09,04

Спектральные и структурные характеристики ортоборатов $Lu_{1-x-v}Ce_{x}Tb_{v}BO_{3}$, полученных методом гидротермального синтеза

© С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, О.Г. Рыбченко

Институт физики твердого тела РАН,

Черноголовка, Россия

E-mail: shmurak@issp.ac.ru

(Поступила в Редакцию 29 ноября 2016 г.)

Проведены исследования структуры, ИК-спектров поглощения, морфологии и спектральных характеристик фотолюминесценции полученных методом гидротермального синтеза твердых растворов $\mathrm{Lu}_{1-x-y}\mathrm{Ce}_x\mathrm{Tb}_y\mathrm{BO}_3$. Согласно данным рентгенофазового анализа, полученные в результате гидротермального синтеза при $T=200^\circ\mathrm{C}$ образцы $\mathrm{Lu}_{1-x-y}\mathrm{Ce}_x\mathrm{Tb}_y\mathrm{BO}_3$ имеют структуру ватерита, и все дифракционные пики соответствуют гексагональной фазе с пр.гр. $P6_3/mmc$, изоструктурной чистому LuBO_3 . Отжиг этих образцов при $T=970^\circ\mathrm{C}$ приводит к изменению структурной модификации и переходу образцов в моноклинную фазу с пространственной группой C2/c. Обнаружено, что после отжига этих образцов при $T=800-970^\circ\mathrm{C}$ интенсивность свечения ионов Tb^{3+} при возбуждении в полосе поглощения ионов Ce^{3+} увеличивается более чем на два порядка и становится значительно выше, чем в соединениях такого же состава, полученных при высокотемпературном синтезе. В то же время отжиг бората лютеция, легированного только тербием, не приводит к заметному изменению интенсивности свечения ионов Tb^{3+} . Обсуждаются возможные причины многократного усиления свечения ионов тербия при отжиге полученного методом гидротермального синтеза ортобората лютеция, легированного церием и тербием.

DOI: 10.21883/FTT.2017.06.44487.426

1. Введение

Спектральные характеристики ортоборатов редкоземельных элементов (РЗЭ) можно направленно изменять путем изменения их структурного состояния [1–4]. При этом существенную трансформацию претерпевают спектры люминесценции этих соединений. Спектры возбуждения люминесценции (СВЛ) боратов редкоземельных элементов радикально изменяются при осуществлении процесса переноса энергии от одних оптически активных центров к другим. Например, перенос энергии электронного возбуждения от Ce^{3+} к Tb^{3+} приводит к появлению в СВЛ ионов Тb³⁺ новой интенсивной полосы, совпадающей с полосой возбуждения ионов Се³⁺ [4]. При этом спектральное положение этой полосы зависит от структурного состояния образца: ее максимумы в структурах кальцита и ватерита находятся при ~ 339 и ~ 367 nm соответственно. Изменение количественного соотношения между фазами кальцита и ватерита в образце позволяет направленно изменять спектр возбуждения свечения ионов Tb^{3+} , что важно для оптимизации спектральных характеристик $Lu_{1-x-y}Ce_xTb_yBO_3$ при его использовании в светодиодных источниках света. В работах [1-4] исследовались соединения, синтезированные в расплавах тетраборатов щелочных металлов или борного ангидрида. Для получения ватеритной модификации бората лютеция, легированного редкоземельными ионами, синтез проводился при $T = 750 - 800^{\circ}$ С. Синтез кальцитной модификации осуществлялся при T = 970 - 1100°C. В то же время получение боратов РЗЭ можно осуществлять гидротермальным синтезом при

температурах 180-220°C в автоклаве [5-10]. Продуктом такого синтеза являются частицы шарообразной формы размером $5-10\,\mu{\rm m}$, состоящие из наноразмерных элементов, имеющих форму пластин. При этом определенная структурная модификация (кальцит или ватерит) может быть получена при разных величинах кислотности водной реакционной среды [7]. В работах [5-10] исследовались спектральные и структурные характеристики ортоборатов LuBO₃, YBO₃, легированных либо ионами Eu^{3+} , либо ионами Tb^{3+} . Согласно данным этих работ, спектральные характеристики образцов, полученных методом гидротермального и твердофазного синтеза, практически совпадают. Близки и интенсивности их свечения. Представляется целесообразным исследование переноса энергии между редкоземельными ионами Ce^{3+} и Tb^{3+} в полученных в результате гидротермального синтеза ортоборатах РЗЭ.

В настоящей работе проведены исследования влияния отжига на спектральные и структурные характеристики полученных методом гидротермального синтеза твердых растворов состава $Lu_{1-x-y}Ce_xTb_yBO_3$. Обсуждаются возможные причины многократного усиления свечения ионов тербия при возбуждении в полосе поглощения ионов Ce^{3+} после отжига этих образцов.

2. Методика эксперимента

Для приготовления образцов твердых растворов ортоборатов редких земель с общей формулой $Lu_{1-x-y}Ce_xTb_yBO_3$ были использованы водные раство-

ры нитратов РЗЭ, водный раствор аммиака и борная кислота. Раствор нитрата лютеция с концентрацией 2М получен растворением оксида лютеция Lu_2O_3 в концентрированной азотной кислоте с последующим удалением ее избытка путем выпаривания при длительном кипячении раствора. Для приготовления водных растворов азотно-кислых солей церия и тербия с концентрациями 0.02 и 0.25М соответственно были взяты твердые гидраты этих солей составов $Ce(NO_3)_3 \cdot 6H_2O$ и $Tb(NO_3)_3 \cdot 5H_2O$. Все использованные химические реактивы имели марку ЧДА.

Типичная синтетическая процедура состояла в следующем. К смеси водных растворов нитратов РЗЭ, взятых в необходимых количествах, добавлялась борная кислота со 100% избытком относительно стехиометрического состава. При этом общий объем раствора составлял 15 ml (при концентрации Lu^{3+} , равной 0.13-0.15M). После этого в полученный раствор по каплям добавлялся водный раствор аммиака (25% концентрации) до образования белого коллоидного осадка гидроокисей РЗЭ и рН = 9. Полученная водная суспензия перемешивалась на магнитной мешалке в течение 20 min, после чего она переливалась в тефлоновый стакан и помещалась на воздухе в металлический автоклав. После выдержки в автоклаве при 200°C в течение 24 или 72 h и последующего охлаждения продукт выделялся фильтрованием, промывался водой, спиртом и сушился при 80°C в течение 4 h. При этом протекали следующие химические реакции:

$$Ln(NO_3)_3 + 3NH_4OH \rightarrow Ln(OH)_3\downarrow + 3NH_4NO_3$$
 $(Ln = Lu, Ce, Tb)$ при $20^{\circ}C$, $Ln(OH)_3 + H_3BO_3 \rightarrow LnBO_3 + 3H_2O$ $(Ln = Lu, Tb)$ при $200^{\circ}C$, $2Ce(OH)_3 + 1/2O_2 \rightarrow 2CeO_2\downarrow + 3H_2O$ при $200^{\circ}C$ и $pH = 9$.

Полученные образцы отжигались в течение 2 h на воздухе в интервале температур 200–1000°C.

Рентгенодифракционные исследования образцов проводились с использованием дифрактометра SIEMENS D-500 (излучение CuK_{α} , первичный кварцевый монохроматор).

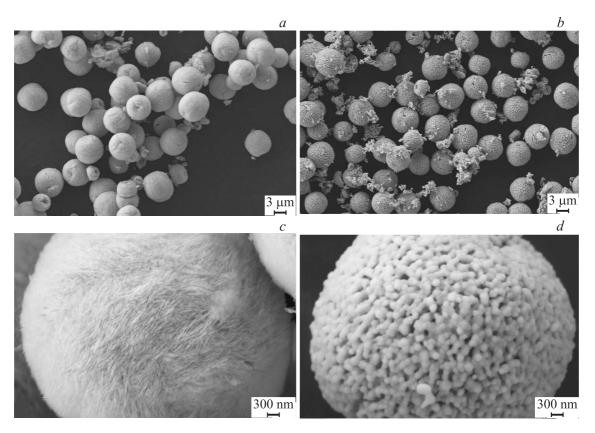
ИК-спектры поглощения измерялись на Фурье-спектрометре VERTEX 80v в спектральном диапазоне $400-5000~{\rm cm}^{-1}$ с разрешением $2~{\rm cm}^{-1}$. Для измерений поликристаллические порошки боратов перетирались в агатовой ступке, а затем тонким слоем наносились на кристаллическую шлифованную подложку KBr.

Морфология образцов изучалась с использованием рентгеновского микроанализатора Supra 50VP с приставкой для EDS INCA (Oxford).

Спектры фотолюминесценции и спектры возбуждения люминесценции изучались на установке, состоя-

щей из источника света — лампы ДКСШ-150, двух монохроматоров МДР-4 и МДР-6 (спектральный диапазон $200-1000\,\mathrm{nm}$, дисперсия $1.3\,\mathrm{nm/mm}$). Регистрация свечения осуществлялась с помощью фотоумножителя ФЭУ-106 (область спектральной чувствительности $200-800\,\mathrm{nm}$) и усилительной системы.

Спектральные и структурные характеристики, а также морфология образцов исследовались при комнатной температуре.


3. Морфология образцов

Полученные в результате гидротермального синтеза в течение 24 h образцы $Lu_{1-x-y}Ce_{x}Tb_{y}BO_{3}$ являются частицами шарообразной формы диаметром $\sim 5\,\mu\mathrm{m}$, которые в свою очередь состоят из нановолокон или наночешуек. Такую морфологию имеют все исследованные нами соединения ортоборатов $Lu_{1-x-y}Ce_xTb_yBO_3$. Последующий отжиг этих образцов в интервале температур 200-750°C не приводит к заметным изменениям их морфологии (рис. 1, a, c). Морфологические изменения исследуемых образцов начинают проявляться при температурах выше 800°C. При этих температурах происходит плавление нановолокон/наночешуек с образованием более крупных частиц округлой формы диаметром 100-150 nm, которые соединены между собой. При этом формируется пористая структура, имеющая диаметр исходной сферической частицы (рис. 1, b, d). Подобные сферические частицы наблюдались при гидротермальном синтезе ортоборатов иттрия [5].

Иную морфологию имеют образцы $Lu_{1-x-y}Ce_xTb_yBO_3$, полученные в результате гидротермального синтеза в течение 72 h. Увеличение длительности гидротермального синтеза приводит к разрушению сферических частиц и укрупнению наночастиц. Такая картина сохраняется при отжиге образцов вплоть до температуры 800° С. Дальнейшее повышение температуры отжига также приводит к плавлению наночастиц и их слиянию в более крупные образования округлой формы размером 300-600 nm.

4. Рентгеноструктурные исследования

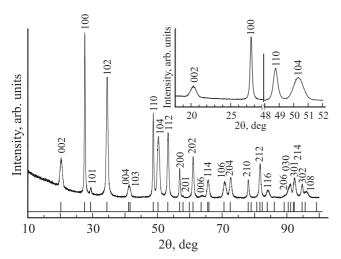

На рис. 2 представлена дифракционная картина исходного образца $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, полученного методом гидротермального синтеза при $200^{\circ}C$ (время синтеза $24\,h$). Все дифракционные линии индицируются в предположении гексагональной фазы, изоструктурной чистому $LuBO_3$ (пространственная группа $P6_3/mmc$ (194) (PDF-2, № 74-1938). Как видно из рисунка, дифракционные линии демонстрируют значительное уширение, не одинаковое для различных линий. Линии (002), (004), (104), (106) намного шире, чем (100), (110), (200) (рис. 2 и вставка к нему). Подобный эффект наблюдался в работах [5,8] и связывался с морфологией образца, в частности с квазидвумерностью образцов.

Рис. 1. Морфология соединения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, полученного методом гидротермального синтеза при $200^{\circ}C$ и отожженного при различных температурах. a-d — время синтеза 24 h. a,c — отжиг при $200^{\circ}C$, b,d — отжиг при $970^{\circ}C$. Время отжига для всех образцов 2 h.

И в нашем случае частицы, имеющие форму клубков, состоят из наночешуек толщиной $\sim 15-20\,\mathrm{nm}$ (рис. 1, c).

Наблюдаемое уширение дифракционных линий, связанное с размерным эффектом, а также, вероятно, с некоторой дефектностью синтезированных частиц, за-

Рис. 2. Дифрактограмма соединения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, полученного методом гидротермального синтеза, время синтеза $t=24\,\mathrm{h}$. На вставке — увеличенные фрагменты дифрактограммы, включающие рефлексы (002), (100), (110) и (104).

трудняет определение кристаллической структуры. Действительно, наблюдаемый набор дифракционных линий можно также описать моноклинной решеткой, которая изоструктурна описанной в работах [11–13], в предположении, что уширение не позволяет разделить перекрывающиеся близкие линии. Таким образом, сделать выбор между двумя близкими структурами не представляется возможным.

Увеличение длительности синтеза приводит к сужению дифракционных линий, что позволяет идентифицировать структуру образца. На рис. 3 показана дифрактограмма синтезированного в течение 72 h образца $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ (кривая I). Этот образец имеет гексагональную структуру, (пространственная группа $P6_3/mmc$ (194), параметры кристаллической решетки a=3.736 Å и c=8.780 Å (см. таблицу).

Отжиг образцов при температуре 750°C в течение 2 h приводит к смещению некоторых дифракционных линий, связанному с изменением параметров ячейки и соответственно соотношения c/a гексагональной решетки: c/a=2.339 (2.35 для исходного образца). Рассчитанные параметры ячейки a=3.742 Å, c=8.751 Å.

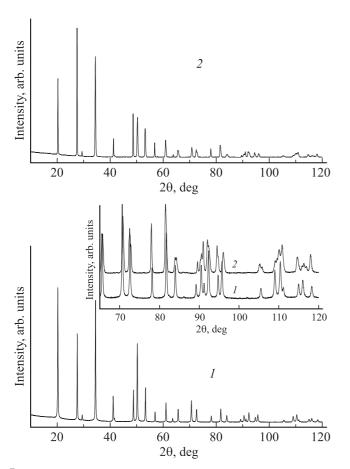
Отжиг образцов при температуре 970° С значительно изменяет как морфологию, так и структуру образца. На дифрактограмме (рис. 3, кривая 2) на-

a = 3.737(1) Å

c = 8.771(1) Å

a = 3.725(1) Å

= 8.749(1) Å


при $T = 970^{\circ} \text{C (2 h)}$		
Состав	Параметры элементарной ячейки исходного образца (гексагональная фаза, P63/mmc)	Параметры элементарной ячейки отожженного образца (моноклинная фаза, $C2/c$)
Lu _{0.845} Ce _{0.005} Tb _{0.15} BO ₃	a = 3.736 (1) Å $c = 8.780 (1) Å$	a = 11.217(2) Å b = 6.484 (1) Å c = 9.493 (1) Å

Структурные параметры образцов ортоборатов лютеция после гидротермального синтеза $(72\,\mathrm{h})$ и после их отжига при $T=970^{\circ}\mathrm{C}~(2\,\mathrm{h})$

блюдается расщепление некоторых линий, появляются дополнительные отражения. Наиболее заметные изменения картины дифракции наблюдаются в области больших углов дифракции. На вставке к рис. 3

 $Lu_{0.85}Tb_{0.15}BO_3$

Lu_{0.995}Ce_{0.005}BO₃

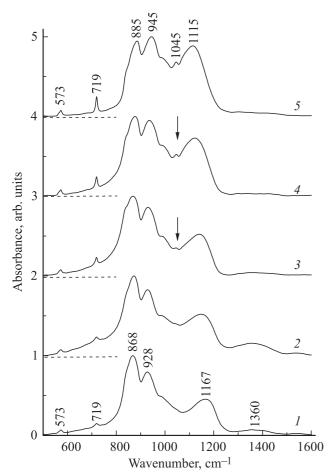
Рис. 3. Дифрактограммы соединения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, полученного методом гидротермального синтеза, время синтеза t=72 h: исходного (I) и отожженного при $T=970^{\circ}C$ (2). На вставке — увеличенные фрагменты спектров I и 2.

показаны дифрактограммы исходного и отожженного образцов $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ в интервале углов $2\theta=65-120^\circ$. Полученная дифракционная картина описывается моноклинной решеткой с пространственной группой C2/c, наблюдавшейся ранее в ряде соединений, таких как $ErBO_3$, $(Y_{0.92}Er_{0.08})BO_3$, $GdBO_3$ [11–13]. Рассчитанные параметры кристаллической ячейки для образца $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ составляют a=11.217 Å, b=6.484 Å, c=9.493 Å, $\beta=112.84^\circ$ (см. таблицу).

 $\beta = 112.84 (2)^{\circ}$ a = 11.211 (2) Åb = 6.478 (1) Å

c = 9.490 (1) Å $\beta = 112.89 (1)^{\circ}$ a = 11.187 (2) Å

b = 6.464(1) Å


c = 9.474 (1) Å $\beta = 112.90 (1)^{\circ}$

Аналогичные структурные изменения происходят в образцах $Lu_{0.85}Tb_{0.15}BO_3$ и $Lu_{0.995}Ce_{0.005}BO_3$ после их отжига при 970°С. Рассчитанные параметры ячеек исходной гексагональной и моноклинной фаз этих образцов представлены в таблице.

5. ИК-спектры

На рис. 4 приведены спектры поглощения в области внутренних колебаний связей B-O исходного, полученного методом гидротермального синтеза (спектр I) и отожженного при различных температурах (спектры 2-5) образца $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$.

ИК-спектр исходного образца подобен спектрам образцов $Lu_{0.85}Tb_{0.15}BO_3$ и $Lu_{0.94}Eu_{0.06}BO_3$, полученных в результате гидротермального синтеза в работах [8,10]. В каждом из спектров наблюдались три интенсивные полосы поглощения в спектральном диапазоне $800-1200~\rm{cm^{-1}}$, характерном для валентных колебаний связей B-O редкоземельных ортоборатов со структурой ватерита. В этой структуре три атома бора с тетраэдрическим окружением по кислороду образуют группу $(B_3O_9)^{9-}$ в виде трехмерного кольца. Результаты рентгеноструктурных исследований, проведенные в этих работах, показали, что образцы имеют структуру ватерита и все дифракционные пики соответствуют гексагональной фазе $LuBO_3$ с пр. гр. $P6_3/mmc$.

Рис. 4. ИК-спектры поглощения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$. I — исходный образец, 2-5 — после отжига при температурах 500, 850, 900 и 970°C соответственно.

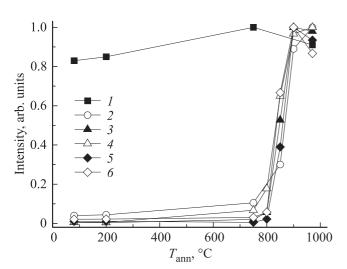
В ИК-спектре полученного в настоящей работе образца $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ (рис. 4, спектр I) также наблюдаются аналогичные полосы поглощения (пики $\sim 868,~928,~1167~{\rm cm}^{-1}$) в том же диапазоне $800-1200~{\rm cm}^{-1}$, характерном для структуры ватерита. Полосы поглощения $868,~928~{\rm cm}^{-1}$ можно отнести к валентным колебаниям кольца группы $(B_3O_9)^{9-}$, а полосу $1167~{\rm cm}^{-1}$ — к валентному колебанию терминальной связи B-O этой группы [14].

Широкую полосу $\sim 1360\,\mathrm{cm}^{-1}$ относят к валентным колебаниям BO₃-групп, а полосы 573 и 719 сm⁻¹ — к деформационным колебаниям BO₄- и BO₃-групп [8,10,15].

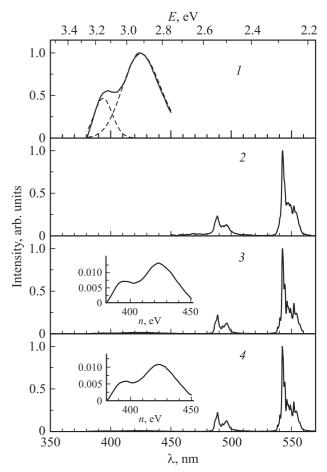
Спектр образца, отожженного при $T=970^{\circ}\mathrm{C}$ (рис. 4, спектр 5), подобен спектрам поглощения соединений $\mathrm{Lu}_{1-x}RE_x\mathrm{BO}_3$ ($RE=\mathrm{Eu}$, Gd, Tb, Dy и Y; x=0.15-0.3), полученных при $T=970^{\circ}\mathrm{C}$ методом твердофазного синтеза [3] и имеющих структуру ватерита. Он содержит интенсивные полосы поглощения только в диапазоне $800-1200~\mathrm{cm}^{-1}$ (пики 885, 945, 1045 и 1115 cm $^{-1}$), что свидетельствует о тетраэдрической координации атомов бора, характерной для структуры ватерита, и отсутствии других кристаллических фаз в образце.

Вместе с тем сравнение ИК-спектров этих образцов в области валентных колебаний связей В-О показывает, что ИК-спектры исходного и отожженного при 970° С образцов (рис. 4, спектры 1 и 5) различаются тем, что в отожженном образце появляется новая линия $\sim 1045\,\mathrm{cm}^{-1}$, самая высокоэнергетическая полоса валентного колебания связи $B{-}O$ 1167 cm $^{-1}$ сдвигается в низкоэнергетическую область до $1115\,\mathrm{cm}^{-1}$, а полосы 868 и $928\,\mathrm{cm}^{-1}$ — в область высоких энергий к 885и 945ст $^{-1}$ соответственно. Кроме того, относительная интенсивность полосы поглощения $1167\,\mathrm{cm}^{-1}$ валентного колебания терминальной связи В-О увеличивается, общая полуширина полосы валентных колебаний группы $(B_3O_9)^{9-}$ в диапазоне $800-1200\,\mathrm{cm}^{-1}$ уменьшается примерно на $50\,\mathrm{cm}^{-1}$. Появление в ИК-спектре новой полосы $\sim 1045\,{\rm cm}^{-1}$ связано скорее всего с тем, что, как показали рентгеновские исследования (раздел 4), отжиг образца $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ при $T=970^{\circ}C$ приводит к изменению структурной модификации ватерита и переходу его из гексагональной симметрии с пространственной группой $P6_3/mmc$ в моноклинную с пространственной группой C2/c. Кроме того, изменения в спектре 5 (рис. 4) свидетельствуют о более упорядоченной и более совершенной кристаллической структуре отожженного образца.

Исследование температурной зависимости спектра поглощения соединения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ показало, что отжиги при $T=250-800^{\circ}C$ не приводят к заметному изменению ИК-спектров. Перестройка спектра (появление новой линии при $\sim 1045\,\mathrm{cm}^{-1}$ и сужение полос) начинается после отжига при $T=850^{\circ}C$ (рис. 4, спектр 3) и усиливается при T=900 и $970^{\circ}C$ (рис. 4, спектры 4 и 5).


6. Спектры люминесценции и спектры возбуждения люминесценции соединения Lu_{1-x-v} Ce_xTb_vBO₃

6.1. Спектры люминесценции. Интенсивность свечения ионов Tb^{3+} в образцах $Lu_{1-x}Tb_xBO_3$, полученных методом гидротермального синтеза, при возбуждении в полосах поглощения ионов Tb^{3+} практически не изменяется после отжига при $T=250-1000^{\circ}C$ (рис. 5 кривая I). В то же время интенсивность свечения ионов Ce^{3+} и Tb^{3+} в образцах ортобората лютеция, легированных одновременно 0.5 аt.% Се и 15 аt.% Tb, после отжига при $970^{\circ}C$ увеличивается более чем на два порядка (рис. 5, кривые 3, 4). Интенсивность свечения ионов Ce^{3+} в образцах $Lu_{0.995}Ce_{0.005}BO_3$, отожженных при $970^{\circ}C$, увеличивается в 20-50 раз (рис. 5, кривая 2). Важно отметить, что спектры свечения ионов Ce^{3+} и Tb^{3+} в исходных и отожженных образцах совпадают.


Спектры люминесценции отожженных при 970° С образцов ортобората лютеция, легированных 0.5 at.% Се, 15 at.% Тb и одновременно 0.5 at.% Се и 15 at.% Тb, представлены на рис. 6 (спектры I-3). В спектрах лю-

минесценции образцов $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ наблюдаются две широкие полосы с максимумами при ~ 395 и $\sim 425\,\mathrm{nm}$ и ряд узких полос, наиболее интенсивными из которых являются полосы 488, 497 и 542.3 nm (рис. 6, спектр 3). Полосы ~ 395 и $\sim 425\,\mathrm{nm}$, наблюдающиеся также в спектре люминесценции бората лютеция, легированного 0.5 at.% Се (рис. 6, спектр 1), соответствуют электронным переходам $4f^05d^1 \rightarrow 4f^1(^2F_{5/2})$ и $4f^05d^1 \to 4f^1(^2F_{7/2})$ в ионах Ce^{3+} . Следует отметить, что такие же полосы наблюдаются в спектрах ватеритной модификации образцов бората лютеция, легированных церием, полученных методом твердофазного синтеза [3,4,16,17]. В диапазоне длин волн 450-570 nm спектры люминесценции образцов $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ и $Lu_{0.85}Tb_{0.15}BO_3$ (рис. 6, спектры 3 и2) совпадают. Они обусловлены свечением ионов Tb³⁺. Самая интенсивная полоса свечения находится при $\lambda_{max} = 542.3 \, \text{nm}$ (переход ${}^5D_4 o {}^7F_5$), что характерно для ватеритной модификации ортобората лютеция, легированного тербием [3,4,8,18]. Спектры люминесценции такие же, как для образцов ортобората лютеция, легированного 0.5 at.% Се и 15 at.% Тb, наблюдаются для всех полученных нами методом гидротермального синтеза образцов $Lu_{0.995-y}Ce_{0.005}Tb_yBO_3$ (0.05 < y < 0.2).

Следует отметить, что спектры люминесценции исследованных нами соединений $Lu_{0.995-y}Ce_{0.005}Tb_yBO_3$, полученных методом гидротермального синтеза, не зависят от длины волны света, возбуждающего свечение либо поверхности образца ($\lambda_{max}=274\,\mathrm{nm}$, переход

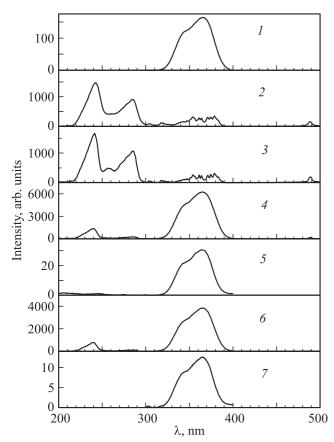

Рис. 5. Зависимости интенсивностей свечения одного из ионов RE^{3+} (Ce^{3+} , Tb^{3+}) от температуры отжига соединений $Lu_{1-x-y}Ce_xTb_yBO_3$ и $Lu_{0.85}Tb_{0.15}BO_3+CeO_2$. I — интенсивность свечения Tb^{3+} ($\lambda_{max}=542.3~nm$) в образце $Lu_{0.85}Tb_{0.15}BO_3$ при возбуждении светом $\lambda_{ex}=274~nm$, 3 и 5 — интенсивности свечения Tb^{3+} ($\lambda_{max}=542.3~nm$) в образцах $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ и $Lu_{0.85}Tb_{0.15}BO_3+CeO_2$ соответственно при $\lambda_{ex}=367~nm$, 2, 4 и 6 — интенсивности свечения Ce^{3+} ($\lambda_{max}=425~nm$) в образцах $Lu_{0.995}Ce_{0.005}BO_3$, $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ и $Lu_{0.85}Tb_{0.15}BO_3+CeO_2$ соответственно при $\lambda_{ex}=367~nm$.

Рис. 6. Спектры люминесценции соединений $Lu_{1-x-y}Ce_xTb_yBO_3$ и $Lu_{0.85}Tb_{0.15}BO_3+CeO_2$ после отжига при 970°С. $I-x=0.005,\ y=0,\ \lambda_{\rm ex}=367\,{\rm nm};\ 2-x=0,\ y=0.15,\ \lambda_{\rm ex}=274\,{\rm nm};\ 3-x=0.005,\ y=0.15,\ \lambda_{\rm ex}=367\,{\rm nm};\ 4-Lu_{0.85}Tb_{0.15}BO_3+CeO_2.$ На вставках приведены спектры люминесценции в диапазонах длин волн $380-450\,{\rm nm}$ (спектры 3 и 4) в увеличенном по оси ординат масштабе.

 $4f^8 \to 4f^75d^1$ в ионе ${\rm Tb}^{3+}$ [16]), либо его объема ($\lambda_{\rm max}=367\,{\rm nm}$, переход $4f^1\to 4f^05d^1$ в ионе ${\rm Ce}^{3+}$). Совпадение спектров люминесценции приповерхностного слоя и объема образцов свидетельствует о том, что ближний порядок вокруг ионов ${\rm Tb}^{3+}$ во всем объеме образцов одинаков, а значит, как показано в работах [19–21], образцы являются однофазными и имеют структуру типа ватерита. Это находится в согласии с данными рентгенофазового анализа и ИК-спектроскопии.

6.2. Спектры возбуждения люминесценции. СВЛ ионов Tb^{3+} и Ce^{3+} в ортоборатах лютеция, полученных методом гидротермального синтеза и отожженных при 970° С, содержащих 15 at.% Tb^{3+} или 0.5 at.% Ce^{3+} и одновременно 15 at.% Tb^{3+} и 0.5 at.% Ce^{3+} , представлены на рис. 7 (спектры I-5). Спектр возбуждения люминесценции наиболее интенсивной полосы свечения соединения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ ($\lambda_{\max}=542.3$ nm), которая обусловлена свечением

Рис. 7. Спектры возбуждения люминесценции отожженных при различных температурах соединений $\text{Lu}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ и $\text{Lu}_{0.85}\text{Tb}_{0.15}\text{BO}_3+\text{CeO}_2.$ $I-x=0.005,\ y=0,\ \text{максимум}$ свечения $\lambda_{\text{max}}=425\,\text{nm},\ T_{\text{ann}}=970^{\circ}\text{C};\ 2-x=0,\ y=0.15,\ \lambda_{\text{max}}=542.3\,\text{nm},\ T_{\text{ann}}=200^{\circ}\text{C};\ 3-x=0,\ y=0.15,\ \lambda_{\text{max}}=542.3\,\text{nm},\ T_{\text{ann}}=970^{\circ}\text{C};\ 4-x=0.005,\ y=0.15,\ \lambda_{\text{max}}=542.3\,\text{nm},\ T_{\text{ann}}=970^{\circ}\text{C};\ 5-x=0.005,\ y=0.15,\ \lambda_{\text{max}}=425\,\text{nm},\ T_{\text{ann}}=970^{\circ}\text{C};\ 6-\text{Lu}_{0.85}\text{Tb}_{0.15}\text{BO}_3+\text{CeO}_2,\ \lambda_{\text{max}}=542.3\,\text{nm},\ T_{\text{ann}}=900^{\circ}\text{C};\ 7-\text{Lu}_{0.85}\text{Tb}_{0.15}\text{BO}_3+\text{CeO}_2,\ \lambda_{\text{max}}=425\,\text{nm},\ T_{\text{ann}}=900^{\circ}\text{C}.$

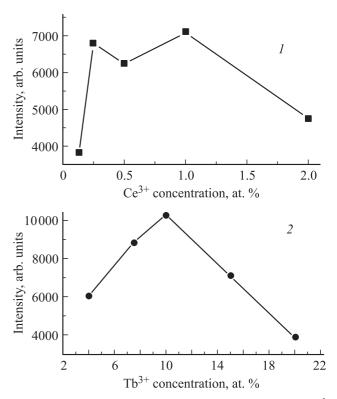
ионов Тb³+ (рис. 7, спектр 4), содержит полосы ($\lambda_{\rm ex}\sim 242$, 285 и 489.5 nm), наблюдающиеся также в СВЛ ортобората лютеция, содержащего 15 at.% Тb (рис. 7, спектры 2, 3), и полосу ($\lambda_{\rm ex}\sim 367$ nm). Полоса 367 nm, имеющая наибольшую интенсивность, совпадает с полосой, наблюдающейся в СВЛ ионов Ce³+ ($\lambda_{\rm max}\sim 425$ nm), в Lu_{0.845}Ce_{0.005}Tb_{0.15}BO₃ (рис. 7, спектр 5) и в СВЛ ортобората лютеция, содержащего только 0.5 at.% Се (рис. 7, спектр 1).

Таким образом, свечение ионов Tb^{3+} в соединении $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, отожженном при 970° С, наблюдается при возбуждении образца светом, соответствующим максимуму возбуждения свечения ионов Ce^{3+} ($\lambda_{ex}=367\,\mathrm{nm}$). Приведенные экспериментальные факты однозначно свидетельствуют о том, что в этих образцах, как и в полученных методом твердофазного синтеза соединениях бората лютеция, легированных церием и тербием [4], перенос энергии электронного возбуждения

от ионов Ce^{3+} к Tb^{3+} осуществляется в результате кулоновского диполь-дипольного взаимодействия [4].

Следует отметить, что спектр возбуждения люминесценции ионов Tb^{3+} ($\lambda_{max}=542.3\,\mathrm{nm}$) в образцах $Lu_{0.85}Tb_{0.15}BO_3$, имеющих структуру типа ватерита, в области длин волн $320-390\,\mathrm{nm}$ содержит ряд узких резонансных полос (рис. 7, спектры 2,3). Однако их интенсивность ($\sim 330\,\mathrm{arb.units}$) более чем на порядок меньше интенсивности свечения ионов Tb^{3+} в образцах $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ при возбуждении в полосе $367\,\mathrm{nm}$, которая составляет $\sim 6242\,\mathrm{arb.units}$ (рис. 7, спектр 4). Значительное увеличение свечения ионов Tb^{3+} в образцах $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ при возбуждении в полосе $367\,\mathrm{nm}$ происходит в результате переноса электронного возбуждения от ионов Ce^{3+} к ионам Tb^{3+} .

Следует обратить внимание на то, что интенсивность свечения ионов Се³⁺ при возбуждении светом, соответствующим максимуму полосы возбуждения Се³⁺ $(\lambda_{\rm ex} = 367 \, {\rm nm})$, в образцах бората лютеция, легированного только 0.5 at.% Се ($I_{Ce} = 164$ arb. units) (рис. 7, спектр 1), намного превосходит интенсивность свечения церия в борате лютеция, легированном одновременно и 0.5 at.% Се, и 15 at.% Ть ($I_{Ce+Tb} = 30$ arb. units) (рис. 7, спектр 5). Уменьшение интенсивности свечения ионов Се³⁺ в образцах, легированных одновременно и церием, и тербием, по сравнению с I_{Ce} в боратах лютеция, содержащих только Се, связано с переносом энергии электронного возбуждения от ионов Ce^{3+} к ионам Tb^{3+} . Сравнивая интенсивности свечения ионов Се³⁺ при отсутствии и наличии ионов Ть3+, можно определить эффективность переноса энергии от ионов Се³⁺ к ионам Ть³⁺ с помощью соотношения


$$\eta = (1 - I_{\text{Ce+Tb}}/I_{\text{Ce}}) \cdot 100\%,$$

где $I_{\rm Ce}$ и $I_{\rm Ce+Tb}$ — интенсивности свечения ${\rm Ce^{3+}}$ в соединениях ${\rm Lu_{0.995}Ce_{0.005}BO_3}$ и ${\rm Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3}$ при возбуждении в максимуме свечения ${\rm Ce^{3+}}$ ($\lambda_{\rm ex}=367$ nm). Величина η для соединения ${\rm Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3}$ в соответствии с приведенными выше данными равна $\sim 82\%$, что свидетельствует о высокой эффективности процесса переноса энергии от ${\rm Ce^{3+}}$ к ${\rm Tb^{3+}}$ в соединении ${\rm Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3}$, полученном методом гидротермального синтеза и отожженном при 970°C. Интересно отметить, что эффективность переноса энергии от ${\rm Ce^{3+}}$ к ${\rm Tb^{3+}}$ для ватеритной модификации ${\rm Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3}$, полученной методом твердофазного синтеза, составляет $\eta \sim 78\%$ [4], а для соединения ${\rm Ba_3Gd(PO_3)_4}$: ${\rm Ce^{3+}}$, ${\rm Tb^{3+}}$ — 78.6% [22].

Следует обратить внимание на то, что если спектры возбуждения свечения ионов Ce^{3+} исходных и отожженных при 970°C образцов совпадают, то в СВЛ ионов Tb^{3+} образцов $Lu_{1-x}Tb_xBO_3$, отожженных при 970°C, появляется дополнительная слабая полоса с $\lambda_{\rm ex}=258\,{\rm nm}$ (рис. 7, спектр 3). Наличие этой полосы в СВЛ образцов $Lu_{1-x}Tb_xBO_3$, как и полосы $\sim 1045\,{\rm cm}^{-1}$ в ИК-спектрах, может свидетельствовать о том, что такой образец имеет моноклинную решетку (пр. гр. C2/c).

6.3. Зависимости интенсивностей свечения ионов Tb^{3+} и Ce^{3+} от температуры отжига ортоборатов лютеция, содержащих церий и тербий. Интенсивность свечения ионов Tb^{3+} в полученных методом гидротермального синтеза образцах бората лютеция, содержащих только тербий, при возбуждении в любой из полос, наблюдающихся в спектре возбуждения иона Tb^{3+} , слабо зависит от температуры последующего отжига образца (рис. 5, кривая 1). Иная температурная зависимость интенсивности свечения ионов Tb^{3+} и Ce^{3+} при возбуждении в максимуме полосы возбуждения свечения Ce^{3+} ($\lambda_{ex}=367\,\text{nm}$) наблюдается при отжиге образцов ортобората лютеция, прекурсоры которых содержат церий и одновременно церий и тербий. В этих образцах интенсивности свечения Ce³⁺ в LuBO₃: Ce и Tb³⁺ и Ce³⁺ в LuBO₃: Ce, Tb незначительно увеличиваются при температурах отжига 200-750°C, однако отжиг этих образцов при 800-900°C приводит к резкому и многократному увеличению интенсивностей свечения этих ионов (рис. 5, кривые 2-4). Например, в образцах бората лютеция с легирующими добавками 0.5 at.% Се и 15 at.% Ть интенсивности свечения Tb^{3+} и Ce^{3+} при $\lambda_{ex}=367\,\mathrm{nm}$ увеличиваются соответственно от 29 и 0.15 arb. units в исходном образце до 6242 и 30 arb. units в отожженном при 900-970°C (рис. 7, спектры 4, 5). Практически полное отсутствие свечения Ce³⁺ и слабая интенсивность свечения Tb³⁺ при возбуждении в полосе поглощения Се³⁺ позволяют предположить, что в исходном кристалле бората лютеция концентрация Се³⁺ пренебрежимо мала, однако после отжига при $T = 970^{\circ} \text{C}$ концентрация Ce^{3+} в этом кристалле увеличивается примерно на два порядка.

Следует обсудить еще одну возможную причину увеличения интенсивности свечения ионов Се³⁺ после высокотемпературного отжига ортобората лютеция, легированного церием, а также тербием и церием одновременно. Согласно данным рентгенофазового анализа (раздел 4), при высокотемпературном отжиге $(T = 900 - 970^{\circ}\text{C})$ происходит изменение структурного состояния ватеритной модификации исследуемых в настоящей работе ортоборатов лютеция. Полученные методом гидротермального синтеза образцы имеют гексагональную структуру, после высокотемпературного отжига их структура становится моноклинной. Можно предположить, что концентрация ионов Се³⁺ при высокотемпературном отжиге не изменяется, а свечение увеличивается в результате изменения структурного состояния образца. Однако имеется ряд фактов, свидетельствующих о несостоятельности этого предположения. Свечение ионов Се³⁺ в исследуемых нами образцах обусловлено разрешенными $4f^05d^1 \rightarrow 4f^1$ электронными переходами. Незначительные структурные перестройки, которые имеют место при переходе от гексагональной фазы ватерита к его моноклинной модификации, не оказывают практически никакого влияния даже на запрещенный переход ${}^5D_4 o {}^7F_5$ в ионах Tb^{3+} . Действительно, как отмечалось выше, в

Рис. 8. Зависимости интенсивности свечения ионов Tb^{3+} ($\lambda_{max}=542.3\,\mathrm{nm}$) при возбуждении светом $\lambda_{ex}=367\,\mathrm{nm}$ в отожженных при $970^{\circ}\mathrm{C}$ соединениях $Lu_{0.85-x}\mathrm{Ce}_x\mathrm{Tb}_{0.15}\mathrm{BO}_3$ (I) и $Lu_{0.99-y}\mathrm{Ce}_{0.01}\mathrm{Tb}_y\mathrm{BO}_3$ (2).

полученных методом гидротермального синтеза образцах $LuBO_3$: Ть интенсивность свечения ионов тербия не зависит от температуры отжига вплоть до $T=970^{\circ}\mathrm{C}$. Поэтому переход от гексагональной фазы ватерита к его моноклинной модификации тем более не должен оказывать заметного влияния на интенсивность свечения ионов Ce^{3+} , обусловленного разрешенными переходами. Кроме того, спектры люминесценции и спектры возбуждения люминесценции ионов Ce^{3+} для гексагональной и моноклинной модификаций ватерита идентичны, что свидетельствует об отсутствии влияния этих структурных перестроек на спектральные характеристики исследуемых образцов.

Изменение интенсивности свечения ионов ${
m Tb}^{3+}$ ($\lambda_{
m max}=542.3~{
m nm}$) ($I_{
m Tb}$) в зависимости от концентрации Се в образцах ортобората лютеция, содержащего 15 at.% ТЬ и отожженного при 970° С, при возбуждении в полосе поглощения ${
m Ce}^{3+}$ ($\lambda_{
m ex}=367~{
m nm}$) представлено на рис. 8 (кривая I). Как видно из этого рисунка, максимум свечения ионов ${
m Tb}^{3+}$ наблюдается при концентрации церия $1~{
m at}$. На рис. 8 (кривая 2) представлена зависимость $I_{
m Tb}$ от концентрации тербия при фиксированной концентрации Се $1~{
m at}$.%. Максимальная интенсивность свечения ионов ${
m Tb}^{3+}$ при возбуждении в полосе поглощения ${
m Ce}^{3+}$ наблюдается при концентрации тербия $10~{
m at}$.% и составляет $10~250~{
m arb}$. units.

Как показано в работе [4], максимальная интенсивность свечения ионов Tb^{3+} в полученных методом твердофазного синтеза при 850°C образцах $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$, имеющих структуру ватерита, при возбуждении в полосе поглощения ионов Ce^{3+} составляет 2350 arb. units. Интенсивность свечения ионов Tb^{3+} при $\lambda_{ex}=367\,\mathrm{nm}$ в этих образцах, содержащих 70% ватерита и 30% кальцита, составляет 4640 arb. units. Максимальная интенсивность свечения ионов тербия при возбуждении в полосе поглощения Ce^{3+} ($\lambda_{ex}=340\,\mathrm{nm}$) наблюдается в полученных при $T = 970^{\circ}$ С образцах $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$, имеющих структуру кальцита. В этих образцах $I_{\rm Tb} = 6150 \, {\rm arb. \, units} \, [4]. \, {\rm Takum \, ofpasom, \, untercubhoctb}$ свечения ионов тербия при возбуждении в полосе поглощения ионов церия, обусловленного переносом энергии электронного возбуждения от Ce^{3+} к Tb^{3+} в образцах $Lu_{0.89}Ce_{0.01}Tb_{0.10}BO_3$, полученных методом гидротермального синтеза и отожженных при 970°C, имеющих структуру ватерита ($I_{Tb} = 10250 \text{ arb. units}$), значительно превосходит I_{Tb} в содержащих Се и Тb ортоборатах лютеция, полученных в результате высокотемпературного синтеза и имеющих структуру ватерита или кальцита.

Обсудим возможные причины столь значительного увеличения интенсивности свечения при отжиге полученных методом гидротермального синтеза ортоборатов лютеция, содержащих церий и тербий. Как отмечалось, одна из легирующих добавок — тербий при гидротермальном синтезе замещает ионы лютеция. О вхождении тербия в решетку бората лютеция при легировании как Tb, так и Tb + Ce свидетельствуют также и данные рентгенофазового анализа, согласно которым происходит увеличение параметров решетки этих соединений по сравнению с параметрами решетки $LuBO_3$ (для $LuBO_3$ они равны $a=3.727\,\mathrm{\AA},\,c=8.722\,\mathrm{\AA}$ (PDF-2, N 74-1938), а для бората лютеция, легированного 15 at.% Tb и 15 at.% Tb + 0.5 at.% Се, равны $a = 3.737 \,\text{Å}, c = 8.771 \,\text{Å}$ и $a = 3.736 \,\text{Å}, c = 8.780 \,\text{Å}$ соответственно). При этом отжиг образцов практически не изменяет интенсивности свечения тербия. При использовании двух легирующих добавок (Тв и Се) в условиях гидротермального синтеза, по-видимому, только один тербий образует твердый раствор с боратом лютеция, а церий практически не входит в его решетку, поскольку не наблюдается свечение ионов Ce^{3+} .

Для выяснения состояния церия при гидротермальном синтезе был проведен контрольный эксперимент с использованием в качестве исходных реагентов водной суспензии $Ce(OH)_3\ (pH=9)$ и борной кислоты. Методом рентгенофазового анализа было установлено, что продуктом этой реакции является двуокись церия (CeO_2) .

Таким образом, можно предположить следующий порядок превращений, происходящих при гидротермальном синтезе и отжиге исследуемых соединений. Первой стадией гидротермального синтеза является реакция водных растворов нитратов РЗЭ со щелочью с образованием гидроокисей РЗЭ. Второй стадией синтеза,

которая проходит при $T=200^{\circ}\mathrm{C}$, является взаимодействие гидроокисей Lu(OH)3 и Тb(OH)3 с борной кислотой с образованием твердого раствора $Lu_{1-y}Tb_yBO_3$. Гидроокись Се(ОН)3, как известно, в щелочной среде легко окисляется кислородом воздуха в автоклаве при температуре 200°C, и образуется двуокись церия. Таким образом, продуктом гидротермального синтеза является смесь двух поликристаллических фаз: Lu_{1-v}Tb_vBO₃ и CeO_2 ; $Lu_{1-\nu}Tb_{\nu}BO_3$ образует шарообразные микрочастицы диаметром около 5 µm, состоящие из наноразмерных чешуек (пластинок) толщиной $15-20\,\mathrm{nm}$ (рис. 1, c). Можно предположить, что CeO_2 равномерно распределен среди чешуек $Lu_{1-\nu}Tb_{\nu}BO_3$. При температурах более 800°C высокая поверхностная энергия наночешуек $Lu_{1-\nu}Tb_{\nu}BO_3$ приводит к их плавлению, что повышает скорость диффузии ионов церия и вхождения их в Lu_{1-v}Tb_vBO₃ с образованием соединения $Lu_{1-x-y}Ce_xTb_yBO_3$.

В этом диапазоне температур процесс легирования церием соединения $Lu_{1-y}Tb_yBO_3$ проходит с высокой скоростью. Так, при отжиге при $970^{\circ}C$ в течение 5 и $10\,\mathrm{min}$ интенсивности свечения тербия при возбуждении в полосе поглощения Ce^{3+} составляют соответственно $87\,\mathrm{u}$ 94% от максимального значения.

О том, что при $800-970^{\circ}$ С происходит плавление полученных гидротермальным методом наноразмерных чешуек ортобората лютеция, свидетельствуют данные морфологических исследований этой системы. Действительно, при температуре отжига $800-970^{\circ}$ С наночешуйки начинают исчезать в результате их плавления и вследствие поверхностного натяжения возникают частицы сферической формы диаметром $\sim 100-150\,\mathrm{nm}$. Эти частицы, сплавленные друг с другом, сохраняют форму и внешний размер исходных микросфер (рис. 1,d).

Для проверки возможности осуществления процесса легирования соединения $Lu_{1-\nu}Tb_{\nu}BO_3$ диоксидом церия были проведены эксперименты по исследованию зависимости интенсивности свечения Tb^{3+} и Ce^{3+} при отжиге механической смеси соединений (98 wt.% $Lu_{1-\nu}Tb_{\nu}BO_3$ и 2 wt.% CeO₂), полученных методом гидротермального синтеза, в интервале температур $T_{\rm ann} = 200 - 970^{\circ} {\rm C.}$ Как видно из рис. 5 (кривые 5, 6), эти зависимости полностью совпадают с аналогичными зависимостями для соединений $Lu_{0.995}Ce_{0.005}BO_3$ и $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$. Резкий рост интенсивностей свечения Tb^{3+} и Ce^{3+} происходит в относительно узком интервале температур 800-900°C. Следует отметить, что при отжиге смеси соединений (98 wt.% $Lu_{1-y}Tb_yBO_3$ и 2 wt.% СеО2) максимальное значение интенсивности свечения $\mathrm{Tb^{3+}}$ ($\lambda_{\mathrm{max}} = 542.3\,\mathrm{nm}$) (I_{Tb}) при возбуждении в полосе поглощения Ce^{3+} ($\lambda_{ex}=367\,\text{nm}$) наблюдается при $T_{\rm ann} = 900^{\circ} {\rm C}$. Величина $I_{\rm Tb}$ равна 4026 arb. units, что сопоставимо со значением интенсивности свечения $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, полученного методом гидротермального синтеза и отожженного при 900-970°C (6242 arb. units). Это свидетельствует о том, что эффективность процесса легирования $Lu_{1-\nu}Tb_{\nu}BO_3$ диоксидом церия является высокой даже в неблагоприятных условиях взаимодействия реагентов, находящихся в виде механической смеси порошков. Следует также отметить, что спектры люминесценции (рис. 6, спектр 4) и спектры возбуждения люминесценции (рис. 7, спектры 6,7) механической смеси порошков, отожженных при $900-970^{\circ}$ C, совпадают с аналогичными спектрами полученных методом гидротермального синтеза соединений $Lu_{1-x-y}Ce_{x}Tb_{y}BO_{3}$ после отжига при 970° C (рис. 6, кривая 3; рис. 7, кривые 4,5).

Такие же, как для соединений $Lu_{1-x-y}Ce_xTb_yBO_3$, закономерности изменения спектров люминесценции и спектров возбуждения люминесценции наблюдались нами при отжиге полученных в результате гидротермального синтеза образцов ортобората иттрия, содержащего Се и Тb. Например, в образцах $Y_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ интенсивности свечения Tb^{3+} и Ce^{3+} при $\lambda_{ex}=367$ nm увеличиваются соответственно от 2 и 0.5 arb. units в исходном образце до 7192 и 18 arb. units в образце, отожженном при 970°C.

7. Заключение

В настоящей работе проведены исследования структуры, ИК-спектров поглощения, спектральных характеристик и морфологии полученных методом гидротермального синтеза и отожженных при температурах 200—970°С твердых растворов бората лютеция, активированных церием и тербием. Наиболее значимыми являются следующие результаты.

- 1. Обнаружено, что при отжиге полученных гидротермальным синтезом образцов $Lu_{1-x-y}Ce_xTb_yBO_3$ при $T = 800 - 970^{\circ}$ С интенсивность свечения ионов Tb³⁺ при возбуждении в доминирующей в спектре возбуждения ионов тербия полосе ($\lambda_{ex} = 367 \, \text{nm}$) увеличивается более чем на два порядка. Совпадение этой полосы с полосой возбуждения ионов Ce^{3+} свидетельствует о том, что свечение ионов тербия происходит в результате переноса энергии от Ce^{3+} к Tb^{3+} , который осуществляется по механизму кулоновского диполь-дипольного взаимодействия между церием и тербием (ферстеровский механизм переноса энергии). В то же время отжиг образцов LuBO₃: Тb, не содержащих церия, не приводит к заметному изменению интенсивности свечения ионов Tb^{3+} . Многократное увеличение интенсивности свечения ионов тербия, происходящее в исследуемых образцах при их отжиге при $T = 800 - 970^{\circ}$ С, является следствием значительного увеличения концентрации ионов Се³⁺ в образцах в результате диффузии ионов Се при плавлении наночешуек LuBO₃: Тb и образования соединения $Lu_{1-x-y}Ce_xTb_yBO_3$.
- 2. Согласно данным рентгенофазового анализа, образцы бората лютеция, легированного церием, тербием и одновременно церием и тербием, имеют структуру ватерита и все дифракционные пики соответствуют гексагональной фазе, изоструктурной чистому

LuBO₃ с пр. гр. $P6_3/mmc$. Отжиг этих образцов при $T=970^{\circ}\mathrm{C}$ приводит к изменению структурной модификации ватерита и переходу его в моноклинную фазу с пространственной группой C2/c. В спектре ИКпоглощения отожженных при $970^{\circ}\mathrm{C}$ образцов появляется линия $\sim 1045~\mathrm{cm}^{-1}$, а в спектре возбуждения люминесценции ионов Tb^{3+} слабая полоса $\lambda_{\mathrm{ex}}=258~\mathrm{nm}$. Они могут служить индикаторами возникновения моноклинной модификации образца.

3. Максимальная интенсивность свечения полученных в результате гидротермального синтеза и отожженных при 970°C образцов $Lu_{1-x-y}Ce_xTb_yBO_3$ наблюдается при концентрации Ce 1 at.% и Tb 10 at.% и составляет 10250 arb. units, что в \sim 1.7 раза превосходит интенсивность свечения образцов кальцитной модификации $Lu_{1-x-y}Ce_xTb_yBO_3$, полученных методом твердофазного синтеза, и интенсивность свечения промышленного зеленого люминофора $Y2O_2S:Tb$. Высокая интенсивность свечения образцов $Lu_{1-x-y}Ce_xTb_yBO_3$ обусловлена высокой эффективностью переноса энергии от ионов Ce^{3+} к Tb^{3+} . Экспериментально показано, что в отожженных при 970°C образцах $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ перенос энергии от Ce^{3+} к Tb^{3+} осуществляется с эффективностью \sim 82%.

Полученные методом твердофазного синтеза образцы кальцитной модификации $\mathrm{Lu}_{1-x-y}\mathrm{Ce}_x\mathrm{Tb}_y\mathrm{BO}_3$ являются хорошо ограненными микрокристаллами, средний размер которых составляет $\sim 10\,\mu\mathrm{m}$, в то же время исследуемые в настоящей работе образцы представляют собой микросферы диаметром $\sim 5\,\mu\mathrm{m}$, состоящие из сплавленных частиц сферической формы диаметром $\sim 100-150\,\mathrm{nm}$.

4. Многократное увеличение интенсивности свечения ионов тербия наблюдалось нами также и в других ортоборатах, легированных церием и тербием, полученных методом гидротермального синтеза и отожженных при $T=900-970^{\circ}\mathrm{C}$. Например, в отожженном при $970^{\circ}\mathrm{C}$ образце $Y_{0.845}\mathrm{Ce}_{0.005}\mathrm{Tb}_{0.15}\mathrm{BO}_3$ интенсивность свечения Tb^{3+} при $\lambda_{\mathrm{ex}}=367\,\mathrm{nm}$ составляет 7192 arb. units.

Учитывая высокую интенсивность свечения, радиационную, химическую стабильность и высокую теплопроводность ортоборатов, соединение $Lu_{0.89}Ce_{0.01}Tb_{0.10}BO_3$ может рассматриваться в качестве эффективного зеленого люминофора для светодиодных источников света.

Авторы выражают благодарность Е.Ю. Постновой за исследование морфологии образцов, Н.Ф. Прокопюку за помощь в проведении экспериментов.

Список литературы

- [1] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.И. Зверькова. ФТТ **55**, 336 (2013).
- [2] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.М. Шмытько. ФТТ **57**, 19 (2015).
- [3] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ **57**, 1558 (2015).

- [4] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ 58, 564 (2016).
- [5] X.C. Jiang, L.D. Sun, C.H. Yan. J. Phys. Chem. B 108, 3387 (2004).
- [6] J. Ma, Q. Wu, Y. Ding, Y. Chen. Cryst. Growth. Design 7, 1553 (2007).
- [7] J. Yang, C.X. Li, X.M. Zhang, Z.W. Quan, C.M. Zhang, H.Y. Li, J. Lin. Chem. Eur. J. 14, 4336 (2008).
- [8] J. Yang, C.M. Zhang, L.L. Wang, Z.Y. Hou, S.S. Huang, H.Z. Lian, J. Lin. J. Solid St. Chem. 181, 2672 (2008).
- [9] Y.P. Li, J.H. Zhang, X. Zhang, Y.S. Luo, S.Z. Lu, X,G. Ren, X.J. Wang, L.D. Sun, C.H. Yan. Chem. Mater. 21, 468 (2009).
- [10] J. Yang, H.G. Zhang, Z.L. Wang, C.Z. Huang, L. Zou, P. Cai, Y.F. Zhang, S.S. Hu. J. Mater. Sci. 48, 2258 (2013).
- [11] A. Pitscheider, R. Kaindl, O. Oeckler, H. Huppertz. J. Solid St. Chem. 184, 149 (2011).
- [12] J.H. Lin, D. Sheptyakov, Y.X. Wang, P. Allenspach. Chem. Mater. **16**, 2418 (2004).
- [13] A. Szczeszak, T. Grzyb, S. Lis, R.J. Wiglusz. Dalton Trans. **41**, 5824 (2012).
- [14] Z.G. Wei, L.D. Sun, C.S. Liao, J.L. Yin, X.C. Jiang, C.H. Yan, S.Z. Lu. J. Phys. Chem. B 106, 10610 (2002).
- [15] Z.J. Zhang, T.T. Jin, M.M. Xu, Q.Z. Huang, M.R. Li, J.T. Zhao. Inorg. Chem. 54, 969 (2015).
- [16] M.J. Weber, S.E. Derenso, C. Dujardin. Proc. of SCINT 95 / Eds P. Dorenbos, C.W.E. van Eijk. Delft, The Netherlands (1996). P. 325.
- [17] N.V. Klassen, S.Z. Shmurak, I.M. Shmyt'ko, G.K. Strukova, S.E. Derenso, M.J. Weber. Nucl. Instrum. Method. Phys. Res. A 537, 144 (2005).
- [18] C. Mansuy, J.M. Nedelec, C. Dujardin, R. Mahiou. Opt. Mater. 29, 697 (2007).
- [19] А.П. Киселев, С.З. Шмурак, Б.С. Редькин, В.В. Синицын, И.М. Шмытько, Е.А. Кудренко, Е.Г. Понятовский. ФТТ **48**, 1458 (2006).
- [20] S.Z. Shmurak, A.P. Kiselev, N.V. Klassen, V.V. Sinitsyn, I.M. Shmyt'ko, B.S. Red'kin, S.S. Khasanov. IEEE Trans. Nucl. Sci. 55, 1128 (2008).
- [21] С.З. Шмурак, А.П. Киселев, Д.М. Курмашева, Б.С. Редькин, В.В. Синицын. ЖЭТФ 137, 867 (2010).
- [22] Y. Jin, Y. Hu, Li Chen, X. Wang, Z. Mu, G. Ju, Z. Yang. Physica B 436, 105 (2014).