05,08

Суперсверхтонкая структура спектров ЭПР примесных ионов Gd^{3+} в двойном фториде LiYF₄

© Л.К. Аминов, М.Р. Гафуров , С.Л. Кораблева, И.Н. Куркин, А.А. Родионов

Институт физики Казанского (Приволжского) федерального университета, Казань, Россия

(Поступила в Редакцию 5 сентября 2016 г.)

Исследованы спектры ЭПР ионов Gd^{3+} , присутствующих в качестве малой примеси (~ 0.0001 at.%) в монокристалле LiYF₄, в широком диапазоне температур от гелиевых до комнатных. На ряде компонент тонкой структуры спектра наблюдается четко выраженная суперсверхтонкая структура, зависящая от ориентации внешнего магнитного поля по отношению к кристаллографическим осям. В более ранних ЭПР-исследованиях двойных фторидов с примесью Gd^{3+} суперсверхтонкая структура не наблюдалась.

Работа выполнена в рамках проекта бюджетного финансирования и программы повышения конкуренто-способности Казанского федерального университета.

DOI: 10.21883/FTT.2017.03.44167.343

1. Введение

Суперсверхтонкая структура (ССТС) спектров ЭПР в твердых телах обусловлена взаимодействиями парамагнитных электронов с ядерными магнитными моментами окружающих парамагнитный центр диамагнитных ионов [1]. С ее помощью можно уточнить механизмы этих взаимодействий, пространственную структуру центра и его окружения. Значительную долю исследованных методом ЭПР объектов составляют примесные парамагнитные кристаллы с редкоземельными (РЗ) ионами в качестве парамагнитных центров. Парамагнитные *f*-электроны в редкоземельных парамагнитных центрах в основном сосредоточены вблизи своего ядра, и поэтому взаимодействие их с ядрами окружающих ионов (лигандов) сравнительно невелико. В силу этого ССТС разрешается лишь при некоторых специальных условиях наблюдения спектров. Обзор предыдущих работ по этой теме вместе с деталями теоретического анализа спектров был приведен в работе [2]. Чаще других исследовались фторсодержащие кристаллы типа флюоритов (CaF₂), шеелитов (LiYF₄), перовскитов (KZnF₃). Ближайшее окружение РЗ-ионов в этих кристаллах составляют комплексы ионов фтора с ядерным спином I=1/2и большим гиромагнитным отношением (40.054 MHz/T), способствующим разрешению ССТС. Повышенное внимание к этим кристаллам связано, в частности, с тем, что многие из них используются в качестве рабочих материалов в квантовой электронике [3]. Разнообразие спектров ЭПР по числу компонент, их расщеплению и относительным интенсивностям делает указанные системы перспективными и для других приложений.

Настоящая работа является продолжением исследований методом ЭПР монокристаллов двойных фторидов $\text{Li}RF_4$ (R=Y,Lu,Tm), активированных P3-ионами. В ней представлены спектры ЭПР системы LiYF_4 : Gd^{3+}

с четко выраженной ССТС на ряде компонент тонкой структуры. Эти спектры наблюдаются в широком диапазоне температур от гелиевых до комнатных, поскольку основное состояние иона $\mathrm{Gd}^{3+} - {}^8S_{7/2} - \mathrm{является}$ орбитальным синглетом, слабо взаимодействующим с кристаллической решеткой. К отличительным особенностям ионов Gd^{3+} следует отнести и очень малую величину сверхтонкого взаимодействия (СТВ) нечетных изотопов ${}^{155,157}\mathrm{Gd}$ (константа СТВ $A=12.048\,\mathrm{MHz}$ для ${}^{155}\mathrm{Gd}$ и $15.809\,\mathrm{MHz}$ для ${}^{157}\mathrm{Gd}$ [1]). При более ранних ЭПР-измерениях на этой системе [4,5] никаких следов сверхтонкой и суперсверхтонкой структур обнаружено не было.

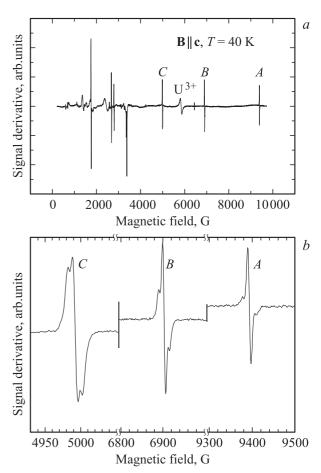
В следующем разделе приводится описание образцов, на которых проводились измерения, аппаратуры и условий экспериментов. Представлены также примеры измеренных спектров ЭПР и их описание. Затем следует краткое обсуждение результатов и подводятся некоторые итоги работы.

2. Экспериментальные условия

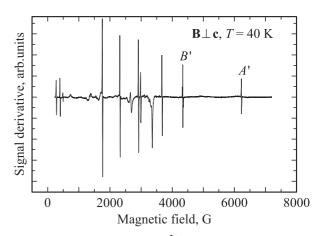
Монокристаллы LiYF $_4$ были выращены методом Бриджмена в графитовых тиглях в атмосфере особо чистого аргона в Лаборатории магнитной радиоспектроскопии им. С.А. Альтшулера Казанского федерального университета. Скорость выращивания составляла 1.2 mm/h. Шихта для выращивания кристаллов состояла из фторидов иттрия и лития марки осч и была предварительно проплавлена в атмосфере CF_4 . Примеси редких земель вводились в виде соответствующих оксидов и фторидов. Следует отметить, что даже без специальной активации в синтезированных образцах LiYF $_4$ всегда присутствовали следы различных редкоземельных ионов, в том числе Gd^{3+} . Это объясняется наличием некоторого количества примеси таких ионов в исходном соединении YF_3 .

[¶] E-mail: marat.gafurov@kpfu.ru

Поскольку ионы Gd³⁺ обладают большим значением электронного спина (S = 7/2) и, следовательно, линии ЭПР при высоких концентрациях сильно уширяются из-за диполь-дипольного взаимодействия, мы выбрали для исследования образцы с концентрацией Gd³⁺ менее 0.001 at.%. Основные измерения были проведены на образцах I ("беспримесный" LiYF₄) и II (LiYF₄ с двойной активацией 0.01 at.% 143 Nd₂O₃ и 0.01 at.% UF₃). Количественные измерения концентрации ионов Gd³⁺ в этих образцах дали следующие результаты: ~ 0.001 at.% в образце I и ~ 0.0001 at.% в образце II. Измерения выполнялись путем сравнения интегральной интенсивности спектров ЭПР в исследуемых образцах и референтном образце LiYF₄ с известной концентрацией ионов Gd³⁺. Ранее на образце II мы исследовали спектры ЭПР различных изотопов Nd^{3+} [6].


Спектры ЭПР регистрировались стационарным методом в X-диапазоне (частота $\approx 9.42\,\mathrm{GHz}$) на спектрометре ESP-300 (Bruker) в температурном диапазоне $T=5-300\,\mathrm{K}$ и магнитных полях $B=0.2-12.0\,\mathrm{kG}$.

3. Результаты экспериментов


На рис. 1, a приведен спектр ЭПР образца II при ориентации внешнего магнитного поля вдоль оси с кристалла ($\mathbf{B} \parallel \mathbf{c}$) и $T=40\,\mathrm{K}$. При более низких температурах интенсивный ЭПР-сигнал от ионов Gd^{3+} насыщается, и для его наблюдения приходится понижать интенсивность СВЧ поля. При $T=40\,\mathrm{K}$ ЭПР присутствующих в образце II ионов Nd^{3+} не наблюдается (в работе [6] спектр ЭПР Nd^{3+} измерялся при $T=15\,\mathrm{K}$), а ЭПР ионов U^{3+} еще наблюдается. Для ионов Gd^{3+} регистрируется характерная тонкая структура спектра. На сильнополевых компонентах тонкой структуры (обозначенных на рис. 1 как A,B,C) разрешается ССТС, обусловленная взаимодействием ионов Gd^{3+} с ядерными спинами ионов F^- . Для наглядности линии A,B,C приведены отдельно на рис. 1, b в увеличенном виде.

На рис. 2 приведен спектр ЭПР образца II при ориентации магнитного поля ${\bf B}\perp {\bf c}$ и произвольном направлении в плоскости ab при $T=40\,{\rm K}$. Контроль ориентации ${\bf B}\perp {\bf c}$ осуществлялся по величине резонансных магнитных полей ионов ${\rm Nd}^{3+}$ и ${\rm U}^{3+}$, ЭПР которых регистрировался при $T=15\,{\rm K}$. Оказалось, что и для ориентации ${\bf B}\perp {\bf c}$ ССТС спектров ЭПР ионов ${\rm Gd}^{3+}$ наблюдается только на сильнополевых компонентах тонкой структуры (обозначены как A' и B' на рис. 2).

ССТС линий A' и B' более детально исследовалась для различных ориентаций поля ${\bf B}$ в плоскости ab, перпендикулярной оси c. Результаты этих измерений приведены на рис. 3 вместе со спектрами ${\rm Nd}^{3+}$ и ${\rm U}^{3+}$, зарегистрированными при T=15 К. Плоскость ab, как отмечалось, выводилась по максимальным значениям g-факторов ионов ${\rm Nd}^{3+}$ и ${\rm U}^{3+}$, а значение угла ϕ (угол между направлением ${\bf B}$ и осью ${\bf X}$ в ab-плоскости, рис. 4) определялось исходя из сравнения измеренного

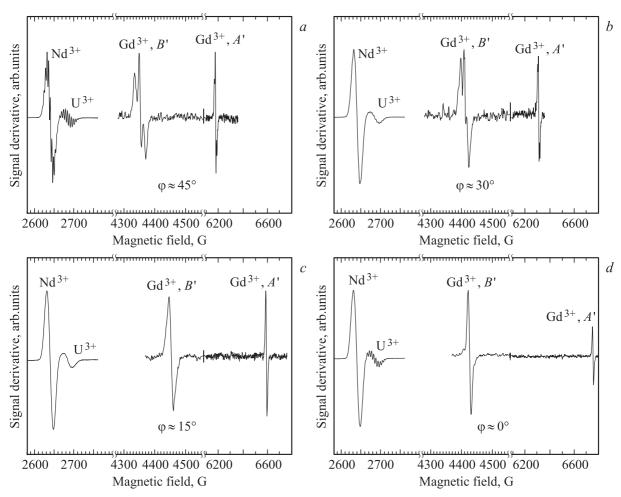
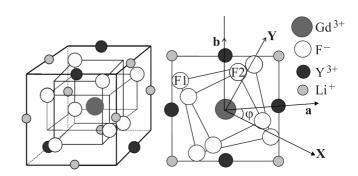

Рис. 1. Спектр ЭПР образца II в ориентации $\mathbf{B} \parallel \mathbf{c}$ при $T=40~\mathrm{K}~(a)$ и фрагмент спектра ЭПР ионов Gd^{3+} , представленного на части a, в увеличенном виде (b).

Рис. 2. Спектр ЭПР ионов ${\rm Gd}^{3+}$ в образце II в ориентации ${\bf B} \perp {\bf c}$ при $T=40\,{\rm K}.$

значения резонансного поля линии A' с результатами работы [4]. Таким образом было установлено, что спектр на рис. 3, a соответствует $\phi \approx 45^\circ$, на рис. 3, $b-\phi \approx 30^\circ$, на рис. 3, $c-\phi \approx 15^\circ$, на рис. 3, $d-\phi \approx 0^\circ$.

На образце I мы исследовали температурную зависимость спектров ЭПР ионов Gd^{3+} при температурах


Рис. 3. Спектр ЭПР сильнополевых компонент тонкой структуры A' и B' ионов $\mathrm{Gd^{3+}}$ в образце II LiYF₄ при различной ориентации магнитного поля в плоскости ab. В магнитных полях $\sim 2.6-2.7\,\mathrm{kG}$ регистрируется ЭПР ионов $\mathrm{Nd^{3+}}$ и $\mathrm{U^{3+}}$. Детальные пояснения приведены в тексте.

от гелиевых до комнатных. При низких температурах $(4-20\,\mathrm{K})$ были зафиксированы линии, относящиеся к ионам других РЗ-элементов, которые с повышением температуры уширялись и исчезали. Резонансные значения тонкой структуры линий ЭПР ионов Gd^{3+} изменяются с температурой, что связано с температурной зависимостью параметров кристаллического поля. Это отмечалось и изучалось в предыдущих исследованиях ЭПР Gd^{3+} в кристаллах со структурой шеелита (см. работу [7] и ссылки в ней). Детальные измерения показали, что ССТС не изменяется в диапазоне $15-300\,\mathrm{K}$. В ориентации $\mathrm{B}\parallel\mathrm{c}$ на линии $\mathrm{C}(B\approx5\,\mathrm{kG})$ ширина линий компонент ССТС равна $\sim 2\,\mathrm{G}$ (5.6 MHz), а расстояние между компонентами ССТС $\sim 2.5\,\mathrm{G}$ (7.0 MHz).

4. Обсуждение результатов

Примесные редкоземельные ионы в кристалле LiYF₄ замещают ионы Y, находящиеся в позиции с симметрией S_4 . Окружение парамагнитного иона изображено на рис. 4. Ближайшее окружение составляют две четверки

ионов F^- (F_1 и F_2); в каждой четверке ионы F^- расположены в вершинах тетраэдра с центром на редкоземельном ионе. Одна из осей второго порядка каждого тетраэдра (Z) направлена вдоль тетрагональной оси с кристалла. Тетраэдр из ионов F_1 сжат, а тетраэдр F_2 вытянут вдоль этой оси. Две другие оси второго порядка (X,Y), лежащие в плоскости, перпендикулярной c,

Рис. 4. Половина ячейки Браве кристалла LiYF $_4$ с центром на примесном ионе Gd^{3+} , замещающем ионы Y^{3+} .

располагаются под углом $\phi \approx 35^\circ$ к кристаллическим осям a и b, причем этот угол примерно одинаков для обоих тетраэдров, так что комплекс YF_8 обладает симметрией, близкой к D_{2d} . В этом приближении спиновый гамильтониан для Gd^{3+} можно записать в виде

$$H = g_{\parallel} \beta B_Z S_Z + g_{\perp} \beta (B_X S_X + B_Y S_Y) + \frac{1}{3} b_2^0 O_2^0$$

$$+ \frac{1}{60} (b_4^0 O_4^0 + b_4^4 O_4^4) + \frac{1}{1260} (b_6^0 O_6^0 + b_6^4 O_6^4), \quad (1)$$

где β — магнетон Бора, B — внешнее магнитное поле, эффективный спин S=7/2. Слагаемые, не содержащие поля, определяют расщепление спинового мультиплета в кристаллическом поле, b_n^m — параметры тонкой структуры. Гамильтониан (1) был успешно использован для расчета спектра Gd^{3+} в $\mathrm{CaWO_4}$, изоструктурном $\mathrm{LiYF_4}$ [7], а также в $\mathrm{LiYF_4}$ [4]. В работе [4] были найдены следующие значения параметров гамильтониана (1) (при комнатной температуре):

$$g_{\parallel} = 1.9837, \quad g_{\perp} = 1.9825, \quad b_2^0 = -827 \cdot 10^{-4} \,\mathrm{cm}^{-1},$$

 $b_4^0 = -19 \cdot 10^4 \,\mathrm{cm}^{-1}, \quad b_4^4 = 101 \cdot 10^{-4} \,\mathrm{cm}^{-1},$
 $b_6^0 = 0, \quad b_6^4 = -5.5 \cdot 10^{-4} \,\mathrm{cm}^{-1}.$ (2)

Эти значения согласуются с результатами, полученными для других кристаллов со структурой шеелита [7], и отличаются от последних в основном лишь знаком b_4^4 . Эксперименты, проведенные на системах $\mathrm{LiY}_{1-x}\mathrm{Yb}_x\mathrm{F}_4\colon\mathrm{Gd}^{3+}$ [5], показывают, что набор (2) в значительной части (за исключением очень малых параметров b_6^0 и b_6^4) слабо меняется (в пределах $\leq 10\%$) и с температурой, и с концентрацией x примеси второго РЗ-иона. При концентрациях x>0.4 спектр Gd^{3+} наблюдался лишь при высоких температурах порядка комнатных, когда сильные магнитные взаимодействия ионов Gd^{3+} и Yb^{3+} усреднялись вследствие интенсивной спин-решеточной релаксации ионов Yb^{3+} .

Используя параметры (2), авторы [4] рассчитали зависимость резонансных полей B для компонент тонкой структуры спектра ЭПР Gd^{3+} от ориентации \mathbf{B} в плоскости ab (рис. 2 в работе [4]). Сопоставление этих результатов с приведенными на рис. 3, a-d значениями резонансных магнитных полей линии A' (линия G в обозначениях [4]) позволяет судить об ориентациях поля \mathbf{B} , которые были приведены в предыдущем разделе.

Положение линий ЭПР ионов Nd^{3+} и U^{3+} , приведенных на рис. 3,a-d, как и полагается для ионов с эффективным спином S=1/2, не зависит от ориентации поля **B** в плоскости ab. Эти линии, как отмечалось выше, служат показателем того, что $\mathbf{B} \perp \mathbf{c}$. Однако разрешение ССТС линий существенно определяется ориентацией \mathbf{B} : структура практически незаметна при $\varphi=15$ и 30° (рис. 3,b,c), она разрешается для U^{3+} и не разрешается для Nd^{3+} при $\varphi=0^\circ$ (рис. 3,d). Структура, представленная на рис. 3,d, приводилась в нашей работе [8]. Спектр с разрешенной ССТС обоих ионов Nd^{3+} и U^{3+} (рис. 3,a)

приведен в работе [6]. Ориентация $\phi=45^\circ$ соответствует оси второго порядка комплекса YF_8 , она отмечалась в [6] как благоприятная для наблюдения разрешенной ССТС. Это замечание подтверждается и для спектра Gd^{3+} . В случае Gd^{3+} разрешение ССТС "частичное", не для всех компонент тонкой структуры спектра. Частично разрешенная ССТС наблюдалась и в ранних работах по спектрам ЭПР ионов Gd^{3+} в кубическом окружении в кристаллах типа флюорита [9–11].

5. Заключение

В работе описаны первые случаи наблюдений ССТС в спектре ЭПР ионов Gd^{3+} , внедренных в кристаллы двойных фторидов типа LiYF4. Они дополняют серию проведенных нами ранее исследований ССТС спектров ЭПР ионов Ce^{3+} , Yb^{3+} , Nd^{3+} и U^{3+} с эффективным спином S=1/2 в этих системах (см. обзор [2]). Спектры ЭПР указанных ионов наблюдаются лишь при низких температурах ($T\leq 30\,\mathrm{K}$), тогда как спектры Gd^{3+} наблюдаются в широком диапазоне температур от гелиевых до комнатных. Кроме того, спектр Gd^{3+} (S=7/2) обладает тонкой структурой, и ССТС на разных компонентах тонкой структуры выглядит существенно поразному. В целом можно говорить о расширении круга различных проявлений одних и тех же механизмов возникновения ССТС спектров ЭПР.

Авторы признательны Б.З. Малкину за ценные замечания.

Список литературы

- [1] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. изд. Мир. М. (1972). Т. 1, 2.
- [2] Л.К. Аминов, И.Н. Куркин, Б.З. Малкин. ФТТ **55**, 1249 (2013).
- [3] А.А. Каминский. Лазерные кристаллы. Наука, М. (1975).256 с.
- [4] Y. Vaills, J.Y. Buzare, J.Y. Gesland. Solid State Commun. 45, 1093 (1983).
- [5] L.E. Misiak, S.R. Misra, P. Mikolajczak. Phys. Rev. B 38, 8673 (1988).
- [6] Л.К. Аминов, М.Р. Гафуров, С.Л. Кораблева, И.Н. Куркин, А.А. Родионов. ФТТ 57, 2329 (2015).
- [7] X. Wishwamitar, S.P. Puri. J. Chem. Phys. 61, 3720 (1974).
- [8] Л.К. Аминов, А.А. Ершова, С.Л. Кораблева, И.Н. Куркин, Б.З. Малкин, А.А. Родионов. ФТТ **53**, 2129 (2011).
- [9] C.M. Bowden, J.E. Miller. Phys. Rev. Lett. 19, 4 (1967).
- [10] R.H. Borcherts, T. Cole, T. Horn. J. Chem. Phys. 49, 4880 (1968).
- [11] S. Lee, A.J. Bevolo, C.-C. Yang. J. Chem. Phys. 60, 1628 (1974).