05

Диэлектрические свойства легированных титанатов переходных металлов на волнах миллиметрового диапазона

© А.Б. Ринкевич, 1 Д.В. Перов, 1 Е.А. Кузнецов, 1 Я.А. Пахомов, 1 Ю.И. Рябков 2

1 Институт физики металлов им. М.Н. Михеева УрО РАН,

620990 Екатеринбург, Россия

e-mail: rin@imp.uran.ru

² Институт химии УрО РАН, 167982 Сыктывкар, Россия

e-mail: ryabkov-yi@chemi.komisc.ru

(Поступило в Редакцию 2 июля 2015 г. В окончательной редакции 8 декабря 2015 г.)

Исследованы диэлектрические свойства керамических титанатов никеля, кобальта, марганца и их изоморфно замещенных твердых растворов. В качестве легирующих элементов выбраны железо и магний. Разработаны методики твердофазного синтеза титанатов, позволяющие варьировать дисперсность продуктов, исследованы их структура и фазовый состав. Выполнены микроволновые исследования диэлектрической проницаемости выполнены в частотном интервале от 12 до 38 GHz. Определены значения действительной и мнимой частей диэлектрической проницаемости полученных титанатов.

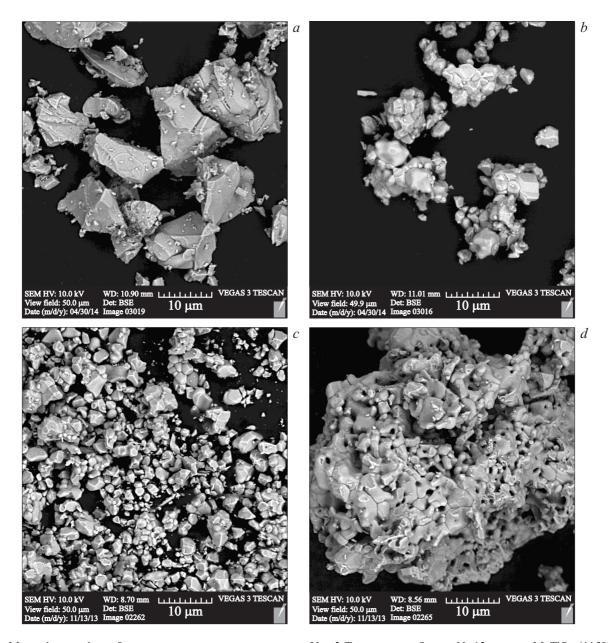
Введение

Изучение высокочастотных диэлектрических свойств титанатов переходных металлов представляется актуальной задачей для создания микроволновых приборов электроники и развития устройств обработки информации в направлении увеличения рабочих частот. Кроме этого, титанаты могут быть исходным компонентом для создания композитных мультиферроиков. К настоящему времени получена большая совокупность данных о физических свойствах титанатов типа МеТіО3, где Ме обозначает переходный или щелочно-земельный металл [1,2]. Варьирование химического состава титанатов, как и других сложных оксидов, без изменения их кристаллической структуры — эффективный способ регулировки и оптимизации параметров материалов на их основе. Микроволновые диэлектрические свойства керамических титанатов МеТіО3, а также соединений $MeTa_2O_6$ и $MeWO_4$ рассмотрены в [3,4]. Титанаты $MeTiO_3$ ($Me = Mn^{2+}$, Fe^{2+} , Co^{2+} , Ni^{2+}) имеют структуру тригонального ильменита и содержат атомы металлов в октаэдрическом окружении атомов кислорода. Для соединений с большими атомами в Ме-позициях (Sr,Ca) реализуется решетка перовскита. Распределение атомов кислорода или металлов в катионных подрешетках оказывает влияние на добротность образцов и коэффициент линейного расширения, который уменьшается с возрастанием искажений кислородных октаэдров. Микроволновые и терагерцовые диэлектрические свойства пленок $SrTiO_3$ на подложке $MgAl_2O_4$ (100) исследованы в [5]. Обнаружено, что при температуре 170 К происходит сегнетоэлектрический фазовый переход, причем ниже перехода в структуре материала присутствуют поляризованные области нано-размерного масштаба. На гигагерцовых частотах мнимая часть диэлектрической проницаемости при температурах ниже 170 К существенно возрастает. Диэлектрические свойства керамических материалов $Li_{0.649}Fe_{1.598}Ti_{0.5}Zn_{0.2}Mn_{0.051}O_4$ изучены в диапазоне частот $0.5-2.5\,\mathrm{GHz}$. Проведены исследования термоэдс образцов ферритовой керамики. Показано, что исследуемый материал имеет электронный тип проводимости [6].

Технология получения материалов состава $(Mg_{1-x}Co_x)TiO_3$ была разработана в [7], и были изучены их свойства и структура. Установлено, что этот тип материалов имеет высокую микроволновую добротность и достаточно высокую диэлектрическую проницаемость. Высокая микроволновая добротность на частотах в единицы гигагерц была получена для керамических титанатов $MeTiO_3$, где Me=Co,Mn,Ni [8].

Частотные зависимости коэффициентов прохождения и отражения электромагнитных волн измерены на частотах 12-38 GHz для керамических материалов со структурами доломита и ильменита [9]. Показано, что образцы доломитов и корундов имеют малый коэффициент отражения и малую долю поглощенной мощности в некоторых частотных интервалах. Микроволновые диэлектрические свойства нанокомпозитных и керамических образцов титанатов переходных металлов исследованы в [10]. Из значений коэффициентов прохождения и отражения была определена комплексная диэлектрическая проницаемость. Нанокомпозитные и керамические титанаты составов РьТіО3, FeTiO3, ВаТіО3, (Mg,Ni,Fe)TiO₃ и нескольких титанатов редкоземельных металлов были синтезированы и исследованы в [11] в широком интервале частот от микроволн до терагерц. Для нанокомпозитных металло-диэлектрических образцов на основе опаловых матриц установлено, что их частотные зависимости диэлектрической проницаемости описываются релаксационной моделью Cole-Cole выше перколяционного перехода и проводимостью Друде ниже перехода [12]. Изучено поглощение электромагнитных

Номер образца	Задаваемый номинальный химический состав	Сведения по составу исходных компонентов	Температура, продолжительность, атмосфера обжига	Фазовый состав продукта	
1	CoTiO ₃	Co ₃ O ₄ , TiO ₂ (анатаз)	1050°С, 4 h, воздух	100% ильменит	
2	CoTiO ₃	Co ₃ O ₄ , TiO ₂ (анатаз)	₁₃ O ₄ , TiO ₂ (анатаз) 1200°С, 2 h, вакуум		
3	CoTiO ₃	Co_3O_4 , TiO_2 (анатаз)	1050°С, 7 h, воздух	100% ильменит	
4	$\mathrm{Co}_{0.95}\mathrm{Fe}_{0.05}\mathrm{TiO}_3$	${ m Co_3O_4},\ \alpha\text{-Fe}_2{ m O}_3\ ($ нановолокна $),\ { m TiO}_2\ ($ анатаз $)$	1050°С, 4 h, воздух	100% ильменит	
5	$Co_{0.95}Fe_{0.05}TiO_3$	${ m Co_3O_4}, \gamma$ - ${ m Fe_2O_3}, { m TiO_2} ($ анатаз $)$	1050°С, 7 h, воздух	100% ильменит	
6	$\mathrm{Co}_{0.90}\mathrm{Fe}_{0.10}\mathrm{TiO}_3$	${ m Co_3O_4}, \gamma ext{-Fe}_2{ m O}_3, { m TiO}_2 ($ анатаз $)$	1050°С, 7 h, воздух	91% ильменит, 9% TiO ₂ (рутил)	
7	$\mathrm{Co}_{0.90}\mathrm{Fe}_{0.10}\mathrm{TiO}_3$	${ m Co_3O_4},\ \alpha\text{-Fe}_2{ m O}_3\ ($ нановолокна $),\ { m TiO}_2\ ($ анатаз $)$	1050°С, 7 h, воздух	100% ильменит	
8	$\mathrm{Co}_{0.9}\mathrm{Fe}_{0.1}\mathrm{TiO}_3$	${ m Co_3O_4},{ m TiO_2}\;{ m (анатаз)}$	1200°С, 2 h, воздух	82% ильменит Ti(Co,Fe)O ₃ , 18% Fe ₂ O ₃ (гематит)	
9	$Co_{0.80}Fe_{0.20}TiO_3$	Fe(OH)3; Co ₃ O ₄ , TiO ₂ (анатаз)	950°C, 2 h, воздух + 1200°C, 2 h, вакуум	100% ильменит	
10	$Mg_{0.10}Co_{0.80}Fe_{0.10}TiO_{3}$	$Fe(OH)_3$ и $Mg(OH)_2$; Co_3O_4 , TiO_2 (анатаз)	950°C, 2 h, воздух + 1200°C, 2 h, вакуум	100% ильменит	
11	$MnTiO_3$	MnO_2 , TiO_2 (анатаз)	1050°С, 7 h, воздух	100% ильменит	
12	$MnTiO_3$	MnO_2 , TiO_2 (анатаз)	1150°С, 5 h, воздух	100% ильменит	
13	$Mn_{0.95}Fe_{0.05}TiO_3$	Мп O_2 , $α$ -Fe $_2O_3$ (нановолокна), Ti O_2 (анатаз)	1050°С, 7 h, воздух	92% ильменит, 8% TiO ₂ (рутил)	
14	$Mn_{0.95}Fe_{0.05}TiO_3$	MnO ₂ , γ -Fe ₂ O ₃ , TiO ₂ (анатаз)	1150°С, 5 h, воздух	88% ильменит, 12% TiO ₂ (рутил)	
15	$Mn_{0.90}Fe_{0.10}TiO_3$	MnO ₂ , γ -Fe ₂ O ₃ , TiO ₂ (анатаз)	1150°C, 5 h, воздух	88% ильменит, 12% TiO ₂ (рутил)	
16	$Ni_{0.90}Fe_{0.10}TiO_3$	$Ni(OH)_2$, $Fe(OH)_3$, TiO_2 (анатаз)	950°С, 4 h, воздух + 1100°С, 2 h, воздух + 1200°С, 2 h, вакуум	88% ильменит, 12% TiO ₂ (рутил)	
17	$Ni_{0.90}Fe_{0.10}TiO_3$	$Ni(OH)_2$, $Fe(OH)_3$, TiO_2 (анатаз)	1200°С, 2 h, вакуум	89% ильменит, 11% TiO ₂ (рутил)	
18	$Mg_{0.10}Ni_{0.80}Fe_{0.10}TiO_3$	$Ni(OH)_2$, $Mg(OH)_2$, $Fe(OH)_3$; TiO_2 (анатаз)	1050°C, 2 h, воздух + 1100°C, 2 h, воздух	92% ильменит, 8% TiO ₂ (рутил)	


Таблица 1. Химический и фазовый составы образцов

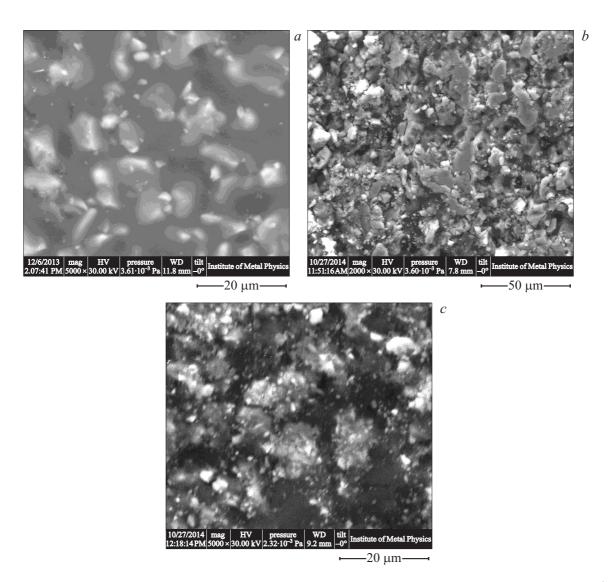
волн в керамических образцах в интервале частот от 17 до 38 GHz и показано, что некоторые из них представляют интерес как поглощающие и экранирующие материалы.

В настоящей работе поставлена задача изучения высокочастотных диэлектрических свойств титанатов переходных металлов со структурой ильменита. Выбор этого класса объектов обусловлен, в частности, возможностью их использования как диэлектрических элементов СВЧ-приборов, окон в волноводных трактах, материалов для композитных мультиферроиков.

Ильменит кристаллизуется в тригональной сингонии (ромбоэдрический вид симметрии), пространственная группа R3c (ICSD No 161). Кристаллическая структура аналогична корундовой с той лишь разницей, что позиции алюминия через слой поочередно (и упорядоченно) занимают атомы двухвалентного железа и

четырехвалентного титана. Для соединений с ильменитоподобной структурой также сохраняется октаэдрическое кислородное окружение катионов [TiO₆] и [MeO₆] (Me — 3*d*-металл). Толерантность данной структуры к замещению атомов железа (II) на атомы с близкими радиусами — Mg^{2+} , 3d-элементов Me(II) — создает широкие возможности для формирования подрешеток с заданным магнитным упорядочением для реализации набора электрофизических свойств. Основу исследованных нами титанатов составляют керамики МпТіО3, СоТіО3, NiTiO₃. В качестве легирующих элементов выбраны Fe и Mg. Измерения коэффициентов прохождения и отражения электромагнитных волн выполнены на частотах от 12 до 38 GHz, и из полученных коэффициентов определена комплексная диэлектрическая проницаемость. Данные микроволновых измерений сопоставляются с химическим составом образцов, их микроструктурой и условиями синтеза.

Рис. 1. Микрофотографии образцов, полученные на микроскопе Vega3 Tescan: a — образец № 12 состава MnTiO₃ (1150°C, 5 h, воздух), b — образец № 5 состава $Co_{0.95}Fe_{0.05}TiO_3$ (1050°C, 7 h, воздух), c — образец № 4 $Co_{0.95}Fe_{0.05}TiO_3$ (1050°C, 4 h, воздух), d — образец № 13 $Mn_{0.95}Fe_{0.05}TiO_3$ (1050°C, 7 h, воздух).


1. Синтез и структура образцов

Для создания материалов с регулируемыми электрофизическими характеристиками были разработаны методики синтеза твердых растворов титанатов никеля, кобальта, марганца, с титанатами железа и/или магния.

Порошки титанатов были получены методом твердофазного синтеза с использованием стадий соосаждения, гидротермальной обработки прекурсоров, золь-гель технологии, сжигания гелей (метод Печини). Для получения высокодисперсных сложнооксидных керамических продуктов многие авторы используют метод Печини, который обеспечивает высокую однородность распре-

деления исходных компонентов и сравнительно мягкие температурно-временные режимы синтеза [13]. В наших исследованиях этот метод впервые применен для синтеза твердых растворов титанатов с ильменитоподобной структурой.

Для синтеза титанатов никеля и кобальта и их изоморфно замещенных твердых растворов с железом $Ni_{1-x}Fe_xTiO_3$ и $Co_{1-x}Fe_xTiO_3$ (x=0-0.2) с использованием в качестве первой стадии синтеза сжигание гелей нами использованы нитраты $Co(NO_3)_2 \cdot 6H_2O$, $Ni(NO_3)_2 \cdot 6H_2O$, оксиды Fe_2O_3 и TiO_2 (анатаз) и лимонная кислота $C_6H_8O_7$ в качестве топливной добавки. Образовавшуюся после сжигания смесь оксидов $(Co_3O_4,$

Рис. 2. Микрофотографии образцов, полученные на микроскопе Quanta-200: a — образец № 8 состава $Co_{0.9}Fe_{0.1}TiO_3$ ($1200^{\circ}C$, 2 h, воздух), b — образец № 2 состава $CoTiO_3$ ($1200^{\circ}C$, 2 h, вакуум), c — образец № 9 состава $Co_{0.8}Fe_{0.2}TiO_3$ ($180^{\circ}C$, 30 min, воздух; $950^{\circ}C$, 2 h, воздух + $1200^{\circ}C$, 2 h, вакуум).

NiO, Fe₂O₃, TiO₂) перетирали и прессовали в виде таблеток. Синтез титанатов проводили в печи, варьируя температуру обжига от 800 до 1050° C, время от 2 до 8 h, на воздухе или в аргоне.

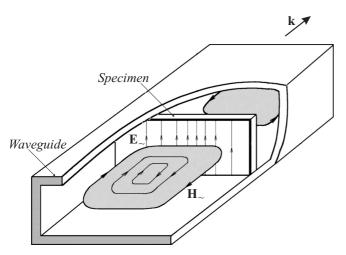
Кристаллические фазы образцов были идентифицированы на основе известных для них значений межплоскостных расстояний $d_{\rm (hkl)}$ и соответствующих интенсивностей линий $I_{\rm (hkl)}$ ренттеновского спектра. Реализация электрических, магнитных, каталитических, сенсорных и других характеристик существенно зависит от размера и формы частиц. В результате твердофазного взаимодействия оксидов металлов монофазные титанаты формируются при температуре $900-1200^{\circ}{\rm C}$ и средние размеры получаемых частиц варьируются от 20 до $50\,\mu{\rm m}$. Использование метода Печини позволило снизить температуру получения титанатов до $900^{\circ}{\rm C}$, причем средний размер получаемых частиц варьируются от 100 до $150\,{\rm nm}$. Гидротермальная подготовка реагентов позволяет сфор-

мировать монофазные титанаты при $600^{\circ}\mathrm{C}$ с размером частиц менее $100\,\mathrm{nm}$.

В табл. 1 приведены сведения об исходных реагентах, использованных для приготовления образцов, исследованных в этой работе. Приведены также данные о режимах синтеза и фазовом составе полученных образцов.

По результатам синтеза титанатов можно сделать следующие выводы.

- 1. Использование технологических стадий: золь-гель, гидротермальной обработки, сжигания гелей позволяет получить нанопрекурсоры и субмикроразмерные частицы в поликристаллических продуктах (в ряде случаев с частицами до 100 nm).
- 2. Многочасовой обжиг при температурах выше 1100° С приводит к получению микроструктуры с частицами размером $20-50\,\mu{\rm m}$.
- 3. Использование стадии обжига в вакууме позволяет регулировать валентное состояние железа (+2


или +3) и соответственно магнитные свойства изучаемых образцов.

Для исследования микроструктуры образцов использована сканирующая электронная микроскопия (с использованием микроскопов Vega3 Tescan и Quanta-200). Электронно-микроскопические изображения некоторых продуктов приведены на рис. 1 и 2.

2. Методика микроволновых измерений и определение диэлектрической проницаемости

Микроволновые исследования выполнены в частотном интервале от 12 до 38 GHz при комнатной температуре по методике, описанной в [9,14]. Схема эксперимента показана на рис. 3. Образец помещается в поперечное сечение стандартного прямоугольного волновода, работающего на моде H_{10} . Размеры волновода определяются диапазоном рабочих частот: $16 \times 8 \, \text{mm}$ на интервал $12-17\,\text{GHz}$, $11.5\times5\,\text{мм}$ на интервал $17-26\,\text{GHz}$, $7.2 \times 3.4 \,\mathrm{mm}$ на интервал $27{-}38 \,\mathrm{GHz}$. Волновой вектор электромагнитной волны к направлен перпендикулярно плоскости образца. Вектор микроволнового электрического поля лежит в плоскости образца. Микроволновое магнитное поле расположено в горизонтальной плоскости, параллельно большей стороне волновода. Измерения выполнялись с помощью измерителей коэффициента стоячей волны и отражения. Измерялись модули коэффициента прохождения D и коэффициента отражения Rи их частотные зависимости. Измерения коэффициентов использованы для определения комплексной диэлектрической проницаемости $\dot{\varepsilon} = \varepsilon' - i\varepsilon''$.

Рассмотрим прохождение и отражение волн от диэлектрического образца, помещенного в прямоугольный волновод. Толщина образца, т.е. его размер вдоль оси волновода, равен d. Поперечные размеры волновода aи b, причем a — это большая стенка волновода. Образец полностью занимает поперечное сечение волновода

Рис. 3. Схема расположения образца при выполнении микроволновых измерений.

(область 2), как показано на рис. 3. Область, заполненная образцом, имеет волновое сопротивление Z_2 , а незаполненные участки волновода — Z_1 . Введем для области 2 комплексную постоянную распространения $\Gamma_2 = \Gamma_2' - i\Gamma_2''$, а для незаполненных областей — вещественную постоянную Γ_1 . Волновое число k определяется по формуле

$$k = \frac{\omega}{c} \sqrt{\dot{\varepsilon}\dot{\mu}},\tag{1}$$

где $\dot{\varepsilon}=\varepsilon'-i\varepsilon''$ и $\dot{\mu}=\mu'-i\mu''$, c — скорость распространения электромагнитных волн в вакууме. Компоненты волнового числа Γ задаются следующими соотношениями:

$$\Gamma' = \sqrt{\frac{1}{2} \left(\sqrt{\mathcal{R}^4 + \mathcal{J}^4} + \mathcal{R}^2 \right)},$$

$$\Gamma'' = \sqrt{\frac{1}{2} \left(\sqrt{\mathcal{R}^4 + \mathcal{J}^4} - \mathcal{R}^2 \right)},$$
(2)

где

$$\mathcal{R} = \sqrt{\left(\frac{\omega}{c}\right)^2 (\varepsilon' \mu' - \varepsilon'' \mu'') - \chi_{10}^2},$$

$$\mathcal{J} = \frac{\omega}{c} \sqrt{(\varepsilon'' \mu' + \varepsilon' \mu'')}.$$
(3)

В формуле (3) χ_{10} — поперечное волновое число волновода для распространяющейся моды H_{10} , $\chi_{10}=\frac{\pi}{a}$. Мы полагаем, что область 2 волновода заполнена немагнитным несовершенным диэлектриком, $\varepsilon'=\varepsilon$, $\varepsilon''=\frac{\sigma}{\omega\varepsilon_0}$, $\mu'\approx 1$, $\mu''\approx 0$. Формулы (3) можно переписать в следующем виде:

$$\mathcal{R}_2 = \sqrt{\left(\frac{\omega}{c}\right)^2 \varepsilon - \left(\frac{\pi}{a}\right)^2}, \, \mathcal{J}_2 = \frac{\omega}{c} \sqrt{\varepsilon''}.$$
 (4)

Из выражений (2)—(4) получим, что

$$\Gamma_{2} = \Gamma_{2}' - i\Gamma_{2}'' = \sqrt{\frac{1}{2} \left(\sqrt{\mathcal{R}_{2}^{4} + \mathcal{R}_{2}^{4}} + \mathcal{R}_{2}^{2} \right)} - i\sqrt{\frac{1}{2} \left(\sqrt{\mathcal{R}_{2}^{4} + \mathcal{R}_{2}^{4}} - \mathcal{R}_{2}^{2} \right)}.$$
 (5)

Волновое сопротивление области 2, заполненной диэлектриком, равно

$$Z_2 = \frac{\omega\mu_0}{\Gamma_2} = \frac{\omega\mu_0}{\Gamma_2' - i\Gamma_2''}.$$
 (6)

Для незаполненных участков волновода, где $\varepsilon'=1$, $\varepsilon''=0$, $\mu'=1$, $\mu''=0$, можно записать соотношения

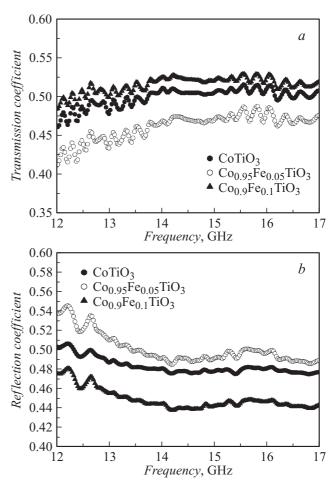
$$\Gamma_1 = \frac{\omega}{c} \sqrt{1 - \left(\frac{\pi c}{\omega a}\right)^2}, \ Z_1 = \frac{\omega \mu_0}{\Gamma_1} = \frac{120\pi}{\sqrt{1 - \left(\frac{\pi c}{\omega a}\right)^2}}.$$
 (7)

Комплексные коэффициенты прохождения D и отражения R для волновода с помещенным внутрь образцом выражаются следующими формулами из [15]:

$$D = \frac{1}{\cos\Gamma_2 d + \frac{1}{2}i(\xi + \frac{1}{\xi})\sin\Gamma_2 d}$$
 (8)

$$R = \frac{\frac{1}{2}i(\xi - \frac{1}{\xi})\sin\Gamma_2 d}{\cos\Gamma_2 d + \frac{1}{2}i(\xi + \frac{1}{\xi})\sin\Gamma_2 d},$$
 (9)

где $\xi = Z_2/Z_1$.


Теперь рассмотрим процедуру восстановления эффективной проводимости пленки по частотным спектрам прохождения. Обозначим экспериментально измеренный коэффициента прохождения $= D^*(\omega, \varepsilon', \varepsilon'')|.$ B общем случае коэффициент прохождения это частотно-зависимая величина, которая неизвестной комплексной зависит OT диэлектрической проницаемости $\varepsilon = \varepsilon' - i\varepsilon''$. Подобное обозначение введем для модуля коэффициента отражения $|R = R^*(\omega, \varepsilon', \varepsilon'')|$. Запишем разность между модулями экспериментального и расчетного коэффици- $\Delta_D(\omega, \varepsilon', \varepsilon'') = |D(\omega, \varepsilon', \varepsilon'')|$ ентов прохождения $-|D^*(\omega, \varepsilon', \varepsilon'')|$ $\Delta_R(\omega, \varepsilon', \varepsilon'') =$ И отражения $= |R(\omega, \varepsilon', \varepsilon'')| - |R^*(\omega, \varepsilon', \varepsilon'')|.$ Для нахождения неизвестной величины $\varepsilon = \varepsilon' - i \varepsilon''$ используем метод наименьших квадратов, чтобы минимизировать величину $(\Delta(\varepsilon'^*,\varepsilon''^*))^2$:

$$\left(\Delta(\varepsilon'^*, \varepsilon''^*) \right)^2 = \min_{\varepsilon' = \varepsilon'^*} \min_{\varepsilon'' = \varepsilon''^*} \left[\left(\Delta_R(\omega, \varepsilon', \varepsilon'') \right)^2 + \left(\Delta_T(\omega, \varepsilon', \varepsilon'') \right)^2 \right].$$
 (10)

3. Результаты микроволновых измерений и их обсуждение

Частотные зависимости коэффициентов прохождения и отражения образцов состава $Co_x Fe_{1-x} TiO_3$ (x = 0.00, 0.05, 0.10) были измерены в частотном интервале 12-17 GHz. Толщина образцов составляла 2 mm. Результаты измерений показаны на рис. 4. Из рис. 4, а видно, что частотные зависимости коэффициентов прохождения для образцов разных составов по характеру подобны друг другу, но смещены по оси У. На зависимостях присутствуют осцилляционные вариации, вызванные ошибками измерения из-за неидеального согласования микроволнового тракта. Хорошо известно, и формулы (8), (9) это подтверждают, что характер частотных зависимостей коэффициентов определяется не только частотной зависимостью диэлектрической проницаемости, но и соотношением толщины образца и длины волны в диэлектрике. Поэтому объективная информация о материальных константах материала может быть получена из сопоставления измеренных частотных зависимостей коэффициентов и рассчитанных зависимостей по формулам (8) и (9).

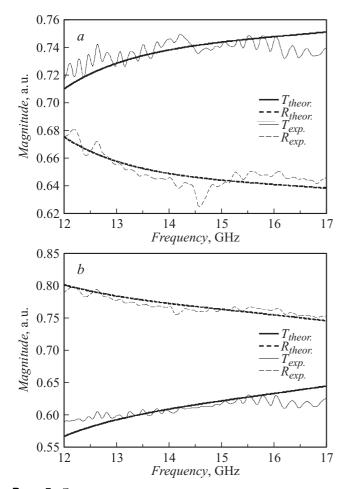
На рис. 5, a показаны частотные зависимости измеренных и рассчитанных коэффициентов прохождения и отражения для образца № 11 керамики состава MnTiO₃. Рассчитанные зависимости построены для значения диэлектрической проницаемости $\varepsilon' = 3.70$, $\varepsilon'' = 0.10$, для

Рис. 4. Частотные зависимости коэффициентов прохождения (a) и отражения (b) для титанатов состава $\mathrm{Co}_x\mathrm{Fe}_{1-x}\mathrm{TiO}_3$. Толщина образцов 3 mm.

которых различие экспериментальных и рассчитанных зависимостей в смысле минимизации величины (10) оказалось наименьшим. Различие экспериментальных и рассчитанных зависимостей невелико и не превышает 0.02-0.03. Это означает, в частности, что в рассматриваемом частотном интервале изменение диэлектрической проницаемости также невелико. Подобные результаты показаны на рис. 5, b для N 18 состава $Mg_{0.1}Ni_{0.8}Fe_{0.1}TiO_3$. Для этого образца наилучшее совпадение экспериментальных и измеренных зависимостей получилось при $\varepsilon'=5.3$, $\varepsilon''=0.19$. В табл. 2 приведены средние значения действительной и мнимой частей диэлектрической проницаемости исследованных образцов в трех частотных диапазонах.

Рассмотрим результаты измерений, в которых существенным образом сказалась частотная зависимость коэффициентов. Для примера на рис. 6 показаны частотные зависимости коэффициентов прохождения и отражения для образцов № 10 состава $Mg_{0.1}Fe_{0.1}Co_{0.8}TiO_3$ и № 2 состава $CoTiO_3$. Для первого из этих образцов приняты значения диэлектрической проницаемости $\varepsilon'=5.1$, $\varepsilon''=0.27$, а для второго — $\varepsilon'=4.2$, $\varepsilon''=0.23$. Для обоих образцов на зависимостях присутствуют резкие

Номер	Состав	12-17 GHz		17-26 GHz		26-38 GHz	
образца	Cocraв	arepsilon'	ε''	arepsilon'	ε''	arepsilon'	ε''
1	CoTiO ₃	4.11	0.07				
2	CoTiO ₃	4.21	0.23	5.3	0.45	3.87	0.23
3	CoTiO ₃			3.11	0.05	2.98	0.1
4	Co _{0.95} Fe _{0.05} TiO ₃	4.45	0.15				
5	$Co_{0.95}Fe_{0.05}TiO_3$			3.6	0.12	3.11	0.22
6	$Co_{0.9}Fe_{0.1}TiO_3$			3.2	0.06	2.87	0.3
7	$Co_{0.9}Fe_{0.1}TiO_3$	3.9	0.12				
8	$Co_{0.9}Fe_{0.1}TiO_3$						
9	$Co_{0.8}Fe_{0.2}TiO_3$	2.62	0.05	2.62	0.08	3.9	0.09
10	$Mg_{0.1}Co_{0.8}Fe_{0.1}TiO_3$	5.09	0.27	4.91	0.17	3.69	0.15
11	MnTiO ₃	3.7	0.1				
12	MnTiO ₃			3.64	0.05	3.1	0.14
13	$Mn_{0.9}Fe_{0.1}TiO_3$	3.63	0.11				
14	$Mn_{0.95}Fe_{0.05}TiO_3$			3.85	0.18	3.08	0.08
15	$Mn_{0.9}Fe_{0.1}TiO_3$			3.72	0.09	3.16	0.18
16	$Ni_{0.9}Fe_{0.1}TiO_3$	6.91	0.23			3.68	0.04
17	$Ni_{0.9}Fe_{0.1}TiO_3$	6.26	0.3	5.16	0.34		
18	$Mg_{0.1}Ni_{0.8}Fe_{0.1}TiO_3$	5.31	0.15			3.33	0.14


Таблица 2. Диэлектрическая проницаемость образцов

изменения резонансного типа. Подобная особенность коэффициентов наблюдалась в работе [10] для керамического образца состава $\mathrm{Co_{0.9}Fe_{0.1}TiO_3}$. Рассмотрим более подробно наблюдающуюся аномалию диэлектрических свойств.

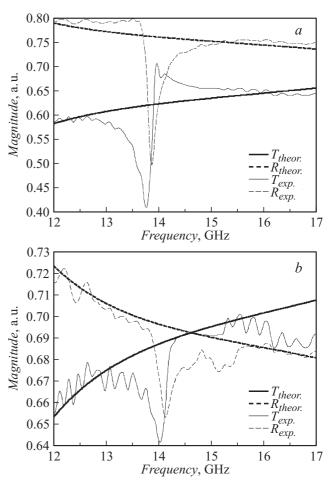
Проведением экспериментов было установлено, что приложение внешнего магнитного поля до 12 kOe не оказывает влияния на коэффициенты прохождения и отражения, так что такие факторы как магнитное упорядочение и магнитные резонансы не могут быть причиной наблюдаемых аномалий. Совместное измерение коэффициентов прохождения и отражения дает возможность определить долю мощности электромагнитной волны, поглощенной в образце: $\Delta = 1 - (|D| + |R|)$. Разумеется, величина диссипации Δ связана с мнимой частью диэлектрической проницаемости ε'' , но не всегда связь между этими величинами легко установить из-за влияния на Δ интерференции волны в образце. Частотные зависимости коэффициента отражения и диссипации для образца № 10 состава $Mg_{0.1}Fe_{0.1}Co_{0.8}TiO_3$, измеренные в широком частотном диапазоне от 12 до 38 GHz, показаны на рис. 7, a. Вблизи частот 13.8, 18.4 и 31.7 GHz наблюдаются аномалии (минимумы) коэффициента отражения. Из рис. 7, а видно, что почти на эти же частоты приходятся резкие максимумы диссипации Δ. На экспериментальных зависимостях видны разрывы вблизи частот 17 и 26 GHz. Присутствие этих разрывов связано с тем обстоятельством, что измерения в трех частотных интервалах (12–17; 17–26; 26–38 GHz) были проведены в волноводах разного сечения, о чем говорилось выше в разд. 2. Для пояснения на рис. 7, в показаны рассчитанные зависимости коэффициентов прохождения и отражения, а также диссипации для образца толщиной 2 mm с диэлектрической проницаемостью $\varepsilon'=3.2;\ \varepsilon''=0.16$

при помещении образца в такие же волноводы. Из рис. 7, b видно, что на зависимостях коэффициентов прохождения есть разрывы, наличие которых обусловлено тем, что величины отношения волновых сопротивлений $\xi = Z_2/Z_1$ на граничной частоте диапазона (17 и 26 GHz) имеют разное значение в волноводах разного размера.

Для установления природы максимумов диссипации весьма существенно следующее обстоятельство. Частоты максимумов в одном и том же образце связаны простым соотношением кратности частот. Например, для образца № 10 на рис. 7, а зафиксированы частоты максимумов 13.8, 18.4 и 31.7 GHz. Нетрудно установить, что эти частоты приблизительно соответствуют второй, третьей и пятой гармоникам частоты $f_0 = 6.5\,\mathrm{GHz}$. Для образца № 2 состава СоТіО₃ зафиксированы следующие частоты максимумов: 14.2 и 33.6 GHz, отношение этих частот близко к 2. Для образца № 8 состава Со_{0.9}Fe_{0.1}TiO₃ максимумы обнаружены на частотах 16.0 и 31.0 GHz. Отношение этих частот тоже близко к двум. Вполне возможно, что на более низких частотах, например, на частоте f_0 , тоже есть максимумы диссипации. Однако они не могут быть обнаружены в наших экспериментах, поскольку электромагнитные волны, соответствующие более низкому диапазону частот, не распространяются в волноводах с использованными нами размерами поперечного сечения. Кратность частот максимумов может указывать на одно из двух обстоятельств. Первое — это важность нелинейности в процессе распространения волн в керамических образцах. Однако представляется маловероятным, что нелинейность наблюдается в условиях электромагнитных волн малой амплитуды. Мощность падающей на образец волны в наших экспериментах не превышает 1-2 mW. Поэтому более вероятным представляется второе предположение,

Рис. 5. Экспериментальные и рассчитанные частотные зависимости коэффициентов прохождения и отражения для образцов № 11 состава $MnTiO_3$ (a) и № 18 состава $Mg_{0.1}Ni_{0.8}Fe_{0.1}TiO_3$ (b).

которое состоит в том, что осуществляется возбуждение стоячих волн. Анализ частот максимумов и скоростей волн в волноводе показал, в частности, что аномалии на частоте 13.8 GHz в образце № 10 соответствует условие $b=3\lambda/2$, где λ — длина волны в волноводе, рассчитанная для волновода, заполненного диэлектриком. Частоте 18.4 GHz соответствует условие $b=\lambda$, а частоте 31.4 GHz приблизительно соответствует условие $b=\lambda/2$. Для образца № 2 аномалии на частоте 14.2 GHz соответствует условие $b=3\lambda/2$. Таким образом, можно считать установленным, что аномалии диссипации соответствуют установлению стоячих волн в образце вдоль размера b.


Заметим, что помимо уже отмеченных максимумы диссипации наблюдались еще и в других образцах. В образце № 6 состава $Co_{0.9}Fe_{0.1}TiO_3$ наблюдался один максимум на частоте 27.8 GHz, а в образце № 14 состава $Mn_{0.95}Fe_{0.05}TiO_3$ — на частоте 22.4 GHz.

Продолжим обсуждение условий наблюдения максимумов диссипации. Рассмотрим влияние химического состава керамических образцов на факт присутствия или отсутствия пиков диссипации. Образцы N_2 2, N_2 1

и № 3 имеют одинаковый химический и фазовый состав СоТіО3. Однако в образце № 2 есть пики диссипации, а в образцах № 1 и № 3 пики не обнаружены. Это может быть связано с более высокой дисперсностью первого образца, которая сохраняется при более высокой (на 150° C) температуре обжига в вакууме. При изоморфном замещении части атомов кобальта на атомы железа пики диссипации энергии зафиксированы в образцах с более высокой степенью окристаллизованности: $N_{0} = 8 (Co_{0.9}Fe_{0.1}TiO_{3}), N_{0} = 5 (Co_{0.95}Fe_{0.05}TiO_{3}), N_{0} = 6$ $(Co_{0.9}Fe_{0.1}TiO_3)$, но не обнаружены в образце № 7 $(Co_{0.9}Fe_{0.1}TiO_3)$, дисперсность которого существенно выше. Из приведенных данных видно, что химический состав основной кристаллической фазы не может считаться однозначным признаком наличия или отсутствия пиков.

Сравним теперь образцы № 8, где есть пики диссипации, и № 7, где их нет. Химический состав образцов одинаков — $Co_{0.9}Fe_{0.1}TiO_3$. Согласно данным о технологии приготовления, приведенным в табл. 1, образец № 8 приготовлен при температуре 1200° C, а образец № 7 приготовлен при 1050° C.

Рис. 1 дает возможность сравнить структуру и дисперсность частиц в образцах. На рис. 1, a показана

Рис. 6. Рассчитанные и измеренные частотные зависимости коэффициентов прохождения и отражения для образцов № 10 состава $Mg_{0.1}Fe_{0.1}Co_{0.8}TiO_3$ (*a*) и № 2 состава $CoTiO_3$ (*b*).

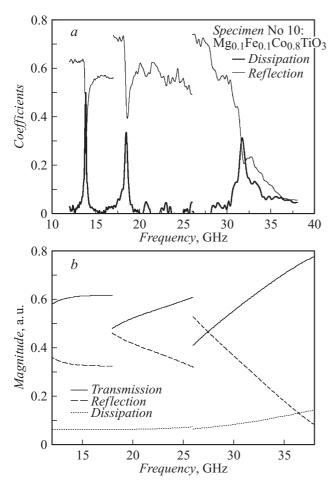


Рис. 7. Частотные зависимости коэффициента отражения и доли поглощенной мощности для образца № 10 состава $Mg_{0.1}Fe_{0.1}Co_{0.8}TiO_3$, измеренные в широком частотном диапазоне (a) и частотные зависимости коэффициентов прохождения, отражения и доли поглощенной мощности, рассчитанные для образца толщиной 2 mm с диэлектрической проницаемостью $\varepsilon'=3.2$, $\varepsilon''=0.16$ (b).

микрофотография образца № 12 состава MnTiO₃, синтезированного при температуре 1150°C, на воздухе в течение 5 h. Из рисунка видно, что в образце дисперсность частиц не высокая (присутствуют частицы размером более $10 \,\mu\text{m}$). Микроволновые измерения показывают, что около 23 GHz присутствует максимум диссипации. Структура образца № 5 состава Co_{0.95}Fe_{0.05}TiO₃, синтезированного при температуре 1050°C на воздухе в течение 7 h, показана на рис. 1, b. Микроволновые измерения показали наличие пиков поглощения около 38 GHz. В структуре этого образца присутствуют частицы в $10\,\mu\mathrm{m}$ и более. На рис. 1, c, d показана структура образцов № 4 состава Co_{0.95}Fe_{0.05}TiO₃ и № 13 состава $Mn_{0.95}Fe_{0.05}TiO_3$, для которых микроволновые измерения показали отсутствие пиков диссипации. Из рис. 1 видно, что в этих образцах частицы менее $10\,\mu\mathrm{m}$. На основании проведенного анализа можно сделать следующее заключение: пики есть в тех образцах, где есть частицы размером $10\,\mu{\rm m}$ и больше.

Есть тенденция: пики существуют в образцах, полученных при более высоких температурах, как правило, выше 1050°C. Сделанное заключение подтверждает и анализ структуры образцов, показанной на рис. 2. Возможно, возбуждение стоячих волн осуществляется и в других образцах, но только в образцах с размером частиц более $10\,\mu \mathrm{m}$ амплитуда этих волн достаточна для того, чтобы привести к заметным пикам диссипации. Другим возможным объяснением пиков диссипации на кратных частотах является наличие в образцах заряженных комплексов, которые могут возникать в материалах, содержащих ионы переменной валентности, причем концентрация заряженных комплексов растет с увеличением температуры отжига образцов. Наличие заряженных комплексов может являться причиной аномалии диэлектрической проницаемости вещества на частоте f_0 основного резонанса, а аномалии на кратных частотах возникают из-за нелинейности. Такое объяснение аномалий на кратных частотах хотя и возможно, но представляется маловероятным из-за малой мощности падающей на образец электромагнитной волны. Наиболее вероятной причиной аномалий диссипации является возбуждение высших типов волн в волноводе вблизи неоднородности — образца.

Рассмотрим теперь другие особенности частотных зависимостей коэффициентов прохождения и отражения. Образцы № 17, № 16 оба состава Ni_{0.9}Fe_{0.1}TiO₃, № 18 состава Mg_{0.1}Ni_{0.8}Fe_{0.1}TiO₃ и № 9 состава Co_{0.9}Fe_{0.2}TiO₃ в интервале частот 12-17 GHz имеют высокие значения коэффициента отражения ~ 0.8. В интервале частот 17–16 GHz для этих образцов наблюдается небольшое снижение коэффициента отражения с увеличением частоты, а в интервале 26-38 GHz присутствует резкое уменьшение коэффициента отражения до значений 0.2-0.25 на частоте 38 GHz. Оценки показывают, что это снижение обусловлено приближением к выполнению условия "неотражающей" четвертьволновой пластины, толщина которой равна четверти длины волны в волноводе. Это условие выполняется еще и для нескольких других образцов, например, № 2 состава СоТіО3, № 12 состава MnTiO₃, № 15 состава Mn_{0.9}Fe_{0.1}TiO₃, приводя к уменьшению коэффициента отражения до 0.25-0.3 на частоте 38 GHz. Эти свойства керамических материалов могут найти практическое применение для разработки фильтров и неотражающих окон в волноводном тракте.

Часть образцов не имеет особенностей коэффициентов, и поглощение в них мало. Это образцы систем $Co_xFe_{1-x}TiO_3$ и $Mn_xFe_{1-x}TiO_3$: № 4 состава $Co_{0.95}Fe_{0.05}TiO_3$, № 1 состава $CoTiO_3$, № 7 состава $Co_{0.90}Fe_{0.10}TiO_3$, № 3 состава $CoTiO_3$, № 11 состава $Mn_{0.95}Fe_{0.05}TiO_3$, № 13 состава $Mn_{0.95}Fe_{0.05}TiO_3$. Мнимая часть диэлектрической проницаемости образца № 1 в интервале частот $12-17\,\text{GHz}$ равна 0.07, а образца № 11 равна 0.1. Все они синтезированы на воздухе при 1050°C в течение 7 или 4 h. Обобщая полученные данные, показано, что образцы, синтезированные при температуре 1050°C и ниже, не имеют максимумов диссипации. Эти керамические материалы с малым

поглощением волн верхнего сантиметрового и миллиметрового диапазонов длин волн также могут найти практическое применение.

Заключение

В работе изучены диэлектрические свойства титанатов никеля, кобальта, марганца и их изоморфно замещенных твердых растворов с железом и магнием $\mathrm{Me}_{1-x-y}\mathrm{Mg}_y\mathrm{Fe}_x\mathrm{TiO}_3$ (Me = Ni, Co, Mn, Mg; x+y=0-0.2). Разработан метод твердофазного синтеза титанатов, исследованы структура и фазовый состав образцов.

Микроволновые исследования диэлектрической проницаемости выполнены в частотном интервале от 12 до 38 GHz. Получены значения действительной и мнимой частей диэлектрической проницаемости. На частотных зависимостях коэффициентов прохождения и отражения для нескольких титанатов присутствуют резкие изменения резонансного типа. Установлено, что резкие максимумы диссипации энергии электромагнитных волн в образце соответствуют возбуждению стоячих волн вдоль меньшего размера волновода. Обнаружена тенденция: пики есть в тех образцах, где есть частицы размером $10\,\mu{\rm m}$ и больше. Частицы такого размера образуются в образцах, полученных при температурах выше $1050^{\circ}{\rm C}$.

Часть образцов не имеет особенностей коэффициентов, и поглощение в них мало, например, это образцы составов $Co_{0.95}Fe_{0.05}TiO_3$, $Co_{0.90}Fe_{0.10}TiO_3$, $CoTiO_3$, $Mn_{0.95}Fe_{0.05}TiO_3$, $Mn_{0.95}Fe_{0.05}TiO_3$. Мнимая часть диэлектрической проницаемости в этих образцах мала. Эти керамические материалы с малым поглощением волн могут найти практическое применение.

Работа выполнена в рамках государственного задания ФАНО России (тема "Спин", № 01201463330) при частичной поддержке грантов НШ-1540.2014.2 и № 14.Z50.31.0025, РФФИ 13-03-00132. Электронномикроскопические и рентгенофазовые исследования выполнены в Институте химии Коми НЦ УрО РАН, а также в Центре коллективного пользования ИФМ УрО РАН.

Список литературы

- [1] *Agui A., Mizumaki M. //* J. Electron. Spectr. and Rel. Phenomena. 2011. Vol. 184. N 8–10. P. 463–467.
- [2] Dong W., Li B., Li Y., Wang X., An L., Li C., Chen B., Wang G., Shi Z. // J. Phys. Chem. C. 2011. Vol. 115. N 10. P. 3918–3925.
- [3] Kim E.S., Jeon C.J. // J. Eur. Ceram. Soc. 2010. Vol. 30. N 2. P. 341–346.
- [4] Kim E.S., Jeon C.J. // J. Adv. Dielect. 2011. Vol. 1. N 1. P. 127–134.
- Kinjo R., Kawayama I., Murakami H., Tonouchi M. //
 J. Infrared Milli. Terahertz Waves. 2012. Vol. 33. N 1. P. 67-73.

- [6] Суржиков А.П., Гынгазов С.А., Лысенко Е.Н., Франгульян Т.С., Малышев А.В. // ЖТФ. 2015. Т. 85. Вып. 6. С. 74–76.
- [7] Li L., Ding X., Liao Q. // Ceram. Int. 2012. Vol. 38. N 3. P. 1937–1941.
- [8] Prabhakaran S.A., Mailadil T.S. // J. Am. Ceram. Soc. 2006. Vol. 89. N 7. P. 2114–2117.
- [9] Ринкевич А.Б., Перов Д.В., Рябков Ю.И., Секушин Н.А. // Радиотехн. и электрон. 2014. Т. 59. № 4. С. 346–352.
- [10] Rinkevich A.B., Kuznetsov E.A., Perov D.V., Ryabkov Yu.I., Samoylovich M.I., Klescheva S.M. // J. Infrared Milli. Terahertz Waves. 2014. Vol. 35. N 10. P. 860–870.
- [11] Rinkevich A.B., Kuznetsov E.A., Perov D.V., Bovtun V., Kempa M., Nuzhnyy D., Savinov M., Samoylovich M.I., Klescheva S.M., Ryabkov Yu.I., Tsvetkova E.V. // IEEE Trans. Nanotech. 2014. Vol. 14. N 3. P. 585–592.
- [12] Kalmykov Y.P., Coffey W.T., Crothers D.S.F., Titov S.V. // Phys. Rev. E. 2004. Vol. 70. N 4. P. 041 103.
- [13] Кецко В.А., Береснев Э.Н., Копьёва М.А., Елесина Л.В., Баранчиков А.Е., Стогний А.И., Труханов А.В., Кузнецов Н.Т. // Журн. неорганич. хим. 2010. Т. 55. № 3. С. 476—479.
- [14] Rinkevich A.B., Romashev L.N., Ustinov V.V., Kuznetsov E.A. // JMMM. 2003. Vol. 254–255. P. 603–607.
- [15] Бреховских Л.М., Годин О.А. Акустика слоистых сред. М.: Наука, 1989. 416 с.