01

Верификация стандартных и модифицированных с учетом кривизны линий тока MSST и оценка приемлемости комбинированных по Ментеру граничных условий при расчете ультранизкого профильного сопротивления оптимальной компоновки цилиндра с соосным диском

© С.А. Исаев, 1,2 П.А. Баранов, 2 А.Г. Судаков, 1,2 И.А. Попов 1

420111 Казань, Россия

196210 Санкт-Петербург, Россия

e-mail: isaev3612@yandex.ru

(Поступило в Редакцию 2 сентября 2015 г.)

Обоснована модификация популярной модели переноса сдвиговых напряжений (MSST) для расчета отрывных течений несжимаемой вязкой жидкости, устраняющая нефизическую накачку вихревой вязкости в ядрах крупномасштабных вихрей. Ее верификация с учетом влияния кривизны линий тока на вихревую вязкость с введением обратной линейной функции от турбулентного числа Ричардсона с константой Исаева—Харченко—Усачова, равной 0.02, выполнена на тестовой задаче осесимметричного стационарного обтекания тандема диск-цилиндр с оптимальной компоновкой носовой части, обладающей ультранизким профильным сопротивлением при числе Рейнольдса $5 \cdot 10^5$. Показано, что комбинированные граничные условия Ментера приемлемы при y^+y - стенки, не превышающем 2.

Введение

Прогресс численного моделирования сложных турбулентных течений и теплообмена связывается не только со стремительным развитием вычислительной техники с многоядерными компьютерами и разработкой высокоточных алгоритмов, таких как, например, многоблочные вычислительные технологии [1] в пакетах прикладных программ, но и в немалой степени с совершенствованием моделей турбулентности [2]. Хотя повсеместно вызывают интерес вихреразрешающие методы, базирующиеся на модели крупных вихрей и прямом численном моделировании, тем не менее сохраняет актуальность развитие традиционного прандлевского подхода к интерпретации турбулентных течений на основе решения осредненных по Рейнольдсу уравнений Навье-Стокса. Для их замыкания предложен ряд моделей различного типа и уровня сложности (алгебраические и дифференциальные, с одним, двумя и многими уравнениями). Несомненно, что первоначальный успех численного моделирования турбулентных течений связан с разработкой двухпараметрической диссипативной модели $k-\varepsilon$ Лаундера—Сполдинга [3] совместно с расчетной конечно-объемной технологией. В 70-80-е годы прошлого века семейство моделей $k-\varepsilon$ абсолютно доминировало в расчетах многомерных турбулентных течений при использовании электронно-вычислительных машин со сравнительно умеренными вычислительными ресурсами.

Однако в 90-е годы появились две модели, которые превзошли знаменитую $k-\varepsilon$ -модель. Это двухпараметрическая зональная модель переноса сдвиговых напряжений (MSST) Ментера [4] образца 1993 г. и модель вихревой вязкости Спаларта-Аллмареса [5] 1992 г. В первоначальной модели MSST вихревая вязкость определялась через модуль завихренности. Однако спустя 10 лет было предложено заменить завихренность тензором скоростей деформации [6], как это было сделано во многих других дифференциальных моделях.

Влияние кривизны линий тока на характеристики турбулентности давно учитывается в полуэмпирических моделях применительно к расчету закрученных и искривленных потоков, а также отрывных течений [1]. Понятно, что сконструированные модели турбулентности в основном пристеночного типа и калибруются по простейшим течениям такого рода, а турбулентные течения в многочисленных приложениях не всегда соответствуют им, т.е. являются более сложными, а значит, требующими коррекции исходных моделей. Одной из первых работ по модификации $k-\varepsilon$ -модели для искривленных струй стала работа Роди и Лешцинера [7], в которой выведена формула для расчета вихревой вязкости с корректирующей добавкой в виде $f_c = 1/(1 + C_c R i_t)$, где полуэмпирическая константа $C_c = 0.57$, а Ri_t — турбулентное число Ричардсона. Также наложено ограничение на произведение $f_c C_\mu$: $0.02 < f_c C_\mu < 0.15$ (в стандартной $k-\varepsilon$ -модели полуэмпирическая константа в выражении

¹ Казанский национальный исследовательский технический университет им А.Н. Туполева — Казанский авиационный институт,

 $^{^{2}}$ Санкт-Петербургский государственный университет гражданской авиации,

для вихревой вязкости $C_{\mu}=0.09$). В [8] на многочисленных примерах расчета отрывных течений несжимаемой вязкой жидкости показано, что константа C_c должна быть выбрана равной 0.1 из условия приемлемого согласования экспериментальных данных с численными прогнозами.

Разработка MSST 1993 [4] первоначально не вызывала необходимости в модификациях модели [9], хотя в [10] отмечалось, что можно улучшить прогнозируемые характеристики, учитывая влияние кривизны линий тока. Однако детальные расчеты развитых отрывных течений на основе модифицированной в рамках подхода Роди–Лешцинера–Исаева (РЛИ) MSST 2003 показали, что следует выбрать полуэмпирическую константу C_c равной 0.02 [11,12].

Интересный подход к интерпретации влияния кривизны линий тока и закрутки потока в MSST 2003, следуя Спаларту и Шуру [13], предпринят Смирновым и Ментером (СМ) в [14].

Расчет параметров потока и характеристик турбулентности у стенки стимулировал введение пристеночных функций (ПФ) [2,3] с логарифмическим законом для профиля скорости в сочетании с использованием высокорейнольдсовой версии $k-\varepsilon$ -модели. Переход к низкорейнольдсовым моделям [4,5] ужесточил требование по расположению пристеночного узла расчетной сетки (у+ должен быть порядка 1), но устранил необходимость применения ПФ. Однако Ментер в [15,16] предложил комбинированные граничные условия у стенки, допускающие использование ПФ. Они включены в пакет СГХ [17] и применяются в других пакетах, в частности в использованном в данном исследовании пакете VP2/3 [1,9,12]. Однако приемлемость их для расчета интенсивных отрывных течений вызывает сомнения и нуждается в обосновании.

Как отмечалось в [1], основанные на пересекающихся разномасштабных структурированных сетках многоблочные вычислительные технологии, развитые для расчета несжимаемых течений, были успешно применены для численного моделирования отрывного обтекания затупленных тел и составленных из них тандемных компоновок при сверх- и гиперзвуковых скоростях [18–21]. MSST 2003 с коррекцией РЛИ и константой $C_c = 0.02$ была использована во всех проведенных исследованиях.

В настоящей работе продолжаются комплексные исследования SST-моделей. Последовательно сравниваются стандартные MSST 1993 и 2003 годов, модификации MSST 2003 в рамках подходов РЛИ и СМ. В [22–25] были решены задачи о квадратной каверне с подвижной крышкой и на стенке плоскопараллельного канала, о круговой каверне на стенке узкого прямого и поворотного каналов, о полукруговом профиле при углах атаки, близких к нулю. Здесь решается задача осесимметричного обтекания несжимаемой вязкой жидкостью оптимальной тандемной компоновки диск-цилиндр, обладающая ультранизким профильным сопротивлением $(C_{xp}=0.03)$.

1. Постановка задачи

Как уже отмечалось, модифицированная по РЛИ MSST 2003 успешно применена для расчета турбулентного обтекания тел с передней срывной зоной при сверхзвуковых скоростях набегающего потока, когда в зазоре между выступающим диском и телом образуется мощный тороидальный вихрь. Генерирование крупномасштабного вихря при M>1 сопровождается снижением лобового сопротивления тела с диском, причем оптимальная по волновому сопротивлению компоновка имеет диск диаметра порядка 0.2 и зазор между ним и телом порядка 1.5 (для цилиндра с плоским торцом).

Оптимальная компоновка цилиндра с передним соосным диском при глубоких дозвуковых скоростях набегающего потока (M=0) имеет другие размеры: диаметр диска d = 0.75 и зазор между диском и торцом цилиндра l=0.375 (все линейные размеры берутся в долях диаметра цилиндра D) [26–28]. Характерной особенностью возникающего в передней срывной зоне крупномасштабного вихря является его высокая интенсивность, намного превосходящая интенсивность вихря в донной области и в каверне на стенке канала [22]. Как следствие, на переднем торце цилиндра в прикромочной зоне образуется область сильного разрежения с коэффициентом давления C_p меньше -1. Низкое давление в крупномасштабном вихре является причиной возникновения тянущей силы, действующей на цилиндр и почти полностью компенсирующей осевую силу на выступающий диск. В результате сложения сил профильное сопротивление компоновки оказывается ультранизким, мало отличающимся от нуля и сравнимым с C_{xp} носовой части цилиндра полусферической формы.

Расчеты осесимметричного обтекания оптимальной компоновки диск-цилиндр с помощью конечнообъемного факторизованного алгоритма на шахматных неравномерных сетках с использованием высокорейнольдсовой версии $k-\varepsilon$ -модели турбулентности и логарифмическими пристеночными функциями продемонстрировали замечательное согласие прогнозов с экспериментальными данными Рошко-Кенига и Бобышева-Исаева [8,28-30], а также позволили оценить влияние на профильное сопротивление C_{xp} удлинения цилиндра [31]. Важно отметить, что получено хорошее согласование расчетов и экспериментов по минимальному профильному сопротивлению (порядка 0.02), скорости возвратного течения (она оказывается выше 50% характерной скорости набегающего потока U) и турбулентным характеристикам в передней срывной зоне в зазоре между диском и цилиндром. Следует подчеркнуть, что хорошее согласие прогнозов по разработанной модели с данными измерений силовых нагрузок получено для цилиндра с толстой цилиндрической иглой в несжимаемом потоке [32] и для цилиндра с выступающим диском при дозвуковом обтекании при умеренных числах Маха [33]. При этом важно отметить, что во всех расчетах использовались достаточно грубые сетки с размеров расчетных ячеек в пристеночной зоне порядка $10^{-3}-10^{-2}$ характерного размера задачи — диаметра цилиндра D. U и D далее выбираются в качестве характерных масштабов обезразмеривания.

2. Особенности расчетного алгоритма

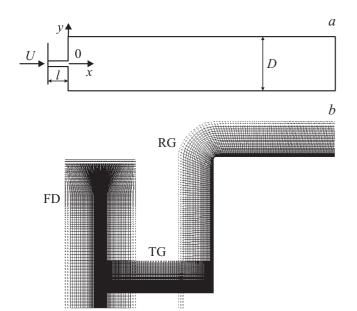
Система исходных уравнений записывается в дельтаформе в декартовых координатах относительно приращений зависимых переменных, включающих декартовые составляющие скорости в рамках общего подхода для структурированных и неструктурированных сеток. Используемый подход имеет ряд существенных особенностей, отличающих его от реализованных в универсальных пакетах теплофизического и гидродинамического профилей (FLUENT, StarCD, CFX, OPEN FOAM) [34].

Многоблочные вычислительные технологии (МВТ) описаны в монографиях [9,12]. Суть их состоит во введении совокупности разномасштабных, вложенных и пересекающихся сеток, согласованных с разрешаемыми структурными элементами физической задачи соответствующих масштабов. Структурированные сетки О- и Н-типов обрабатываются в пакетном режиме с помощью объектно-ориентированной системы программирования.

Методология расчета характеристик течения и теплообмена на базовой и вспомогательных структурированных сетках базируется на неявной факторизованной конечно-объемной процедуре решения осредненных по Рейнольдсу уравнений Навье-Стокса и энергии, в основных чертах разработанной в конце восьмидесятых годов [8]. Ее характерными особенностями являются 1) запись исходных уравнений относительно приращений зависимых переменных, в том числе декартовых составляющих скорости, 2) основанная на концепции расщепления по физическим процессам процедура коррекции давления SIMPLEC [35] с монотонизацией по Рхи-Чоу для заданного центрированного расчетного шаблона (с выбранным из численных экспериментов коэффициентом релаксации, равным 0.1) [8], 3) аппроксимация конвективных членов уравнений в явной части уравнений движения по одномерному аналогу квадратичной противопоточной схемы Леонарда [36] для снижения влияния численной диффузии, характерной для рассматриваемого типа отрывных течений, и с использованием схемы Ван-Лира для уравнений относительно характеристик турбулентности [37], 4) представление конвективных членов уравнений переноса в неявной части по противоточной схеме с односторонними разностями, позволяющее повысить устойчивость вычислительной процедуры, 5) применение метода неполной матричной факторизации (упрощенная версия SIP) для решения разностных уравнений [8]. По перечисленным оригинальным элементам развитая методология отличается от аналогов [34].

Построена оригинальная процедура интерполяции параметров в области стыковки узлов с различной сеточ-

ной структурой, обеспечивающая надлежащую консервативность при решении задач. Разработанный факторизованный алгоритм обобщается на случай многоблочных расчетных сеток в рамках концепции декомпозиции расчетной области и генерации в выделенных существенно разномасштабных подобластях косоугольных сеток Ни О-типа с перекрытием. Перенос значений между пересекающимися сетками в рамках многоблочной сеточной стратегии осуществляется с помощью неконсервативной линейной интерполяции. Численно обоснована эквивалентность предложенного метода и известного метода консервативной интерполяции [9].


Существенным элементом описанной методологии является введение мотонизатора Рхи-Чоу [38] только на этапе расчета дефекта массы ячейки в блоке коррекции давления, причем он не используется при решении уравнений количества движения. В [39] этот подход называется неявным способом использования поправки Рхи-Чоу.

Разработанный алгоритм имеет трудности при расчете нестационарных течений, связанные с переходом от одного временного шага к другому и сопровождающиеся возмущениями поля давления. Это объяснятся тем, что в стандартном подходе [9] вклад мотонизатора Рхи-Чоу в суммарный поток на грани ячейки определяется эмпирически выбранным коэффициентом, никак не зависящим от других схемных параметров, таких как коэффициент релаксации в динамическом уравнении и временной шаг. Особенно явным этот нежелательный эффект становится при использовании малого шага по времени, когда поправка Рхи-Чоу практически отключается. Избежать упомянутых затруднений позволяет сделанное обобщение подхода Рхи-Чоу [39], примененное в настоящей работе.

Важно отметить, что приемлемость подхода для прогнозирования характеристик пространственных периодических тепло- и массообменных процессов продемонстрирована в тестовых расчетах, которые выполнены в содружестве с экспериментаторами из Института механики МГУ, СПбПУ Петра Великого, ИТ СО РАН, Крыловского центра (все Россия), университетов Саутгемптона (Великобритания) и Ростока (Германия), СІКА (Италия) на основе компьютерных симуляторов экспериментальных установок и выполнения условий проведения физических опытов.

3. Анализ результатов

Проведенное исследование базируется на многоблочных вычислительных технологиях для решения осредненных по Рейнольдсу уравнений Навье—Стокса на весьма подробных сетках. Многоблочная сетка около цилиндра диаметром D удлинением 5 с выступающим диском диаметра d=0.75 и зазором l=0.375 включает в себя прежде всего прямоугольную сетку, покрывающую расчетную цилиндрическую область протяжен-

Рис. 1. Схема объекта — цилиндра удлинением 5 с выступающим перед ним на расстоянии l=0.375 диском диаметра d=0.75 (a) и фрагменты многоблочной сетки с наложением структурированных сеток различной топологии вокруг диска (FD), соединительного стержня (TG) и переднего торца цилиндра (RG) (b).

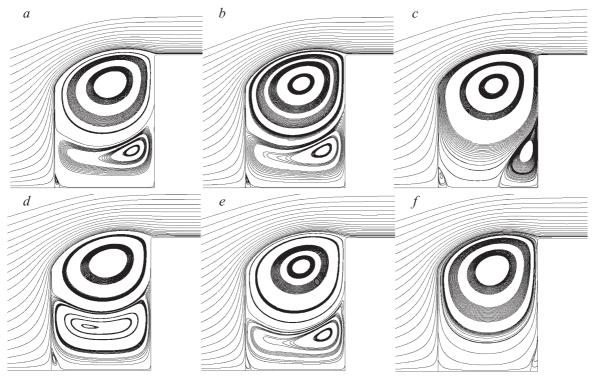
ностью 39.6 и радиусом 30.8 с расстоянием от торца цилиндра до входной границы 10.3. Расчетная сетка содержит 832 × 198 ячеек с минимальным шагами в осевом и радиальном направлениях 0.01. Кромки цилиндра скруглены с радиусом скругления 0.01. Вокруг контура цилиндра строится C-образная сетка RG шириной 0.1, содержащая 854 × 39 ячейки, распределенных со сгущением у стенки и в районах кромок. Минимальный шаг на кромках 0.005. Тонкий диск окружается цилиндрической сеткой FD, покрывающей зону толщиной 0.2 и с радиусом 0.49. Сетка содержит 72 × 116 ячеек. В зазоре между диском и торцом цилиндра над соединительным стержнем диаметра 0.1 располагается цилиндрическая сетка TG, покрывающая зону толщиной 0.1 и содержащая 187×95 ячеек (рис. 1). Пристеночный шаг δ_m в базовом варианте везде задается равным 10^{-4} . В методическом эксперименте δ_m варьируется от 0.00005 до 0.005.

Степень турбулентности набегающего потока выбрана близкой к замеренной в экспериментах [26-28] и равняется 1%, а масштаб турбулентности принимается равным D.

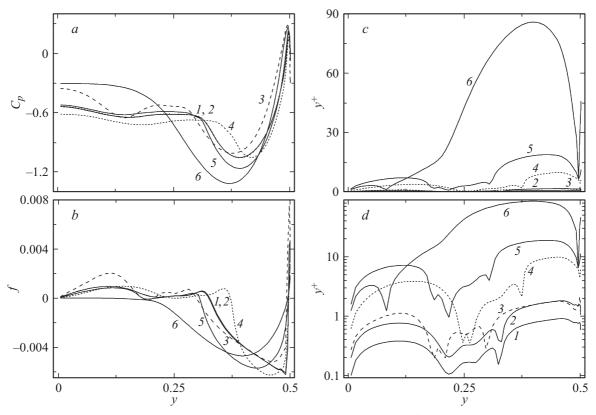
3.1. Анализ влияния пристеночного шага

Методическое исследование влияния величины пристеночного шага на картину течения и распределения локальных параметров потока и характеристик турбулентности в крупномасштабном вихре, а также на распределения параметров на стенке выполняется для конфигурации диск-цилиндр без соединительного

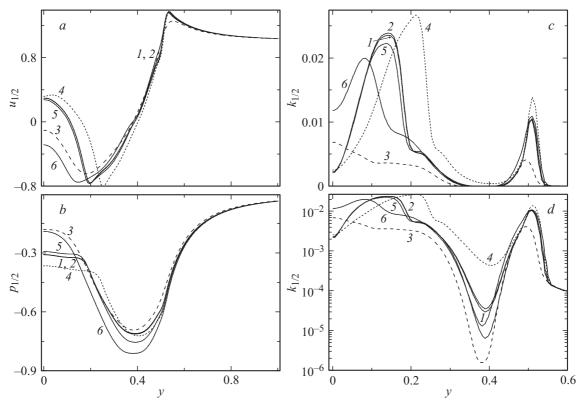
стержня с привлечением модифицированной MSST 2003, следуя подходу РЛИ. Помимо расчетов при различных величинах пристеночного шага δ_m , проведенных по противопоточной схеме Леонарда с квадратичной интерполяцией [36], для базового варианта с $\delta_m = 10^{-4}$ выполнен расчет по противопоточной схеме с односторонними разностями первого порядка аппроксимации [8]. Интересно заметить, что до сих пор эта схема рекомендуется в Руководствах пользователя для расчетов по пакетам прикладных программ в особенности, когда не удается добиться сходимости по схемам более высокого порядка. Некоторые результаты методического исследования представлены на рис. 2–4 и в табл. 1.

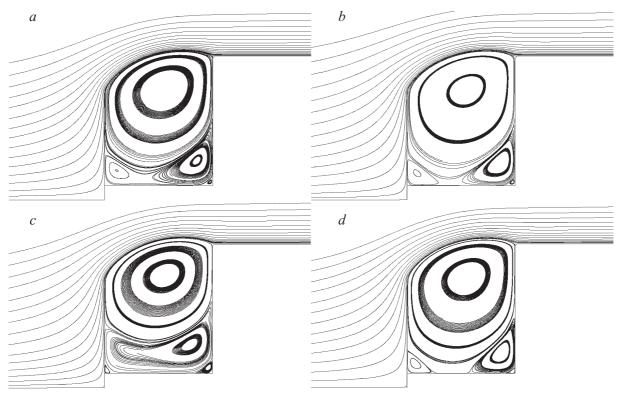

Эволюция рассчитанных по схеме второго порядка аппроксимации картин обтекания носовой части оптимальной компоновки диск-цилиндр на рис. 2 показывает, что при малых величинах пристеночного шага (менее 0.005) в передней срывной зоне образуется двухячеистая вихревая структура. И лишь при $\delta_m=0.005$ она трансформируется в тороидальный вихрь. Расчет по грубой схеме с первым порядком аппроксимации на сетке с $\delta_m=10^{-4}$ также показал образование тороидального вихря, но при этом возникает дополнительный приосевой малоразмерный тороидальный вихрь.

Эволюция поверхностных распределений коэффициента давления C_p и безразмерного (отнесенного к удвоенному скоростному потоку) f на переднем торце (рис. 3,a,b) демонстрирует наличие сеточной сходимости (кривые I и 2 для $\delta_m = 5 \cdot 10^{-5}$ и 10^{-4} практически сливаются). Хотя минимумы для $\delta_m = 10^{-4}$ и $5 \cdot 10^{-4}$ оказываются близкими, но кривые 4 заметно отличаются от кривых 1,2 со смещением их к кромке. С дальнейшим возрастанием δ_m минимумы C_p уменьшаются, а минимумы f подрастают. Решение при $\delta_m = 0.005$ заметно отличается от остальных. Интересно отметить, что профильное сопротивление носовой цилиндра с диском при δ_m свыше 0.001 становится отрицательным. Причины таких изменений характеристик на торце цилиндра объясняются поведением y^+ (рис. 3, c, d), по-


Таблица 1. Влияние величины пристеночного шага на интегральные силовые характеристики цилиндра удлинением 5 с оптимальными размерами выступающего диска (0.75) и зазора между диском и торцом цилиндра (0.375) при числе Рейнольдса $5\cdot 10^5$ (без соединительного стержня)

δ_m	C_x	C_{xp}	C_{xf}	C_{xb}
$5 \cdot 10^{-5}$	0.2189	0.0346	0.0621	0.1114
10^{-4}	0.2178	0.0339	0.0605	0.1123
10^{-4*}	0.3010	0.1218	0.0417	0.1180
$5 \cdot 10^{-4}$	0.2129	0.0238	0.0691	0.1138
10^{-3}	0.1957	-0.0069	0.0757	0.1144
$5 \cdot 10^{-3}$	0.2068	-0.0184	0.0772	0.1288


Примечание. * Расчеты проведены по схеме первого порядка аппроксимации


Рис. 2. Сравнение картин отрывного обтекания цилиндра с выступающим диском без соединительного стержня при различных размерах пристеночного шага h с использованием схем аппроксимации второго (a,b,d-f) и первого (c) порядков. a-h=0.00005, b,c-0.0001, d-0.0005, e-0.001, f-0.005.

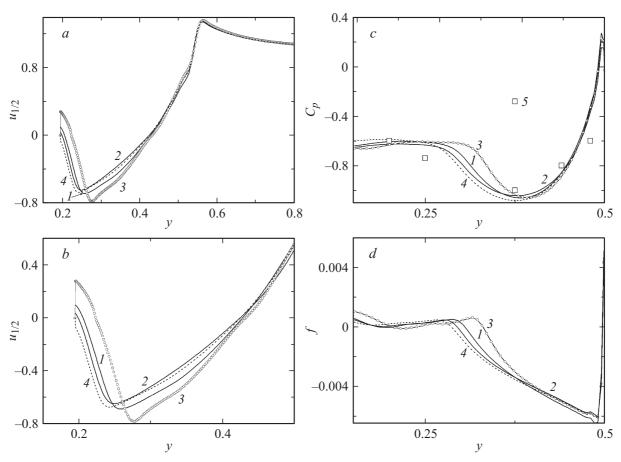
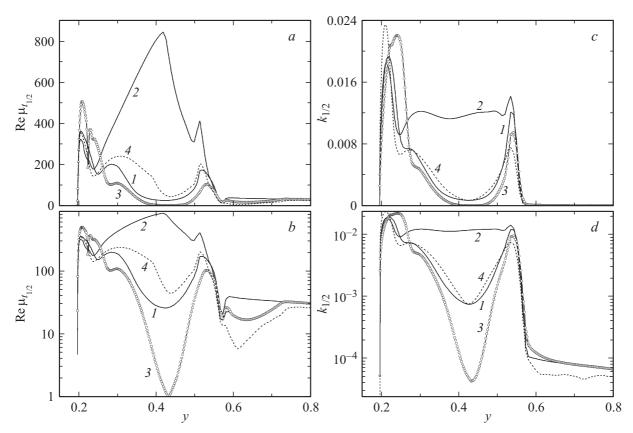

Рис. 3. Сопоставление распределений коэффициента давления (a), трения (b) и y^+ (c,d) по переднему торцу цилиндра в зависимости от h и порядков аппроксимации конвективных членов. $1-h=0.00005,\ 2-0.0001,\ 4-0.0005,\ 5-0.001,\ 6-0.005$ для второго порядка и 3-0.0001 для первого. d- логарифмический масштаб.

Рис. 4. Сравнение распределений осевой составляющей скорости (a), давления (b) и энергии турбулентности (c,d) в срединном сечении передней срывной зоны в зависимости от h и порядков аппроксимации конвективных членов. $1-h=0.00005,\,2-0.0001,\,4-0.0005,\,5-0.001,\,6-0.005$ для второго порядка и 3-0.0001 для первого. d- логарифмический масштаб.

Рис. 5. Сравнение картин отрывного обтекания цилиндра с выступающим диском при наличии соединительного стержня для стандартных версий MSST 1993 г. (a) и 2003 г. (b), а также модификаций MSST 2003 г. с учетом влияния кривизны линий тока в рамках подходов Роди–Лешцинера–Исаева (РЛИ) (c) и Смирнова–Ментера (d).

Рис. 6. Сопоставление распределений осевой скорости (a,b) в срединном сечении передней срывной зоны и коэффициента давления (c) и трения (d) по переднему торцу цилиндра для различных версий MSST. I — MSST 1993 г., 2 — MSST 2003 г., 3 — модификация MSST 2003 г. по Смирнову–Ментеру. b — укрупненный фрагмент.

казанным в линейном и логарифмическом масштабах. При выбранном достаточно высоком числе Рейнольдса $\mathrm{Re}=5\cdot 10^5 y^+$ у стенки быстро возрастает по мере увеличения δ_m . Как известно [2,8,9,12,15–17], при y^+ свыше 10 пристеночный узел попадает в логарифмическую зону изменения скорости. Как следует из рис. 3, максимальные величины y^+ сосредоточены в прикромочной окрестности торца и уже при $\delta_m=5\cdot 10^{-4}$ оказываются порядка 10, что и предопределяет заметную трансформацию C_p и f при переходе от $\delta_m=10^{-4}$. В [4,6] Ментер рекомендовал выбирать пристеночный y^+ порядка 2, что и подтверждается в данном исследовании, т.е. комбинированные граничные условия, предложенные в [15–17] для данного типа отрывного течения оказываются неприемлемыми.


Эволюция профилей осевой составляющей скорости $u_{1/2}$, статического давления $p_{1/2}$ и энергии турбулентности $k_{1/2}$ в срединном сечении передней срывной зоны (рис. 4) с ростом пристеночного шага δ_m подтверждает характер изменения характеристик, обнаруженный на торце цилиндра. Близость кривых 1,2 свидетельствует о достигнутой сеточной сходимости, что позволило рекомендовать для базового варианта

расчетов выбор пристеночного шага равным 10^{-4} . Интересно отметить, что максимальная скорость возвратного течения в передней срывной зоне составляет 80% от скорости набегающего потока.

Минимумы $u_{1/2}$ при растущих δ_m не сильно отличаются, однако их положение приближается к оси симметрии. При $\delta_m=5\cdot 10^{-4}$ (кривые 4) экстремумы скорости и энергии турбулентности в отрывной зоне сдвигаются в сторону кромки от положения экстремумов при $\delta_m=10^{-4}$, а при дальнейшем росте δ_m последовательно перемещаются к оси симметрии. Осевая скорость на оси симметрии при $\delta_m\geq 10^{-3}$ становится положительной. Решение при $\delta_m=5\cdot 10^{-3}$ существенно отличается от других, однако в сдвиговом слое результаты расчетов довольно близки.

Решения с первым порядком точности особенно сильно отличаются от всех остальных по профилям турбулентности, кроме того, $C_{xp}=0.12$ оказывается намного выше экспериментально измеренного (табл. 1).

Представленные в табл. 1 результаты расчета по схемам второго порядка точности интегральных силовых нагрузок, действующих на цилиндр, показывают их относительную близость при $\delta_m \leq 10^{-3}$.

Рис. 7. Сравнение распределений масштабированной вихревой вязкости (a,b) и энергии турбулентности (c,d) в срединном сечении передней срывной зоны для различных версий MSST. I — MSST 1993 г., 2 — MSST 2003 г., 3 — модификация MSST 2003 г. в рамках подхода РЛИ, 4 — модификация MSST 2003 г. по Смирнову–Ментеру. b,d — логарифмический масштаб.

3.2. Сравнение различных версий модели SST

Расчеты проводятся для базового варианта сетки с $\delta_m=10^{-4}$. Диаметр соединительного стержня выбран равным 0.1, как в экспериментах Рошко–Кенига [26,27] и Бобышева–Исаева [28].

Сравнение различных версий MSST на рис. 5–7 и в табл. 2 показывает, что выбор модели турбулентности довольно существенно влияет на результаты. Вихревые структуры в передней срывной зоне в зазоре между диском и торцом цилиндра оказываются различными (рис. 5). Так, для наиболее точной по прогнозам профильного сопротивления ($C_{xp}=0.03$) MSST 2003 с коррекцией по РЛИ (рис. 5, c) наблюдается не один, а пара тороидальных вихрей, в то время как для MSST 2003 (b) и ее коррекции по СМ (d) тороидальный вихрь один, но есть угловые вихри, примыкающие к соединительному стержню, около задней стенки диска и торца цилиндра. Наименее точными оказались прогнозы C_{xp} по стандартным моделям SST

Как видно из рис. 6, a, b, модель SST 2003 с коррекцией по РЛИ прогнозирует отличный от других профиль $u_{1/2}(y)$ с минимумом, равным по модулю 80% от скорости набегающего потока U. Минимумы осевой скорости для стандартных моделей SST и коррекции MSST 2003 по CM заметно ниже. Различие профилей

скорости связывается с образованием структуры течения с двумя вихрями в зазоре, рассчитанного по MSST 2003 с коррекцией по РЛИ, причем присоединенный к соединительному стержню вторичный вихрь, простирающийся на всю ширину зазора, оказывается довольно интенсивным. Распределения коэффициента статического давления C_p и безразмерного трения f (рис. 6, c, d) демонстрируют смещение минимумов к кромке для варианта с коррекцией MSST 2003 по РЛИ, которое предопределяет лучшее согласие численных прогнозов по C_{xp} с экспериментом (табл. 2). В принципе все численные прогнозы удовлетворительно согласуются с данными измерений [28].

Как и в [22–23], MSST 2003 дает нефизические результаты по турбулентным характеристикам в ядре тороидального вихря в передней срывной зоне (рис. 7). Обращает на себя внимание не только накачка вихревой вязкости в ядре, но и весьма значительный уровень в нем энергии турбулентности. Как уже ранее отмечалось в [8,30], тороидальный вихрь в передней срывной зоне имеет практически невязкое ядро, т.е. справедлива гипотеза Дж. Бэтчелора. Такому характеру течения в большей степени соответствуют решения по модели SST 1993 (с модулем завихренности при определении вихревой вязкости) и коррекции SST 2003 по РЛИ. В первом

Таблица 2. Сравнение стандартных и модифицированных MSST при прогнозировании интегральных силовых характеристик цилиндра удлинением 5 с оптимальными размерами выступающего диска (0.75) и зазора между диском и торцом цилиндра (0.375) при числе Рейнольдса $5 \cdot 10^5$ (с диаметром соединительного стержня 0.1 и $\delta_m = 10^{-4}$)

Версия MSST	C_x	C_{xp}	C_{xf}	C_{xb}
Стандартная 1993	0.2284	0.0382	0.0604	0.1160
Стандартная 2003	0.2307	0.0440	0.0599	0.1168
Модификация	0.2151	0.0298	0.0609	0.1122
RLI $C_c = 0.02$				
Модификация СМ	0.2177	0.0324	0.0593	0.1145
Эксперимент [27]	_	0.03	_	_

случае это связано с тем, что в ядре вихря образуется зона постоянной завихренности и возникает препятствие для генерации вихревой вязкости. Во втором случае вихревая вязкость в ядре уменьшается введением поправки на кривизну линий тока как функции турбулентного числа Ричардсона. Коррекция по СМ оказывается несколько недостаточной для существенного снижения вихревой вязкости в ядре вихря.

В окрестности соединительного стержня происходит турбулизация потока, наиболее заметная в случае коррекции MSST 2003 по РЛИ.

Анализируя данные по интегральным силовым характеристикам в таблице 2, можно отметить, что выбор модели турбулентности не оказывает заметного влияния на донное сопротивление C_{xb} и сопротивление трения C_{xf} .

Заключение

На основании проведенного исследования с помощью различных версий MSST осесимметричного обтекания оптимальной компоновки диск-цилиндр, обладающий ультранизким профильным сопротивлением, можно сделать следующие выводы.

- 1. Коррекция на кривизну линий тока в моделях, использующих модуль тензора скоростей деформации, представляется необходимой, поскольку реализуется нефизический процесс накачки вихревой вязкости в ядро крупномасштабного вихря в передней срывной зоне в зазоре между диском и цилиндром.
- 2. Введение в рамках подхода РЛИ обратной линейной корректирующей функции от турбулентного числа Ричардсона с дополнительной полуэмпирической константой Исаева—Харченко—Усачова $C_c=0.02$ в выражение для вихревой вязкости MSST 2003 позволяет устранить нефизическое поведение вихревой вязкости и получить прогнозы, согласующиеся с приемлемой точностью с экспериментальными данными.
- 3. Сравнение традиционных моделей SST и различных подходов к коррекции MSST 2003 с учетом кривизны линий тока выявило различие в прогнозах прежде всего

профильного сопротивления оптимальной компоновки диск–цилиндр, при этом отмечается превосходство подхода РЛИ, дающего наиболее близкое к экспериментальному предсказание коэффициента профильного сопротивления $C_{xp}=0.03$.

4. В высокоинтенсивных отрывных течениях максимальная величина y^+ вблизи стенки не должна превышать 2, т. е. использование пристеночных функций в этих случаях не корректно.

Работа выполнена при государственной поддержке научных исследований, проводимых под руководством ведущих ученых в российских вузах (ведущий ученый — С. Исаев, КНИТУ-КАИ, Казань) по гранту Правительства России № 14.Z50.31.0003.

Список литературы

- [1] Исаев С.А., Судаков А.Г., Баранов П.А., Усачов А.Е., Стрижак С.В., Лоханский Я.К., Гувернюк С.В. // Вестник ЮУрГУ. Серия "Математическое моделирование и программирование". 2009. № 17 (150). Вып. 3. С. 59–72.
- [2] Белов И.А., Исаев С.А. Моделирование турбулентных течений. Учебное пособие. СПб.: БГТУ, 2001. 107 с.
- [3] Launder B.E., Spalding D.B. // Comp. Meth. Appl. Mech. Eng. 1974. Vol. 3. N 2. P. 269 289.
- [4] Menter F.R. // AIAA Paper. 1993. N 2906. P. 1–21.
- [5] Spalart P.R., Allmares S.R. // AIAA Paper. 1992. N 92-0439.22 p.
- [6] Menter F.R., Kuntz M., Langtry R. // Turbulence, Heat and Mass Transfer 4. Ed. K. Hajalic, Y. Nogano, M. Tummers. Begell House, Inc, 2003. 8 p.
- [7] *Лешцинер М., Роди У.* // Теор. основы инж. расчетов. 1981. Т. 103. № 2. С. 299–308.
- [8] Белов И.А., Исаев С.А., Коробков В.А. Задачи и методы расчета отрывных течений несжимаемой жидкости // Л.: Судостроение, 1989. 256 с.
- [9] Управление обтеканием тел с вихревыми ячейками в приложении к летательным аппаратам интегральной компоновки (численное и физическое моделирование) / Под ред. А.В. Ермишина, С.А. Исаева. М.: МГУ, 2003. 360 с.
- [10] Hellsten A. // AIAA-98-2554. 1998. 11 p.
- [11] Харченко В.Б. Численное моделирование отрывных течений с вихревыми и струйными генераторами на основе многоблочных вычислительных технологий. Автореф. канд. дис. 01.02.05. СПб.: СПбГМТУ, 2006. 33 с.
- [12] *Исаев С.А., Баранов П.А., Усачов А.Е.* Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. LAP LAMBERT Academic Publishing. Саарбрюкен, 2013. 316 с.
- [13] Shur M., Strelets M., Travin A., Spalart P.R. // AIAA J. 2000. Vol. 38, N 5. P. 784–792.
- [14] Smirnov P.E., Menter F. // Proc. ASME Turbo Expo Conf., 2008. N GT2008-50480. 10 p.
- [15] Esch T., Menter F.R. / Turbulence, Heat and Mass Transfer 4. Ed. K. Hanjalic, Y. Nogano, M. Tummers. Begell House Inc., 2003. 8 p.
- [16] Menter F., Ferreira J.C., Esch T., Konno B. // Proc. of the International Gas Turbine Congress. 2003. IGTC2003-TS-059.
 7 p.

- [17] ANSYS FLUENT 14.0 User's Guide
- [18] Isaev S.A., Mikhalev A.N., Sudakov A.G., Usachov A.E. // Technical Physics. 2007. Vol. 52. N 8. P. 991–997.
- [19] Isaev S.A., Lipnitskii Yu.M., Mikhalev A.N., Panasenko A.V., Usachov A.E. // J. Engineering Physics and Thermophysics. 2011. Vol. 84. N 4. P. 827–839.
- [20] Isaev S.A., Baranov P.A., Mikhalev A.N., Sudakov A.G. // Technical Phys. Lett. 2014. Vol. 40. 11. P. 996–999.
- [21] Isaev S.A., Lipnitckii Yu.M., Mikhalev A.N., Panasenko A.V., Baranov P.A. // Technical Phys. Lett. 2013. Vol. 39. N 8. P. 750–752.
- [22] Isaev S.A., Baranov P.A., Zhukova Yu.V., Usachov A.E., Kharchenko V.B. // J. Engineering Physics and Thermophysics. 2014. Vol. 87. N 4. P. 1002–1015.
- [23] Исаев С.А., Баранов П.А., Усачов А.Е., Жукова Ю.В., Высоцкая А.А., Малышкин Д.А. // Инженерно-физический журн. 2015. Т. 88. № 4. С. 872–886.
- [24] Isaev S.A., Kalinin E.A., Tereshkin A.A., Usachov A.E. // Technical Lett. 2015. Vol. 41. N 3. P. 298–300.
- [25] Isaev S.A., Miau J.-J., Sudakov A.G., Usachov A.E. // Technical Lett. 2015. Vol. 41. N 8. P. 737–739.
- [26] Roshko A., Koenig K. Aerodynamic drag mechanisms of bluff bodies and road vehicles (ed. G. Sovran, T. Morel & W.T. Mason). 1978. P. 253–286.
- [27] Roshko A., Koenig K. // J . Fluid Mech. 1985. Vol. 156. P. 167–204.
- [28] *Бобышев В.К., Исаев С.А.* // Процессы турбулентного переноса, Минск: ИТМО АН БССР, 1988. С. 39–48.
- [29] Белов И.А., Дементьев И.М., Исаев С.А., Митин А.Ю. // Препринт ФТИ им. А.Ф. Иоффе. 1989. № 1353. 63 с.
- [30] Bobyshev V.K., Isaev S.A. // J. Engineering Physics. 1990. Vol. 58. N 4. P. 556–572.
- [31] Isaev S.A. // J. Engineering and Termophysics. 1995. Vol. 68.
- N 1. P. 16–21. [32] Isaev S.A., Suprun V.M., Shul'zhenko O.A. // J. Engineering
- Physics. 1991. V. 60. N 3. P. 342–347.
 [33] *Bobyshev V.K., Isaev S.A.* // J. Engineering Physics and Thermophysics. 1998. Vol. 71. N 4. P. 600–606.
- [34] Ferziger J.H., Peric M. Computational methods for fluid dynamics. Berlin, Heidelberg. 1999. 389 p.
- [35] Van Doormaal J.P., Raithby G.D. // Numerical Heat Transfer. 1984. Vol. 7. N 2. P. 147–163.
- [36] Leonard B.P. // Comp. Meth. Appl. Mech. Eng. 1979. Vol. 19. N 1. P. 59–98.
- [37] Van Leer B. // J. Comput. Phys. 1979. Vol. 32. P. 101–136.
- [38] *Рхи С.М.*, *Чоу У.Л.* // Аэрокосмическая техника. 1984. Т. 2. № 7. С. 33–43.
- [39] Гаврилов А.А. Вычислительные алгоритмы и комплекс программ для численного моделирования течений обобщенных ньютоновских жидкостей в кольцевом канале. Кандидатская диссертация по специальности 05.13.18. Новосибирск: ИТ им. С.С. Кутателадзе СО РАН, 2013. 177 с.