03

Неравновесная абсорбция газов во вращающихся проницаемых средах

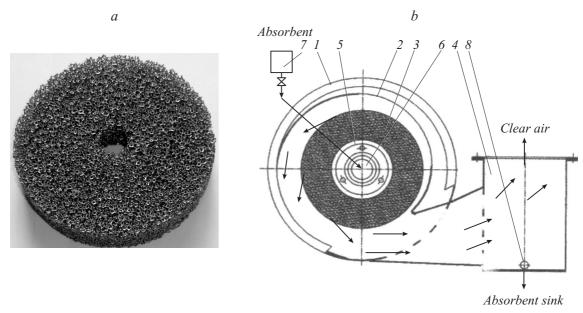
© В.К. Баев, А.Н. Бажайкин

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, 630090 Новосибирск, Россия e-mail: bazhan@itam.nsc.ru

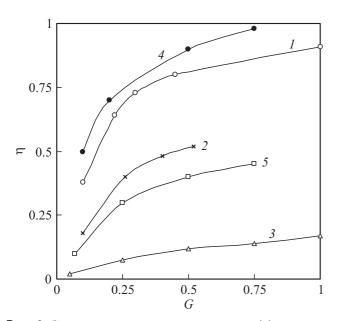
(Поступило в Редакцию 5 октября 2015 г.)

Экспериментально исследована абсорбция аммиака, двуокиси серы и углекислого газа водой и ее растворами во вращающихся проницаемых средах: ячеисто-пористом диске и пакете разнесенных тонких дисков. Получены данные по степени очистки воздуха от этих примесей и обнаружена аномально высокая их растворимость, превышающая равновесные значения. Результаты показали возможность создания эффективных и экономичных абсорберов роторного типа для очистки газов от вредных примесей.

Введение


Абсорбционная очистка газов (воздуха) от нежелательных примесей как наиболее универсальный способ эффективно осуществляется с помощью разнообразных скрубберов, которые в ряде случаев являются единственным средством удаления газообразных вредных компонентов, либо выделения из смеси полезных веществ, либо разделения смеси газов на составляющие. Скрубберы используются в основном в промышленных масштабах, имеют относительно большие габариты, требуют значительных расходов жидкого сорбента и материальных затрат при эксплуатации, поэтому совершенствование абсорбционных процессов для повышения их эффективности и экономичности является актуальным. Такое совершенствование возможно путем интенсификации движения реагирующих сред, увеличения поверхности их взаимодействия, правильного подбора сорбента, то есть создания условий для увеличения вероятности селективного захвата и удержания молекул удаляемых компонентов жидким сорбентом. Эти условия осуществимы в устройствах роторного типа, где основным элементом являются диски из различных материалов, при вращении которых возникают эффекты, связанные с движением окружающей среды за счет трения и центробежных сил. Так, например, вращение проницаемого пористого диска вызывает сложные перемещения заполняющей его и окружающей среды [1]: находящаяся внутри диска среда (жидкость, газ) под действием центробежных сил движется в радиальном направлении от центра к периферии и выбрасывается с цилиндрической поверхности; одновременно с этим к торцевым поверхностям подходят и всасываются (за счет возникающего разрежения внутри диска) новые порции среды и процесс повторяется, т.е. диск работает в качестве элемента вентилятора. При вращении тонкого, плоского диска прилежащие к нему участки окружающей среды за счет трения вовлекаются во вращательное движение и выбрасываются центробежными силами на периферию и за пределы диска; одновременно к диску подходят новые порции среды и происходит

транспортировка последней. Если к рассматриваемым дискам подавать одновременно две среды: очищаемый газ (воздух) и жидкий сорбент, то при совместном перемещении и взаимодействии могут быть созданы условия для абсорбционных процессов. Практическая реализация описанных процессов осуществлялась на двух видах установок: абсорбере с проницаемым пористым ротором и абсорбере с многодисковым ротором, в которых совмещены функции вентилятора и собственно абсорбера.


Абсорбер с проницаемым пористым ротором

Особенности абсорбции газов во вращающемся диске из высокопористого ячеистого материала (ВПЯМ) кратко изложены в [2]. Диск из никелевого ВПЯМ, имеющий пористость 95%, размер ячеек $1-4\,\mathrm{mm}$ и удельную внутреннюю поверхность 1500 1/м показан на рис. 1, а. Указанные характеристики обеспечивают значительную внутреннюю поверхность и относительно высокую проницаемость для жидких и газообразных сред при достаточной прочности для использования диска в качестве силового вращающегося элемента абсорбера, схематично изображенного на рис. 1, b и представляющего собой центробежный вентилятор, в корпусе 1 которого расположена обечайка — улитка 2 с диском 3. Корпус 1 соединен с выходным патрубком 4 и имеет входной патрубок 5, внутри которого имеется коллектор 6, куда подается сорбент из емкости 7.

При вращении диска 3 очищаемый газ входит в патрубок 5 и одновременно в коллектор 6 подается жидкий сорбент, после чего обе среды поступают в диск и перемещаются в его толще к периферии, активно перемешиваясь и участвуя в массообменных процессах. После этого реагенты выбрасываются со всей цилиндрической поверхности диска в улитку 2, при соударении с которой происходит сепарация сред, заканчивающаяся в выходном патрубке 4; при этом жидкий сорбент с поглощенными примесями стекает по

Рис. 1. (a) Изображение диска из ячеисто-пористого никеля, (b) Схема абсорбера с проницаемым ротором. Перечень узлов и пояснения — в тексте.

Рис. 2. Зависимость степени очистки воздуха (η) от относительного расхода сорбента (G) для разных примесей и сорбентов: I — NH $_3$ (сорбент H $_2$ O), 2 — SO $_2$ (H $_2$ O), 3 — CO $_2$ (H $_2$ O), 4 — NH $_3$ (H $_2$ O + 5%HNO $_3$), 5 — CO $_2$ (H $_2$ O + 30%KOH).

ограждающим поверхностям и эвакуируется через сливное отверстие 8, а очищенный газ покидает абсорбер через патрубок 4. Таким образом, описанное относительно простое и малогабаритное устройство выполняет одновременно две функции: вентилятора и абсорбера. Расход перерабатываемого газа зависит от размеров диска и частоты его вращения. В настоящих исследованиях использовался диск диаметром $150 \, \mathrm{mm}$, толщиной — $20 \, \mathrm{mm}$ и при скорости вращения $3000 \, \mathrm{rpm}$ обеспечивал

расход воздуха 0.04 kg/s. При испытаниях производилась очистка воздуха от аммиака, двуокиси серы и углекислого газа с использованием в качестве сорбента воды и ее растворов. Концентрации примесей в воздухе на входе (C_o) и выходе (C_k) абсорбера измерялись газоанализатором "Тест" с относительной погрешностью 5%. По измеренным концентрациям рассчитывалась степень очистки воздуха: $\eta = 1 - C_o/C_k$ — основная характеристика абсорбера, которая зависит от относительного расхода сорбента $G = G_w/G_a$ (G_w и G_a — расходы сорбента и воздуха), как показано на рис. 2, откуда видно качественное подобие аппроксимирующих экспериментальные данные кривых: с увеличением расхода сорбента повышается эффективность абсорбции особенно при малых значениях G; при больших расходах кривые стремятся к насыщению. Степень очистки существенно зависит от растворимости (α) примеси в воде, которая при 293 K составляет для $NH_3 - 710 \,\mathrm{m}^3/\mathrm{m}^3$, для $SO_2 - 33 \,\mathrm{m}^3/\mathrm{m}^3$ и для $CO_2 - 0.878 \,\mathrm{m}^3/\mathrm{m}^3$ [3], поэтому кривая 1 расположена выше кривых 2 и 3. Так, например, при одинаковых G = 0.5 значения η для данных примесей составляют 0.83, 0.52 и 0.12 соответственно, хотя значения α отличаются друг от друга в 20-40 раз. Полученные результаты являются следствием противоположных процессов: абсорбции и десорбции, причем роль последней возрастает со снижением а. Так, если вероятность захвата водой различных молекул (в том числе азота и кислорода воздуха) одинакова, то вероятность обратного выхода из воды молекул NH₃ меньше, чем SO₂, еще меньше, чем CO₂, и тем более молекул в составе воздуха: O_2 ($\alpha = 0.032$) и N_2 $(\alpha = 0.016)$ [3], которые практически не поглощаются водой. Снижение вероятности десорбции газов внутри абсорбера может достигаться быстрой эвакуацией из него абсорбента с поглощенными примесями, охлаждением реагирующих сред (для увеличения α), наличием в абсорбенте веществ, вступающих в химические реакции с примесями (хемосорбция). Влияние последнего способа иллюстрируется на рис. 2, где кривая 4 построена по результатам улавливания из воздуха аммиака 5%-ным водным раствором азотной кислоты, связывающей часть молекул аммиака по реакции: $NH_3 + HNO_3 = NH_4NO_3$. Сравнение кривых 1 и 4 показывает положительный эффект хемосорбции. Также для улавливания СО2 применялся хемосорбент: $H_2O + 30\%$ KOH, связывающий CO_2 по реакциям: $CO_2 + 2KOH = K_2CO_3 + H_2O$ и $CO_2 + K_2CO_3 + H_2O = 2KHCO_3$, в результате чего получен еще больший эффект, видимый из сравнения кривых 3 и 5. Таким образом, практически показана возможность полного удаления из воздуха аммиака и существенного (в 2 раза) повышения степени очистки воздуха от углекислого газа.

Немаловажным представляется рассмотрение полученных результатов с точки зрения равновесия абсорбционных процессов, которое для идеальных и разбавленных растворов системы жидкость-газ описывается законом Генри: $Pa = KhCw^*$, где Pa — парциальное давление поглощаемого компонента в газовой среде, Cw^* — мольная концентрация компонента в воде, Kh — коэффициент Генри. При сравнении Cw^* с концентрацией компонента, поглощенного водой, рассчитанной по экспериментальным данным (Cw), можно определить степень отклонения результатов экспериментов от равновесия в виде отношения $\beta = Cw/Cw^*$ (при равновесии $\beta = 1$). Значения Cw рассчитываются по материальному балансу поглощаемого компонента: C0Ga = CkGa + CwGw, где в левой части расход компонента в очищаемом воздухе, а в правой части расходы компонента в очищенном воздухе и поглощенного водой. Учитывая, что G = Gw/Ga, получим

$$Cw = (Co - Ck)/G, (1)$$

Значения Pa определяются на основании закона Дальтона в виде

$$Pa = PoCoMa/Mk,$$
 (2)

где Po и Ma — давление и молекулярный вес очищаемого воздуха, Mk — молекулярный вес удаляемого компонента. Подставляя (2) в формулу Генри, получим выражение для Cw^*

$$Cw^* = PoCoMa/Mkh, (3)$$

тогда формула для β получается делением (1) на (3)

$$\beta = (Co - Ck)Mk Kh/Po Co Ma G$$

учитывая $(Co - Ck)/Co = \eta$, окончательно получим

$$\beta = \eta \, Kh \, Mk / G \, Po \, Ma \,. \tag{4}$$

В формуле (4) значения η и G берутся из рис. 2, коэффициенты Генри при температуре 293 К для NH₃, SO₂ и CO₂ равны 0.823, 7.8 и 1440 atm [4], Po=1 atm.

На рис. 3,a,b,c представлены данные расчета по формуле (4) для перечисленных газов, откуда видно, что величины β в основном больше 1 ($\beta=1$ — штриховые линии), т.е. превышают равновесные значения, что является неожиданным с точки зрения теории растворимости. Для разных газов это превышение имеет место в разной степени (данные показаны точками). Значения β у NH $_3$ достигают 1.8 при малых G и только с ростом G больше 0.4 становятся меньше 1 (рис. 3,a). Еще большие величины β наблюдаются на рис. 3,b для SO $_2$ ($\beta=17-31$), т.е. превышение больше, чем на порядок. И более чем на 2 порядка больше равновесия составляет поглощение CO_2 водой ($\beta=370-870$), показанное на рис. 3,c.

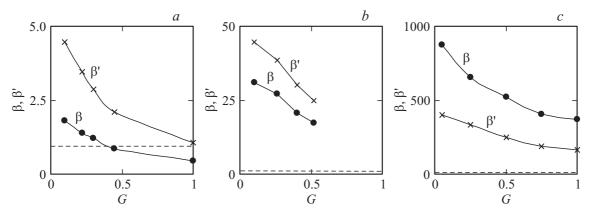
Полученные результаты расчетов, показавшие аномально высокую растворимость газов, нуждаются в подтверждении, тем более что закон Генри справедлив для разбавленных растворов или для слаборастворимых в воде газов. Критерием равновесия также является равенство парциальных давлений компонента в несущем газе и поглощенного жидкостью: $Pa = Pw^*$. Значения Pa определяются формулой (2), а Pw^* находится из уравнения состояния компонента в жидкости: $Pw^* = mk\,R\,Tk/Mk\,Vk$ — где mk, mk,

$$Pw^* = Cw^* \rho_w RTk / \alpha Mk. \tag{5}$$

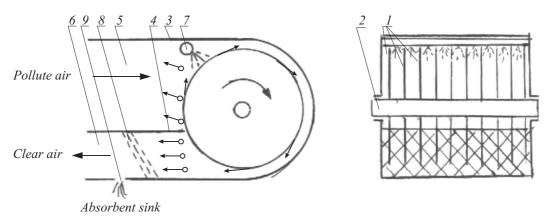
В формуле (5) $\rho_w = m_w/Vw$ — плотность жидкости, $Cw^* = m_k/m_w$ — концентрация компонента в жидкости при равновесии, $\alpha = Vk/Vw$ — растворимость компонента в воде. Подставляя формулы (2) и (5) в критерий равновесия, после преобразований получим выражение для Cw^* :

$$Cw^* = \alpha Co Po Ma / R Tk \rho_w. \tag{6}$$

Степень отклонения результатов экспериментов от равновесия: $\beta' = Cw/Cw^*$, определенную по равенству парциальных давлений, получим делением формул (1) на (6)


$$\beta' = \eta \rho_w RTk / \alpha GPoMa, \tag{7}$$

подставляя в (7) значения величин $\rho_w = 1000 \text{ kg/m}^3$, R = 8.31 kJ/kmole K, Tk = 293 K, $Po = 10^5 \text{ N/m}^2$, Ma = 29 kg/kmole, получим расчетную формулу для β'


$$\beta' = 840\eta/\alpha G,\tag{8}$$

значения растворимости α для соответствующих примесей приведены выше, а пары величин η и G для них взяты из рис. 2.

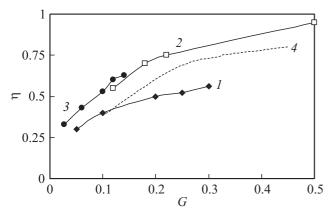
Результаты расчетов по формуле (8) представлены на рис. 3, a,b,c (обозначены крестиками), откуда видно, что для всех трех газовых примесей значения β' превышают равновесные значения во всем диапазоне изменения G,

Рис. 3. Зависимость степени отклонения абсорбции от равновесия (β) и (β') от (G) для разных примесей: a — NH₃, b — SO₂, c — CO₂.

Рис. 4. Схема абсорбера с многодисковым ротором. Перечень узлов и пояснения — в тексте.

что подтверждает данные по β' , хотя значения β и β' различаются в 1.5-2 раза для одной и той же примеси. Проведенные аналогичные расчеты для промышленных скрубберов (по очистке от NH_3) показали значения $\beta=0.1-0.2$, что на порядок меньше описываемых результатов. Причиной сверх равновесной абсорбции газов в роторных абсорберах может быть совокупность факторов, связанная с интенсивным перемешиванием реагирующих сред, форсированной абсорбцией и ограниченной десорбцией примесей в стесненных условиях пористых каналов и ячеек при наличии значительных перегрузок и локальных давлений, вызываемых центробежными силами.

Абсорберы с многодисковым ротором


Использование тонких дисков в качестве элементов ротора вентилятора—абсорбера целесообразно в пакете из разнесенных на определенном расстоянии друг от друга дисков. Это увеличивает рабочую поверхность и производительность по перемещению различных сред и давно используется в технике. Один из первых многодисковых насосов запатентовал еще в 1913 г. Н. Тесла, и с тех пор данные машины изучаются и совершенствуются

по настоящее время. Для использования многодискового вентилятора в качестве абсорбера необходима подача жидкого сорбента в междисковое пространство; при этом на вращающихся дисках образуется жидкая пленка, которая под действием центробежных сил смещается к краям дисков, откуда срывается в виде мелкодисперсных капель. Таким образом, абсорбционные процессы могут происходить на поверхности жидкой пленки и в двухфазной среде меж и около дискового пространства при соответствующем конструктивном оформлении абсорбера, схема которого показана на рис. 4. Ротор, состоящий из пакета тонких металлических дисков 1, закрепленных на оси 2, расположен в корпусе 3 с перегородкой 4. При вращении ротора окружающая среда (очищаемый воздух) поступает в воздухозаборник 5 и увлекается во вращательное движение в междисковом пространстве и через выходной патрубок 6 выбрасывается наружу. Жидкий сорбент через систему подачи 7 в виде трубы с множеством мелких отверстий разбрызгивается между дисков, дополнительно распыливается и образует вместе с воздухом вращающуюся двухфазную смесь, в которой происходят массообменные процессы. Далее смесь поступает в сетчатый каплеуловитель 8, где жидкий сорбент с абсорбированными примесями задерживается на сетках и стекает в сливное отверстие 9, а очищенный

Условия	C_0 , ppm	C_k , ppm	$G_a \cdot 10^3$, kg/s	$G_w \cdot 10^3$, kg/s	$G_{wn} \cdot 10^3, ext{kg/s}$	$G_{wc} \cdot 10^3$, kg/s
Лабор. чистый аммиак	100 96 96 95 92	70 58 48 46 40	20 20 19.5 19.5 19.0	1.0 2.0 3.9 4.9 5.7	- - - -	600 380 240 196 140
Виварий	9.0 9.5 10.0 10	4.0 3.0 2.5 1.0 0.5	82 72 72 72 72 72	9.3 13.0 15.5 36.3 36.3	31 25 29 14 11	44 35 36 19 17
Компостный завод	37.5 30.0 30.0 30.0 32.0	25.0 17.0 15.0 12.0 11.0	260 200 250 250 250 250	7.0 16.0 25.0 30.0 35.0	500 138 125 198 196	465 162 150 150 150
Скруббер	118.0	58.0	1300	3300	_	24

Результаты измерений концентрации аммиака в различных условиях

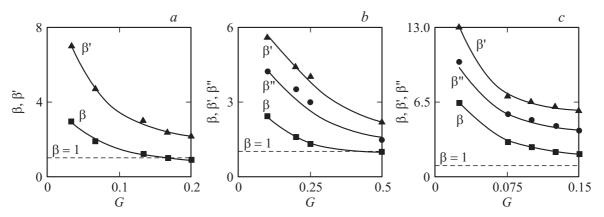
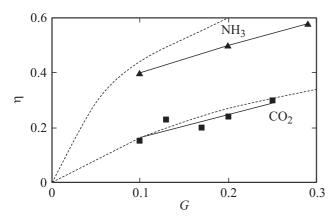

воздух поступает в выходной патрубок 6. По данной схеме изготовлено несколько образцов абсорберов на расходы воздуха 0.02, 0.08 и 0.5 kg/s с дисками из алюминия толщиной 1 mm и диаметром 240 mm со скоростью вращения 3000 грт. Испытания по очистке воздуха от аммиака водой проводились в лабораторных условиях и производственных помещениях сельскохозяйственного назначения. Условия и результаты измерений концентраций NH₃ представлены в таблице, где кроме обозначенных выше значений C_0 , Ck, Gw, Ga даются концентрации аммиака, поглощенного водой: C_{wc} — вычисленные по формуле (1) и Cwm измеренные прибором "Токо 10N meter Ti-9001" с максимальной погрешностью 5%. В последней строке таблицы приводятся результаты, полученные в промышленном скруббере на компостном заводе. Обработка данных проводилась аналогично абсорберу с пористым ротором.

Рис. 5. Влияние расхода сорбента (G) на степень очистки воздуха (η) от аммиака в многодисковом абсорбере.

На рис. 5 показаны результаты определения степени очистки воздуха η в зависимости от относительного расхода сорбента G. Кривые, аппроксимирующие экспериментальные данные, качественно подобны и показывают, что с ростом G плавно увеличивается η до насыщения при больших значениях G. Кривая 1получена в результате очистки смеси чистого аммиака с чистым воздухом в лабораторных условиях. Сравнение кривой 1 с кривой 4, полученной для пористого ротора в аналогичных условиях (рис. 2, кривая 4), показывает, что степень очистки при малых значениях G практически одинакова; с увеличением G пористый ротор работает эффективнее многодискового ротора. Кривая 2 на рис. 5 получена по результатам экспериментов в виварии Института цитологии и генетики СО РАН (где содержатся мыши и крысы). Сравнение кривых 2 и 1 показывает, что удаление NH3 из атмосферы вивария происходит в 1.5 раза эффективнее, чем из чистой аммиачно-воздушной смеси. Аналогичные результаты получены в компостном заводе (кривая 3 на рис. 5). Возможно, это связано с тем, что в производственных помещениях кроме аммиака содержатся такие продукты жизнедеятельности животных, как CO₂, SO₂, NO₂, P₂O₅ и другие, которые могут реагировать с NH₃, выполняя роль хемосорбентов.

Из кривой 3 видно, что значение $\eta=0.5$ достигается при G=0.1, а расчет для скруббера (по данным таблицы) показывает, что $\eta=0.5$ получается при G=2.5. Следовательно, для достижения одинаковой степени очистки воздуха от аммиака в одних и тех же условиях, скруббер требует в 25 раз больше воды, чем многодисковый абсорбер, что означает несомненные преимущества последнего по экономичности и эффективности работы. К тому же скруббер имеет в 32 раза большие габариты


Рис. 6. Зависимость степени отклонения абсорбции аммиака от равновесия (β) , (β') и (β'') (по формулам (4), (8) и (9)) в различных условиях: a — в лаборатории, b — в виварии, c — на компостном заводе.

 $(16\,{\rm m}^3)$, чем абсорбер $(0.5\,{\rm m}^3)$, и требует значительных материальных затрат при эксплуатации.

Интерпретация полученных результатов с точки зрения равновесия абсорбционных процессов проводилась аналогично рассмотренной выше с использованием формул (4) и (8), которые, однако, давали существенные расхождения в значениях β и β' (рис 3, a, b, c). Поэтому в ряде экспериментов проводились прямые измерения концентрации NH₃ в отработанном сорбенте Cwm, которые, как видно из таблицы, отличаются от значений Cw, рассчитанных по формуле (1). С учетом этого превышение концентрации NH₃ в воде над равновесием β'' вычислялось третьим способом из соотношения $\beta'' = Cwm/Cw^*$. Подставляя значение Cw^* из формулы (6) после преобразований и подстановок цифровых значений коэффициентов, окончательно получим:

$$\beta'' = 840 \, Cwm/\alpha Co. \tag{9}$$

На рис. 6, a, b, c представлены экспериментальные данные определения β , β' и β'' для чистой аммиачно воздушной смеси (a), в виварии (b) и компостном заводе (c). Все аппроксимирующие кривые подобны и убывают с ростом относительного расхода сорбента (воды) G и лежат выше равновесного значения $\beta=1$ (обозначено штриховой линией), как и для абсорбера с пористым ротором (рис. 3, a, b, c). Это означает, что и в абсорбере с многодисковым ротором поглощение аммиака превышает равновесие, подтверждаемое тремя способами определения β , причем значения β'' занимают промежуточные значения между β и β' и являются, вероятно, наиболее точными, поскольку связаны с прямыми измерениями концентрации NH₃ в воде. Так же из рис. 6 видно, что превышение абсорбции NH₃ водой над равновесием составляет диапазон от 16 до 1 при различных условиях экспериментов. Аналогичные расчеты, проведенные для скруббера по формулам (4) и (8), дали значения $\beta = 0.1$ и $\beta' = 0.05$ при G = 2.5, т.е. более чем на порядок меньшие, чем минимальные значения β и β' (рис. 6, c), полученные на многодисковом абсорбере, а с учетом разницы соответствующих значений G (2.5 и 0.2) роторный абсорбер на 2 порядка (как минимум) эффективнее скруббера, хотя в обоих случаях молекулы аммиака поглощаются каплями воды. Разница состоит в том, что в полом скруббере вода распыливается в виде относительно крупных капель (диаметром несколько миллиметров), свободно падающих дождем в противоток очищаемой среде, и взаимодействие реагентов происходит относительно медленно в соответствии с законами равновесия. При распыливании жидкостей вращающимся диском образуются приблизительно одинаковые капли с диаметром [5]: $d = C(\sigma/D\omega^2\rho)^{0.5}$, где C — эмпирический коэффициент (C=4), D — диаметр диска, $\omega = 2\pi n/60$ — угловая скорость вращения диска (n — обороты в минуту), σ и ρ — поверхностное натяжение и плотность жидкости. Расчет при $D=0.24\,\mathrm{m}$ и $n=3000\,\mathrm{rpm}$ для воды дал значения $d = 0.22 \,\mathrm{mm}$, что на порядок меньше, чем при распыле в скруббере, и, следовательно, из одинакового количества воды образуется на 3 порядка больше капель и суммарная их поверхность увеличивается на 2 порядка. Кроме того, капли срываются с дисков с окружной скоростью (в данном случае скорость порядка 38 m/s), поэтому очищаемая среда постоянно бомбардируется высокоскоростными каплями во входном и выходном патрубках, а также в междисковом пространстве абсорбера. Это существенно увеличивает вероятность захвата каплями примесей, которые относительно быстро выводятся вместе с сорбентом из установки и десорбируются в сливной емкости, не попадая в очищаемую среду. Установление причин наблюдаемых явлений во вращающихся проницаемых средах и описание течений двухфазной, многокомпонентной среды с фазовыми переходами, сорбцией и десорбцией, химическими реакциями, теплообменом и изменением поверхности межфазного контакта (дробления, коагуляции) и возможностью проявления неравновесности вследствие разноскоростного протекания отдельных процессов представляет собой сложную задачу. Перечисленные процессы происходят одновременно и нестационарно, что еще более усложняет их изучение в виде отдельных стадий и тем более в

Рис. 7. Сравнение степени очистки по формуле (10) (пунктирные линии) с экспериментальными данными для абсорбера с пористым ротором.

совокупности. Тем не менее предпринимались попытки разработать оценочные соотношения, основанные на простых моделях ведущих процессов, не противоречащих наблюдаемым физическим явлениям и результатам экспериментов. В [6] получена зависимость для η в виде

$$\eta = \eta_{\text{max}} (1 - P_{10w}/P_{10}) (1 - \exp(-\alpha_m F/Ga\eta_{\text{max}})), \quad (10)$$

где $\eta_{\rm max} = G/(\mu_2 P_{s2} P_s/\mu_1 P_a^2) + G$; μ_1 и μ_2 — молекулярные массы очищаемого газа и жидкого сорбента; P_{s2} и P_s — давления насыщения сорбируемого газа и сорбента; P_{10} и P_{10w} — начальные парциальные давления сорбируемого газа в очищаемом газе и сорбенте; P_a — общее давление, α_m — коэффициент массообмена на поверхности межфазного контакта F. В формуле (10) неизвестна относительная массообменая характеристика $Q = \alpha_m F/G_a$, которая зависит от характеристик ротора и течений внутри него. Для ротора из ВПЯМ получена зависимость $Q = 0.184H/d_p$ (H — толщина диска, d_p — средний размер ячейки).

В (10) каждый сомножитель имеет конкретное физическое содержание: первый дает предельное значение степени очистки, второй — влияние начальной концентрации сорбируемого газа в сорбенте, третий влияние массообменных характеристик с учетом обратного влияния степени очистки. Выражение (10) следует рассматривать как оценочное в силу сделанных предположений о малости концентраций, изотермичности, идеальности процессов. Поэтому его пригодность проверялась сравнением с экспериментальными данными. На рис. 7 показаны зависимости $\eta(G)$ для NH_3 и CO_2 . Из сравнения видно, что экспериментальные данные практически совпадают с расчетными (пунктирные линии) по (10) для СО2, или расположены несколько ниже расчетных для NH₃. Следовательно, выражение (10) можно использовать для оценки степени очистки воздуха при физической сорбции с помощью роторов из ВПЯМ. Для хемосорбции необходимо учитывать химические реакции.

Заключение

Таким образом, эксперименты показали, что интенсификация движения реагирующих сред, обусловленная вращением проницаемых роторов, приводит к эффективным массообменным процессам, что выражается в относительно высокой степени очистки воздуха, вследствие сверхравновесной абсорбции газов жидким сорбентом. Это установлено несколькими независимыми расчетными методами, причем произведено сравнение результатов с данными, полученными на промышленном очистителе воздуха — полом скруббере. Сравнение показало, что при одинаковой степени очистки воздуха от аммиака роторные абсорберы требуют на порядок (и более) меньше расхода сорбента и габаритов установки и, следовательно, гораздо меньше материальных затрат. Поэтому перспективность развития роторных абсорберов различного назначения очевидна, тем более они могут быть изготовлены на практически любые расходы очищаемых сред. На абсорберы с многодисковым ротором и пористым ротором получены патенты [7] и [8].

Список литературы

- [1] *Баев В.К., Фомин В.М., Чусов Д.В.* и др. Патент RU № 2256861. 2005.
- [2] *Бажайкин А.Н.* // Письма в ЖТФ. 2014. Т. 40. Вып. 2. С. 82–89.
- [3] Справочник по неорганической химии // Под ред. Р.А. Лидина. М.: Химия, 1987. 319 с.
- [4] Ралчмм В.М. Абсорбция газов. М.: Химия, 1966. 767 с.
- [5] Дунский В.Ф., Никитин Н.В. // ИФЖ. 1965. Т. 9. № 1. С. 54–60.
- [6] Баев В.К., Бажайкин А.Н., Фомин В.М. и др. // ДАН. 2008. Т. 421. № 1. С. 41–44.
- [7] Баев В.К., Бажайкин А.Н., Фролов А.Д. и др. Патент RU № 2259224. 2005.
- [8] *Баев В.К., Бажайкин А.Н., Исмагилов З.Р.* и др. Патент RU № 2343960. 2009.