1. Зависимость инкремента дефектно-деформационной неустойчивости от модуля волнового вектора при разных значениях концентрации ионизированных доноров N_d , см $^{-2}$: $1-10^9$, $2-10^{11}$, $3-10^{13}$, $4-10^{14}$. $a-N_0=3\cdot 10^{12}$ см $^{-2}$, $b-N_0=8\cdot 10^{12}$ см $^{-2}$.

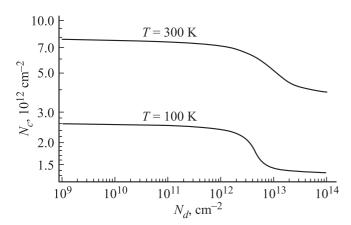

Рис. 2. Зависимость периода поверхностной дефектно-деформационной структуры от концентрации ионизированных доноров при разных значениях средней концентрации адатомов: при концентрации адатомов $N_0 = 3 \cdot 10^{12} \, \mathrm{cm}^{-2} \, \mathrm{c}$ учетом (I) и без учета электрон-деформационного взаимодействия (I'); при концентрации адатомов $N_0 = 8 \cdot 10^{12} \, \mathrm{cm}^{-2} \, \mathrm{c}$ учетом (I) и без учета электрон-деформационного взаимодействия (I').

Рис. 3. Зависимость доли электронной составляющей деформации от модуля волнового вектора при разных значениях концентрации ионизированных доноров N_d , см $^{-2}$: $I=10^8$, $2=10^{10}$, $3=10^{11}$, $4=10^{12}$, $5=10^{14}$.

 $N_0 = 3 \cdot 10^{12} \, \mathrm{cm}^{-2}$ при увеличении концентрации доноров от 10^9 до 10^{14} см $^{-2}$ период дефектно-деформационной структуры монотонно уменьшается от 45 до 25 нм, а при концентрации адатомов $N_0 = 8 \cdot 10^{12} \, \mathrm{cm}^{-2}$ — от 23 до 21 нм. Причем приблизительно при концентрации доноров, меньшей средней концентрации адатомов, электрон-деформационные эффекты приводят к увеличению периода решетки адатомов, а при большей концентрации доноров — к уменьшению. Это объясняется тем, что при небольших концентрациях доноров амплитуда пространственного возмущения адатомов больше, чем соответствующая амплитуда для электронов проводимости $(N_1(q) > n_1(q))$, и электронная составляющая деформации ε^{el} (формула (13a)) определяется в основном концентрацией положительно заряженных адатомов. В этом случае знак электронной составляющей деформации в каждой точке поверхности совпадает со знаком механической деформации, которая возникает за счет наличия адатомов (рис. 3, кривые 1-4). При концентрации доноров большей, чем средняя концентрация адатомов, характер электронной составляющей деформации определяется пространственным распределением электронов проводимости. В этом случае $n_1(q) > N_1(q)$ и электронная составляющая деформации имеет характер, противоположный механической деформации, возникающей за счет наличия адатомов (рис. 3, кривая 5).

Формирование самоорганизованных периодических дефектно-деформационных структур возможно лишь при превышении концентрацией адатомов некоторого критического значения N_c . На рис. 4 представлена зависимость критической концентрации адатомов от степени легирования полупроводника донорными примесями при разных значениях температуры. Полученные результаты показывают, что увеличение концентрации ионизированных доноров (концентрации электронов проводимости) приводит к уменьшению критической концентрации адатомов, при которой возможно формирование

Рис. 4. Зависимость критического значения концентрации адсорбированных атомов от концентрации ионизированных доноров.

нанометровой решетки адатомов. А именно, для температуры $T=100\,\mathrm{K}$ при изменении концентрации ионизированных доноров в диапазоне от 10^9 до $10^{14}\,\mathrm{cm}^{-2}$ критическое значение N_c уменьшается от $2.6\cdot 10^{12}$ до $1.35\cdot 10^{12}\,\mathrm{cm}^{-2}$, а при температуре $T=300\,\mathrm{K}$ — от $7.8\cdot 10^{12}$ до $3.91\cdot 10^{12}\,\mathrm{cm}^{-2}$. Как видно из рис. 4 процессы самоорганизации адатомов лучше происходят при меньших температурах. Это совпадает с результатами, полученными в работе [6], где показано, что формирование дефектно-деформационной решетки возможно только при температуре, меньшей некоторого критического значения. Увеличение степени легирования полупроводника донорными примесями дает возможность увеличить температуру, при которой возможны процессы самоорганизации наноструктур.

4. Формирование периодической структуры нейтральных адатомов

В этом случае уравнения (15) и (19) с учетом (136) можно записать в виде

$$(\lambda + D_d q^2) N_1(q) = -\frac{D_d N_0 \theta_d q^2 (1 - q^2 l_d^2)}{kT} \times \left(\frac{\lambda^2}{c_l^2} R + \frac{\Phi}{2a\rho c_l^2 \beta (3 - 4\beta)} n_1(q)\right), \quad (22)$$

$$n_{1}(q)\left(e\lambda + k_{B}T\mu_{n}q^{2} + n_{0}\mu_{n}\Phi(1+q^{2}r^{2})\right) = a_{c}n_{0}\mu_{n}q^{2}\frac{\lambda^{2}}{c_{l}^{2}}R.$$
(23)

В пределе $n_0 \to 0$ уравнение (22) совпадает с соответствующим уравнением в работе [6]. При увеличении поверхностной концентрации свободных электронов амплитуда $n_1(q)$ монотонно возрастает, асимптотически

приближаясь к значению

$$\lim_{n_0\to\infty} n_1(q) = \frac{a_c q^2 \frac{\lambda^2}{c_l^2} R}{\Phi(1+q^2 r^2)} \approx \frac{a_c q^2}{\Phi} \frac{\lambda^2}{c_l^2} R.$$

Тогда отношение электронной составляющей деформации к механической деформации, возникающей за счет пространственного перераспределения адатомов на поверхности полупроводника, не зависит от концентрации электронов и определяется выражением

$$\frac{\varepsilon^{el}}{\varepsilon} = \frac{(1-v)a_c q^2}{aE} = \frac{a_c q^2}{2a\rho c_1^2 \beta (3-4\beta)}.$$
 (24)

Таким образом, вклад электронной составляющей деформации увеличивается с ростом модуля волнового вектора по параболическому закону и не может превышать 2% (при $q=1\,\mathrm{mm}^{-1}$) от механической деформации. При меньшей поверхностной концентрации электронов это значение еще меньше. Таким образом, можно сделать вывод, что в случае неионизированных адатомов роль электрон-деформационных эффектов несущественна.

В предложенной модели не учитывается поверхностная модуляция доноров. Такое приближение справедливо в том случае, когда деформационный потенциал легирующих примесей незначителен по сравнению с деформационным потенциалом адсорбированных атомов.

5. Заключение

- 1. Исследована роль акустоэлектронных эффектов в формировании наноразмерных структур адатомов, происходящем в результате самосогласованного взаимодействия адатомов с поверхностной акустической волной и электронной подсистемой, для случая заряженных и незаряженных адсорбированных атомов.
- 2. Установлено, что в случае заряженных адатомов в полупроводнике GaAs увеличение концентрации легирующей донорной примеси приводит к уменьшению критической концентрации адсорбированных атомов, при которой возможно формирование самоорганизованных наноструктур. Или при фиксированном значении средней концентрации адатомов увеличение степени легирования полупроводника донорными примесями (увеличение концентрации свободных электронов) приводит к увеличению критической температуры, ниже которой происходят процессы самоорганизации.
- 3. Установлено, что в случае заряженных адатомов в полупроводнике GaAs увеличение концентрации легирующей донорной примеси приводит к уменьшению периода самоорганизованных поверхностных наноструктур алатомов.
- 4. Показано, что акустоэлектронное взаимодействие приводит к изменению неоднородной деформации, возникающей за счет пространственного перераспределения адатомов. Установлено, что в зависимости от

степени легирования полупроводника донорной примесью деформация может изменяться до 17% в случае ионизированных адатомов и только до 2% в случае незаряженных адатомов.

Список литературы

- Н.Н. Леденцов, В.М. Устинов, В.А. Щукин, П.С. Копьев, Ж.И. Алфёров, Д. Бимберг. ФТП, 32, 385 (1998).
- [2] I.P. Ipatova, V.G. Malyshkin, A.A. Maradudin. Phys. Rev. B, 57, 968 (1998).
- [3] I. Yamada, J. Matsuo, N. Tojoda. Phys. Res. B, 206, 820 (2003).
- [4] А.В. Боряков, Д.Е. Николичев, Д.И. Тетельбаум, А.И. Белов, А.В. Ершов, А.Н. Михайлов. ФТТ, **54**, 370 (2012).
- [5] R.M. Peleshchak, O.V. Kuzyk, O.O. Dan'kiv. J. Phys. Studies, 17, 2601 (2013).
- [6] В.И. Емельянов, К.И. Еремин. Письма ЖЭТФ, **75**, 109 (2002)
- [7] I.V. Stasyuk, R.M. Peleshchak. Ukr. J. Phys., 36, 1744 (1991).
- [8] Л.Д. Ландау, Е.М. Лифшиц. *Теория упругости* (М., Наука, 1965).

Редактор А.Н. Смирнов

Role of acoustic-electronic interaction in formation of nanometer periodic structure of adsorbed atoms

R.M. Peleshchak, I.I. Lazurchak, O.V. Kuzyk, O.O. Dan'kiv, G.G. Zegrya*

Ivan Franko Drohobych State Pedagogical University, 82100 Drohobych, Ukraine * Ioffe Institute, 194021 St. Petersburg, Russia

Abstract Role of acoustic-electronic effects in formation of nanoscale structures of adsorbed atoms, which occurs as a result of the self-consistent interaction of adatoms with the surface acoustic wave and an electronic subsystem, for a case of the charged and uncharged adsorbed atoms is investigated. It is shown that at the fixed value of average concentration of adatoms the increase in degree of a doping donor impurities leads to increase in critical temperature below which there are self-organization processes.