Silicon nanowire array architecture for heterojunction electronics

© M.M. Solovan¹, V.V. Brus², A.I. Mostovyi¹, P.D. Maryanchuk¹, I.G. Orletskyi¹, T.T. Kovaliuk¹, S.L. Abashin³

E-mail: m.solovan@chnu.edu.ua

(Получена 20 сентября 2016 г. Принята к печати 29 сентября 2016 г.)

Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nanostructured single crystal substrates of p-type Si (100).

The temperature dependencies of the height of the potential barrier and series resistance of the *n*-TiN/*p*-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias.

The heterojunctions under investigation generate open-circuit voltage $V_{oc} = 0.8 \,\mathrm{V}$, short-circuit current $I_{sc} = 3.72 \,\mathrm{mA/cm^2}$ and fill factor FF = 0.5 under illumination of $100 \,\mathrm{mW/cm^2}$.

DOI: 10.21883/FTP.2017.04.44354.8407

¹ Department of Electronics and Energy Engeneering, Chernivtsi National University, 58012 Chernivtsi, Ukraine

² Institute for Silicon Photovoltaics, Helmholtz–Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany

³ Department of physics, National Aerospace University "Kharkiv Aviation Institute", 61070 Kharkiv, Ukraine