Изотермические вольт-амперные характеристики высоковольных 4H-SiC JBS-диодов Шоттки

© М.Е. Левинштейн*, П.А. Иванов*, Q.J. Zhang+, J.W. Palmour+

- * Физико-технический институт им. А.Ф. Иоффе Российской академии наук,
- 194021 Санкт-Петербург, Россия

⁺ Cree Inc., 4600 Silicon Dr., Durham NC 27703, USA

E-mail: melev@nimis.ioffe.ru

(Получена 20 октября 2015 г. Принята к печати 26 октября 2015 г.)

Прямые импульсные изотермические вольт-амперные характеристики 4*H*-SiC JBS с номинальным блокирующим напряжением 1700 В измерены в температурном диапазоне от -80° С до $+90^{\circ}$ С (193-363 K) вплоть до значений плотностей тока $j \sim 5600\,\mathrm{A/cm^2}$ при -80° С и 3000 A/cм² при $+90^{\circ}$ С. При этих измерениях перегрев структуры по отношению к температуре окружающей среды ΔT не превышал нескольких градусов. При больших значениях плотности тока наблюдается эффективная инжекция неосновных носителей (дырок) в базу структуры, сопровождающаяся появлением *S*-образного дифференциального сопротивления. Измерены также импульсные изотермические вольт-амперные характеристики при температуре 77 К.

1. Введение

Диоды Шоттки (ДШ) в настоящее время нашли применение в самых разнообразных приборах и устройствах современной электроники. Высокочастотные ДШ широко используются в умножителях частоты (вплоть до частот терагерцового диапазона), смесителях, детекторах и нелинейных элементах. Мощные ДШ нашли применение в автомобильной электронике, коммутаторах мощных солнечных батарей большой площади, системах компенсации реактивной мощности. Основными преимуществами ДШ перед приборами с p-n-переходом служат исключительно высокое быстродействие, малое прямое падение напряжения на потенциальном барьере и малые потери при переключении. Эти преимущества обусловлены тем, что ДШ являются приборами на основных носителях: при протекании прямого тока неосновные носители не накапливаются в базе прибора.

В высоковольтных приборах, однако, приходится считаться с тем, что при протекании прямого тока не происходит модуляции сопротивления базы. Это приводит к большим падениям напряжения на базе при больших плотностях тока и к положительному температурному коэффициенту прямого падения напряжения. Оба эти фактора ограничивают способность ДШ выдерживать значительные токи перегрузки (ударные токи) [1,2]. Устранить этот недостаток при сохранении основного преимущества ДШ — быстродействия призваны предложенные в 1987 г. так называемые ДШ, совмещенные с p-n-переходами, (Merged p-i-n/Schottky (MPS) или JBS) [3]. MPS (JBS) представляют собой интегрированные структуры, в которых области с барьером Шоттки чередуются с локальными p-n-областями (см., например, [4,5]). При номинальных плотностях прямого тока ток протекает только через барьеры Шоттки, поскольку напряжение отсечки у них существенно ниже, чем у p-n-переходов. Однако при достаточно большой плотности тока, существенно превышающей номинальные

значения, напряжение на приборе становится достаточно большим, чтобы возникла инжекция неосновных носителей (дырок) из *p*-областей в базу прибора.

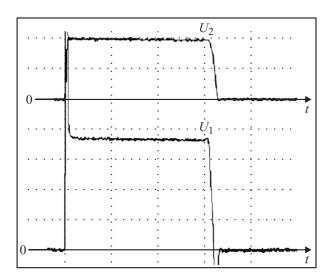
Инжекция неосновных носителей приводит к модуляции сопротивления базы, существенно уменьшает прямое падение напряжения и улучшает устойчивость к токам перегрузки (см., например, [5-7]). При этом, однако, накопление неосновных носителей в базе приводит к резкому уменьшению быстродействия прибора. Таким образом, оптимизация JBS требует компромисса между площадью, занятой p-n-переходами, и устойчивостью к перегрузкам.

Критическим параметром, определяющим работоспособность прибора, является температура перехода (барьера Шоттки или p-n-перехода), достигаемая в том или ином режиме. Расчет перегрева ΔT над температурой окружающей среды может быть проделан численно для любого режима работы (например, методом итераций), если известны изотермические вольт-амперные (I-U) характеристики прибора в широком диапазоне температур [8].

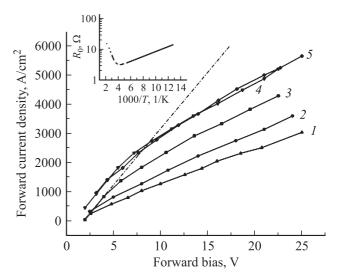
Измерению и интерпретации I-U-характеристик 4H-SiC ДШ и JBS посвящено довольно много работ (см., например, [9-12]). Однако во всех этих работах условия весьма далеки от изотермических. Недавно в работе [13] изотермические I-U-характеристики были измерены в области повышенных температур.

В настоящей работе изотермические прямые вольтамперные I-U-характеристики высоковольтных (1700 В) 4H-SiC JBS исследованы в температурном диапазоне $-80^{\circ}\mathrm{C}-+90^{\circ}\mathrm{C}$ (193 $-363~\mathrm{K}$). Кроме того, исследованы изотермические прямые вольт-амперные I-U-характеристики при температуре $77~\mathrm{K}$. Исследованию поведения SiC приборов при криогенных температурах в последнее время уделяется значительное внимание в связи с возможностью их использования при температурах, близких к критическим температурам высокотемпературных сверхпроводников [14,15].

2. Условия эксперимента


Образцы 4H-SiC JBS с площадью анодного контакта $S=8\cdot 10^{-4}\,\mathrm{cm}^2$ и толщиной базы $W\approx 18\,\mathrm{mkm}$ изготовлялись на основе коммерческих JBS структур CPW3-1700S010 (блокирующее напряжение 1700 В) фирмы Cree, Inc. [16]. Импульсные I-U-характеристики измерялись в режиме генератора тока: сопротивление подключенного последовательно с исследуемой структурой высокочастотного резистора $R=50\,\mathrm{Om}$ во всех случаях было много больше, чем сопротивление прибора. Длительность переднего фронта импульса составляла $80\,\mathrm{Hc}$. Измерения проводились в режиме одиночных импульсов.

При относительно малых амплитудах импульса, когда инжекция неосновных носителей (дырок) отсутствовала, длительность переходного процесса включения не превышала 120 нс. В этом случае напряжение на структуре измерялось через 200 нс после приложения импульса (рис. 1).

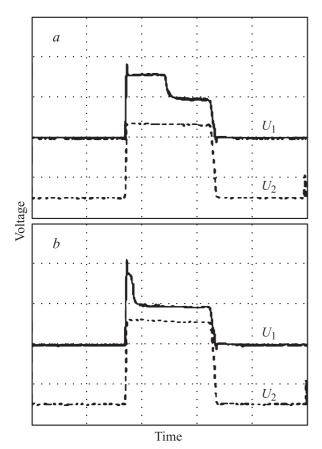

При относительно больших напряжениях смещения, когда возникает инжекция дырок, длительность переходного процесса существенно возрастает. Особенности измерений в таких режимах будут описаны далее.

3. Результаты и обсуждение

На рис. 2 показаны импульсные вольт-амперные характеристики исследуемых JBS, измеренные при различных температурах в диапазоне $-80^{\circ}\text{C}-+90^{\circ}\text{C}$. Инжекция неосновных носителей отсутствует вплоть до максимальных значений напряжений, представленных на рисунке.

Рис. 1. Пример осциллограмм сигналов U_1 и U_2 при относительно малых напряжениях смещения: U_1 — напряжение на исследуемом JBS; U_2 — сумма напряжений U_1 и падения напряжения на последовательно включенном с прибором сопротивлении $R_I=50\,\mathrm{Om}$. Шкала по горизонтали $1\,\mathrm{mkc/дел}$; шкала по вертикали: для U_1 — $2\,\mathrm{B/дел}$, для U_2 — $50\,\mathrm{B/дел}$. Температура $T=243\,\mathrm{K}$ ($-30\,\mathrm{^{\circ}C}$).

Рис. 2. Зависимости плотности тока j от прямого напряжения U_1 для исследуемых 4H-SiC JBS в отсутствие инжекции дырок при различных температурах T (K): I — $363\,\mathrm{K}$ ($+90^{\circ}\mathrm{C}$), 2 — $334\,\mathrm{K}$ ($+61^{\circ}\mathrm{C}$), 3 — $297\,\mathrm{K}$ ($+24^{\circ}\mathrm{C}$), 4 — $243\,\mathrm{K}$ ($-30^{\circ}\mathrm{C}$), 5 — $193\,\mathrm{K}$ ($-80^{\circ}\mathrm{C}$). Пунктиром для кривой 3 показан наклон кривой j(U) в области малых смещений в условиях, когда сопротивление диода R_0 определяется падением напряжения на базе. На вставке показана зависимость R_0 от обратной температуры.


Необходимо отметить, что эффективная инжекция дырок из прямосмещенного SiC p-n-перехода начинается при значениях прямого напряжения на переходе $U \geq 3-5$ В. В высоковольтных мощных SiC JBS, однако, применяются специальные конструктивные решения с тем, чтобы ограничить инжекцию неосновных носителей и сохранить быстродействие JBS вплоть до достаточно больших значений плотности прямого тока.

Интересно отметить, что зависимости j(U) для температур -30 и -80° С практически совпадают. С понижением температуры от максимального значения $+90^{\circ}$ С сопротивление базы прибора R_0 сначала падает вследствие роста подвижности электронов [17]. Однако при дальнейшем охлаждении сопротивление начинает возрастать за счет вымораживания электронов на наиболее глубокий уровень азота (энергия ионизации $\Delta E_2 = 0.102$ эВ [18]). Именно поэтому значения R_0 практически одинаковы при T = -30 и -80° С (см. вставку на рис. 2).

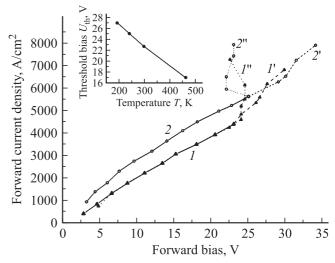
Легко убедиться, что представленные на рис. 2 j(U) характеристики действительно являются изотермическими. Считая, что все выделившееся за время импульса тепло уходит на нагрев прибора, максимальное значение перегрева ΔT над температурой окружающей среды легко оценить по формуле

$$\Delta T \approx \frac{4}{C(T)\rho[W + L_T(T)]\pi[a/2 + L_T(T)]^2},$$
 (1)

где $A = I \cdot U \cdot t_0$ — полная энергия, выделившаяся в приборе за время импульса, I — ток, U — падение

Рис. 3. Примеры временны́х зависимостей сигналов U_1 и U_2 (присутствует инжекция дырок, $U_1 \geq U_{\rm th} \approx 23\,\mathrm{B}$). U_1 — напряжение на диоде. Шкала по горизонтали 2 мкс/дел; шкала по вертикали: для U_1 — 20 В/дел, для U_2 — 100 В/дел. Температура $T=297\,\mathrm{K}$ ($24^{\circ}\mathrm{C}$). Стационарное значение тока (при $t=3\,\mathrm{MKC}$) (A): a — 3.34, b — 3.84.

напряжения на приборе, C — теплоемкость, ρ — плотность, W — толщина базы, a — диаметр прибора, $L_T = \sqrt{\chi t_0}$ — характерная длина диффузии тепла за время импульса t_0 . Здесь $\chi = K/\rho C$ — температуропроводность, K — теплопроводность. В рамках такой оценки предполагается, что выделившееся в приборе тепло за время импульса успевает распространиться на длину L_T .


Для комнатной температуры, например (кривая 3 на рис. 2, $T=297\,\mathrm{K}$), максимальные значения тока I и напряжения U составляют $I=3.4\,\mathrm{A},\ U=22.5\,\mathrm{B}.$ При $W=18\,\mathrm{mkm},\ \rho=3.21\,\mathrm{r/cm^3},\ t_0=2\cdot10^{-7}\,\mathrm{c},$ $C(297\,\mathrm{K})=0.69\,\mathrm{Дж/r}\,\mathrm{K},\ \chi(297\,\mathrm{K})=1.7\,\mathrm{cm^2/c}$ [17] величина ΔT составляет $\Delta T\approx 3\,\mathrm{K}.$

Из рис. 2 видно, что при комнатной и пониженных температурах протекающий через образец ток обнаруживает тенденцию к насыщению (кривые 3-5). Эта тенденция исчезает при повышении температуры (кривые I, 2). Такое поведение зависимости J(U), возможно, объясняется тенденцией к насыщению дрейфовой скорости электронов в сильных электрических полях (см. более подробный анализ в работе [13]).

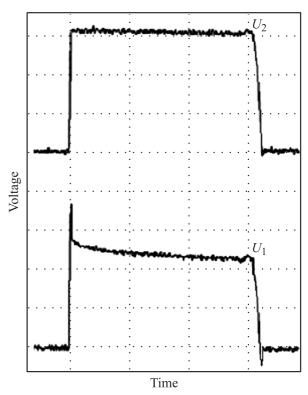
Для каждого значения температуры окружающей среды T существует пороговое напряжение $U=U_{\rm th}$, при превышении которого наблюдается эффективная инжекция дырок в базу прибора. Характер и длительность переходного процесса в этом случае кардинально изменяются. В качестве примера на рис. 3 показан переходной процесс для температуры $T=297~{\rm K}$ при двух значениях протекающего через диод тока.

Как видно из рис. 3, в течение некоторого времени после приложения импульса переходной процесс полностью совпадает с процессом, показанным на рис. 1. Однако по прошествии определенного временного интервала t_0 напряжение на диоде (U_1) падает вследствие модуляции сопротивления базы инжектированными дырками, а время установления стационарного состояния резко возрастает до значения $t \approx 3$ мкс. Общая тенденция при росте тока, протекающего через диод, состоит в уменьшении значения t_0 . Однако такая тенденция реализуется только "в среднем". Момент начала дырочной инжекции сильно флуктуирует от импульса к импульсу (джиттер) даже при неизменном значении тока. Ситуация в некоторых отношениях сходна с микроплазменным пробоем в "обратно смещенных p-n-переходах" [19].

На рис. 4 представлены зависимости j(U), измеренные при двух температурах и напряжениях $U>U_{\rm th}$. Кривые I и 2 на рис. 4 совпадают с кривыми 3 и 5 рис. 2 и соответствуют значениям $U<U_{\rm th}$. Зависимости I' и 2' измерены через 200 нс после подачи импульса смещения при $U>U_{\rm th}$, т.е. в условиях, когда в какой-то момент

Рис. 4. Зависимости плотности тока j от прямого напряжения U для исследуемых 4H-SiC JBS, измеренные при двух температурах: (1, 1', 1'') — $297\,\mathrm{K}$ ($+24^\circ\mathrm{C}$); (2, 2', 2'') — $193\,\mathrm{K}$ ($-80^\circ\mathrm{C}$). Кривые I и 2 совпадают с кривыми 3 и 5 рис. 2. Зависимости I' и 2' измерены через $200\,\mathrm{hc}$ после подачи импульса смещения при $U > U_{\mathrm{th}}$. Зависимости I'' и 2'' измерены через $3\,\mathrm{mkc}$ после подачи прямого смещения. На вставке показана температурная зависимость порогового напряжения начала инжекции дырок U_{th} .

времени возникает инжекция дырок в базу прибора. Характер зависимостей, представленных кривыми 1' и 2', ясно показывает, что на малых временах $t < t_0$ инжекция дырок отсутствует.


Зависимости I'' и 2'' измерены через 3 мкс после подачи прямого смещения при $U>U_{\rm th}$, когда переходной процесс, обусловленный инжекцией, закончился, и установилось стационарное состояние. Как видно из вставки рис. 4, в широком интервале температур величина $U_{\rm th}$ линейно уменьшается с ростом температуры. Время установления стационарного состояния определяется, по-видимому, временем жизни дырок в n-базе. Заметим, что в этом случае измеренные вольт-амперные характеристики не могут считаться изотермическими. Действительно, например, для комнатной температуры (кривая I'') при $j=7200\,{\rm A/cm^2},\ U=22.5\,{\rm B},\ t_0=3\cdot10^{-6}\,{\rm c}$ оценка величины ΔT в соответствии с формулой (1) дает $\Delta T\approx30\,{\rm K}.$

Следует отметить, что в рассматриваемом случае реализуется ситуация, в которой изотермические вольтамперные характеристики не могут быть измерены в принципе. (Такая ситуация подробно проанализирована для p-n-переходов в работе [20].) Для измерения изотермических вольт-амперных характеристик необходимо, чтобы импульс приложенного напряжения был достаточно коротким. С другой стороны, для установления стационарного состояния длительность импульса должна в 2-3 раза превышать время жизни неосновных носителей. Таким образом, если величина ΔT оказывается слишком большой при длительности импульса, равной времени жизни неосновных носителей, изотермическая вольт-амперная характеристика непосредственно не может быть измерена. В таких случаях изотермическая характеристика должна быть "восстановлена" из результатов импульсных измерений путем сравнения таких результатов с адекватной аналитической или численной моделью. Однако для JBS (в отличие от высоковольтных p-n-переходов [20]) такой теории в настоящее время не существует.

Вольт-амперные характеристики и переходные процессы в исследуемых JBS при 77 К характеризуются рядом особенностей, обусловленных прежде всего тем обстоятельством, что значительная часть электронов при этой температуре оказывается вымороженной [18].

Прежде всего следует отметить очень высокую чувствительность сопротивления базы к саморазогреву, что объясняется тепловым выбросом электронов с уровней азота [18] по мере разогрева. На рис. 5 показаны осциллограммы сигналов U_1 и U_2 при 77 К и значении протекающего через структуру тока I=1 А. Напряжение на структуре U_1 равняется 13.5 В через 200 нс после приложения импульса и 11.5 В в конце импульса $(t=3\,{\rm MKC})$.

Видно, что к концу импульса ($t=3\,\mathrm{мкc}$) напряжение на образце (пропорциональное сопротивлению образца) уменьшается до $\sim 11.5\,\mathrm{B}$ (на $\sim 15\%$). Между тем в

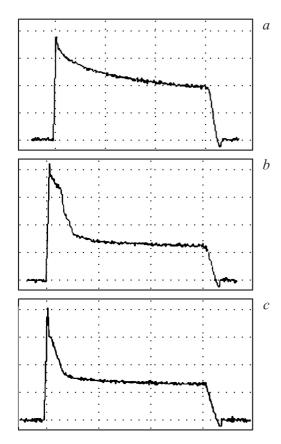
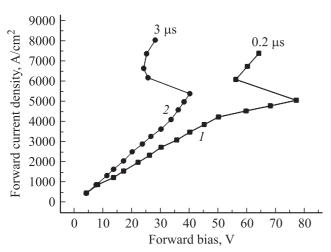


Рис. 5. Осциллограммы сигналов U_1 и U_2 при малых напряжениях смещения: U_1 — напряжение на исследуемом приборе, U_2 — сумма напряжения U_1 и падения напряжения на последовательно включенном с прибором сопротивлении $R_l=50$ Ом. Шкала по горизонтали 1 мкс/дел; шкала по вертикали: для U_1 — 5 В/дел, для U_2 — 20 В/дел. Температура T=77 К. Амплитуда протекающего тока I=1 А.


диапазоне температур $193-363~\mathrm{K}$ изменение сопротивления образца за счет саморазогрева при аналогичных условиях было пренебрежимо малым (см. рис. 1). С ростом протекающего через образец тока изменение сопротивления во время импульса возрастает. При максимальном значении тока $I\approx 4.1~\mathrm{A}$, предшествующем наступлению инжекции неосновных носителей, изменение сопротивления во время импульса составляет $\sim 40\%$ (рис. 6,a).

При значении протекающего через диод тока $I \approx 4.5 \, \mathrm{A}$ (рис. 6, b), возникает интенсивная инжекция дырок в базу диода (ср. с рис. 3, b). Как и в области температур $193-363 \, \mathrm{K}$, наблюдаются значительный джиттер при неизменном токе через диод и заметное уменьшение с ростом тока ("в среднем") времени t_0 , при котором возникает инжекция дырок. Инжекция возникает при напряжении U_1 , равном $\approx 68 \, \mathrm{B}$ через $200 \, \mathrm{hc}$ после подачи импульса смещения. При этом величина U_1 в стационарном состоянии, через $3 \, \mathrm{mkc}$ после подачи импульса составляет $\approx 25.5 \, \mathrm{B}$ (рис. 6, b).

С дальнейшим ростом тока через диод время t_0 продолжает уменьшаться, и при $I \approx 5.1$ А инжекция наступает непосредственно на фронте импульса (рис. 6, c).

Рис. 6. Осциллограммы напряжения на диоде, U_1 при различных значениях протекающего через диод тока I (A): a — 4.1, b — 4.5, c — 5.1. Шкала по горизонтали 1 мкс/дел; шкала по вертикали 20 В/дел. T = 77 K.

Рис. 7. Зависимости плотности тока j от прямого напряжения U для исследуемых 4H-SiC JBS при 77 К. Зависимости измерены через время после подачи импульса t (мкс): 1 — 0.2, 2 — 3.

Сравнивая рис. 6, b и c, легко заметить, что U_1 (200 нс) на рис. 6, c меньше ($\approx 60\,\mathrm{B}$), чем на рис. 6, b, несмотря на большее значение тока (отрицательное дифференциальное сопротивление).

На рис. 7 показаны зависимости j(U), измеренные через 200 нс (кривая I) и через 3 мкс (кривая 2) после начала импульса.

Из рис. 7 видно, что инжекция дырок и возникновение S-образного отрицательного дифференциального сопротивления в изотермических условиях (кривая I) возникают при значении порогового напряжения $U_{\rm th}\approx 77~{\rm B}.$ Оценить температуру, при которой происходит переключение, соответствующее кривой 2 на рис. 7, достаточно сложно. При 77 К теплоемкость SiC, оцененная в соответствии с моделью Дирака из экспериментальных данных [17], составляет $C(77~{\rm K})\approx 1.6\cdot 10^{-2}~{\rm Дж/r~K}.$ При теплопроводности $K(77~{\rm K})\approx 8~{\rm Br/cm~K}$ [17] температуропроводность $\chi=K/\rho C\approx 150~{\rm cm^2/c},$ и за время $t=3~{\rm Mkc}$ тепло распространяется на характерное расстояние $L_T=\sqrt{\chi t}\approx 200~{\rm Mkm}.$ При этом справедливость формулы (1) для оценки перегрева структуры ΔT становится неочевидной.

4. Заключение

Измерены прямые изотермические вольт-амперные характеристики в 4H-SiC JBS с блокирующим напряжением $1700 \,\mathrm{B}$ в диапазоне температур от $-80^{\circ}\mathrm{C}$ до $+90^{\circ}$ С (193-363 K) вплоть до предельных плотностей тока, при которых отсутствует инжекция неосновных носителей (дырок) в базу прибора ($\sim 5600\,\mathrm{A/cm^2}$ при -80° С, $\sim 3000\,\mathrm{A/cm^2}$ при $+90^{\circ}$ С). Импульсные j-U-характеристики измерены через 200 нс после приложения импульса прямого смещения. При этом перегрев структуры по отношению к температуре окружающей среды ΔT не превышает нескольких градусов. Величина порогового напряжения $U_{\rm th}$, при котором начинается эффективная инжекция дырок, приблизительно линейно спадает от $\sim 27\,\mathrm{B}$ при $T=193\,\mathrm{K}$ до $\sim 17\,\mathrm{B}$ при $T = 460 \,\mathrm{K}$. При наличии инжекции неосновных носителей время установления стационарного состояния определяется, по-видимому, временем жизни дырок в п-базе и составляет приблизительно 3 мкс. Вольт-амперные характеристики, измеренные при длительности импульса ~ 3 мкс, не могут считаться изотермическими: перегрев ΔT в этом случае составляет несколько десятков градусов. Отмечено, что, если при длительности импульса, равного времени жизни неосновных носителей, величина ΔT не отвечает требованиям изотермичности, изотермическая вольт-амперная характеристика непосредственно не может быть измерена в принципе.

При температуре 77 K изотермические вольт-амперные характеристики измерены вплоть до значений плотности тока $j \approx 5000 \, \mathrm{A/cm^2}$. Отмечена очень высокая чувствительность сопротивления прибора к саморазогреву, объясняемая тепловым выбросом электронов, вымороженных на уровни по мере протекания тока.

Работа выполнена при поддержке Cree Res. Inc.

Список литературы

- [1] L.M. Hillkirk. Sol. St. Electron., 48, 2181 (2004)
- [2] M.E. Levinshtein, P.A. Ivanov, T.T. Mnatsakanov, J.W. Palmour, M.K. Das, B.A. Hull. Sol. St. Electron., 52, 1802 (2008)
- [3] J. Baliga. IEEE Electron Dev. Lett., **8**, 407 (1987)
- [4] J. Wu, L. Fursin, Y. Li, P. Alexandrov, M. Weiner, J.H. Zhao, Semicond. Sci. Technol., 21, 987 (2006)
- [5] П.А. Иванов, И.В. Грехов, А.С. Потапов, О.И. Коньков, Н.Д. Ильинская, Т.П. Самсонова, О. Korol'kov, N. Sleptsuk. ФТП, 46, 411 (2012)
- [6] J.D. Caldwell, R.E. Stahlbush, E.A. Imhoff, K.D. Hobart, M.J. Tadjer, Q. Zhang, A. Agarwal. J. Apll. Phys., 106, 044 504 (2009)
- [7] C. Buttay, C. Raynaud, H. Morel, G. Civrac, M.-L. Locatelli, F. Morel. IEEE Trans. Electron Dev., 59, 761 (2012).
- [8] H. Carslow, J. Jager. Conduction of Heat in Solids (Clarendon Press, Oxford, 1959).
- [9] F. Cappelluti, F. Bonani, G. Ghione. Proc. Int. Semicond. Dev. Res. Symp. ISDRS '09, Dec. 9–11 (College Park, MD, USA, 2009) p. 1.
- [10] B.L. Maas, N.D. Clements, V. Rinaldi. IEEE Trans. Magnetics, 29, 1017 (1993).
- [11] R. Perez, N. Mestres, M. Vellveh, P. Godignon, J. Mill. Semicond. Sci. Technol., 21, 670 (2006).
- [12] C.M. Johnson, M. Rahimo, N.G. Wright, D.A. Hinchley, A.B. Horsfall, D.J. Morrison, A. Knights. *Industry Applications Conference*, 2000. Conf. Record of the 2000 IEEE, 5, 2941 (2000).
- [13] J.W. Palmour, M.E. Levinshtein, P.A. Ivanov, Q.J. Zhang. J. Phys. D: Appl. Phys., 48, 235 103 (2015).
- [14] M. Berthou, B. Asllani, P. Brosselard, P. Godignon. Proc. 16th Int. Conf. on Silicon Carbide and Related Materials, ICSCRM'2014, Dubai, UAE. Nov. 25–26. Mater. Sci. Forum, 821–823, 583 (2015).
- [15] T. Chailloux, C. Calvez, D. Tournier, D. Planson. Proc. 16th Int. Conf. on Silicon Carbide and Related Materials, ICSCRM'2014, Dubai, UAE, Nov. 25–26. Mater. Sci. Forum, 821–823, 814 (2015).
- [16] http://www.cree.com/~/media/Files/Cree/Power/Data Sheets/ CPW31700S010B.pdf
- [17] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, eds., Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons, Inc. N. Y. 2001).
- [18] G. Pensl, F. Giobanu, T. Frank, M. Krieger, S. Reshanov, F. Shmid, M. Weidner. SiC Material Properties. In: SiC Materials and Devices (M. Shur, S. Rumyantsev, M Levinshtein, eds (World Scientific, Singapore—New Jersey—London—Hong Kong, 2006).
- [19] И.В. Грехов, Ю.Н. Сережкин. Лавинный пробой p-n-переходов в полупроводниках (Л., Энергия, 1980).
- [20] M.E. Levinshtein, T.T. Mnatsakanov, P.A. Ivanov, J.W. Palmour, M.K. Das, B.A. Hull. Semicond. Sci. Technol., 22, 253 (2007).

Редактор А.Н. Смирнов

Isothermal current-voltage characteristics of high-voltage 4*H*-SiC junction barrier Schottky rectifiers

M.E. Levinshtein*, P.A. Ivanov*, Q.J. Zhang+, J.W. Palmour+

* loffe Institute, 194021 St. Petersburg, Russia + Cree Inc., 4600 Silicon Dr., Durham NC 27703, USA

Abstract Isothermal forward current-voltage characteristics of high-voltage (1700 V) 4H-SiC JBS have been measured in the temperature range from -80° C to $+90^{\circ}$ C up to current densities $j \sim 5600 \, \text{A/cm}^2$ at -80° C and $3000 \, \text{A/cm}^2$ at $+90^{\circ}$ C. At these measurements, the overheating ΔT did not exceed several degrees. At larger values of j, effective injection of minority carriers (holes) in the base of the structure occurs, which accompanies by appearance of S-type differential resistance. Isothermal forward current-voltage characteristics of JBS at 77 K have been also studied.