Влияние катионного и анионного замещений в дисульфиде и диселениде вольфрама на электропроводность и термоэдс

© Г.Е. Яковлева ¹, А.И. Романенко ¹, А.С. Бердинский ², В.А. Кузнецов ¹, А.Ю. Леднева ¹, С.Б. Артемкина ¹, В.Е. Федоров ¹

E-mail: galina.yakovleva.91@mail.ru

(Получена 12 декабря 2016 г. Принята к печати 19 декабря 2016 г.)

Исследованы температурные зависимости электропроводности и коэффициента термоэдс для серии образцов $W_{1-x}Nb_xS_2$, $W_{1-x}Nb_xSe_2$, $WS_{2-y}Se_y$, $W_{1-x}Nb_xS_{2-y}Se_y$ при низких температурах. Установлено, что катионное замещение W атомами Nb приводит к увеличению электропроводности и уменьшению коэффициента термоэдс. Анионное замещение S атомами Se приводит к одновременному увеличению электропроводности и коэффициента термоэдс. Наибольшее значение фактора мощности среди изученных образцов имеет материал $W_{0.8}Nb_{0.2}Se_2$.

DOI: 10.21883/FTP.2017.06.44552.12

1. Введение

Термоэлектричество, основанное на эффекте Зеебека, вызывает особый интерес благодаря прямому преобразованию тепла в электричество. Более того, термоэлектрические генераторы могут использовать практически любые источники тепла, что существенно расширяет область их применения. Однако эффективность такого устройства ограничена эффективностью используемого термоэлектрического материала, которая характеризуется безразмерным параметром добротности $ZT = S^2 \sigma T/\kappa$, где S — коэффициент Зеебека, σ — электропроводность, κ — теплопроводность, T — температура.

Дихалькогениды переходных металлов имеют слоистую структуру. Внутри слоя атомы связаны друг с другом прочными ковалентными связями, но между этими слоями имеют место только слабые ван-дер-ваальсовы взаимодействия [1]. Ряд работ посвящен изучению термоэлектрических свойств WS2 и WSe2 [2,3]. Данные материалы имеют высокий коэффициент Зеебека, низкую теплопроводность и низкую электропроводность. Поэтому целью нашей работы было увеличение электропроводности данных материалов и оценка влияния этого увеличения на фактор мощности.

Для увеличения электропроводности были синтезированы и исследованы образцы дихалькогенидов вольфрама с катионным и анионным замещением W атомами Nb и S атомами Se.

2. Методика эксперимента

2.1. Приготовление образцов

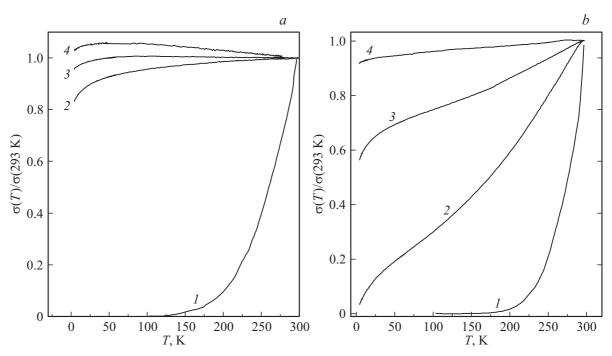
Серии образцов $W_{1-x}Nb_xS_2$, $W_{1-x}Nb_xSe_2$, $WS_{2-y}Se_y$, $W_{1-x}Nb_xS_{2-y}Se_y$ были синтезированы высокотемпера-

турным ампульным методом. Для синтеза использовались элементы высокой степени чистоты. Исходные порошки металлов отжигали в потоке водорода при 1000° С в течение 1 ч, чтобы удалить адсорбированную воду и следы окислов. Стехиометрические количества металла и халькогена помещали в кварцевую ампулу. В дальнейшем ампулу вакуумировали и герметизировали. На последнем этапе ампулы дважды отжигались при температуре $T=850^{\circ}$ С в течение 4 дней.

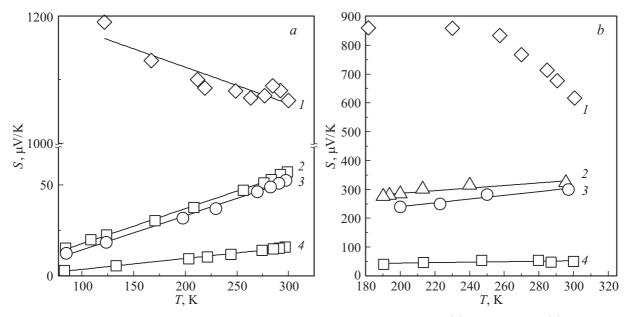
По данным рентгенофазового анализа образцы были однофазные, соответствующие типу $2H\text{-WSe}_2$ и $2H\text{-WS}_2$ соответственно.

2.2. Методы измерения

Для исследования температурных зависимостей синтезированные порошки были спрессованы в таблетки, из которых были вырезаны образцы размером $2 \times 2 \times 8$ мм. Контакты к образцам изготавливались с помощью графитовой пасты.


Температурные зависимости электропроводности были исследованы четырехконтактным методом в диапазоне температур $T=4.2-300\,\mathrm{K}$. Температурные зависимости коэффициента Зеебека были исследованы дифференциальным методом с переменным градиентом температуры в диапазоне температур $T=77-300\,\mathrm{K}$. Коэффициент Зеебека S определялся согласно формуле

$$S = \frac{U_2(\Delta T_2 - U_1(\Delta T_1))}{\Delta T_2 - \Delta T_1},\tag{1}$$


где ΔT_1 , ΔT_2 — градиенты температуры, U_1 , U_2 — термоэдс при соответствующих градиентах температуры. Все измерения проводились в гелиевой атмосфере.

¹ Институт неорганической химии Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

² Новосибирский государственный технический университет, 630073 Новосибирск. Россия

Рис. 1. Температурные зависимости электропроводности $W_{1-x}Nb_xSe_2$ (*a*) и $W_{1-x}Nb_xS_2$ (*b*). *a, b* — содержание Nb x,%: I = 0, 2 = 5, 3 = 10, 4 = 15.

Рис. 2. Температурные зависимости коэффициента Зеебека для образцов $W_{1-x}Nb_xSe_2$ (*a*) и $W_{1-x}Nb_xS_2$ (*b*). *a, b* — содержание Nb x,%: I — 0, 2 – 5, 3 — 10, 4 — 15.

3. Экспериментальные данные

3.1. Исследование температурных зависимостей электропроводности

Катионное замещение W атомами Nb в дисульфиде и диселениде вольфрама приводит к увеличению электропроводности. Поскольку WS $_2$ и WSe $_2$ являются полупроводниками p-типа проводимости, добавление

атомов Nb, имеющих на внешней оболочке на один электрон меньше, приводит к образованию акцепторных примесей. В результате электропроводность материала увеличивается. Ранее это было показано на системе $\mathrm{Mo}_{1-x}\mathrm{Nb}_x\mathrm{S}_2$ [4]. Температурные зависимости электропроводности $\mathrm{W}_{1-x}\mathrm{Nb}_x\mathrm{S}_2$ и $\mathrm{W}_{1-x}\mathrm{Nb}_x\mathrm{Se}_2$ представлены на рис. 1.

Из рис. 1, a, b видно, что WS_2 и WSe_2 имеют полупроводниковый ход температурной зависимости элек-

Таблица 1. Электропроводность $WS_{2-y}Se_y$ при 293 К в зависимости от содержания Se

y (Se)	0	0.1	0.2	0.25	2
σ , Cm/m	0.04	0.12	0.46	0.61	2

Таблица 2. Фактор мощности исследуемых соединений при 293 K

Состав	<i>x</i> , <i>y</i>							
	0.01	0.02	0.05	0.10	0.15	0.20	0.25	
$W_{1-x}Nb_xSe_2$	270	277	72	40	6.5	_	_	
$W_{1-x}Nb_xS_2$	_	_	1.5	32	5	_	_	
$W_{1-x}Nb_xS_{0.1}Se_{1.9}$	20	136	_	_	_	_	_	
$WS_{2-y}Se_y$	_	_	_	0.2	_	0.3	0.5	

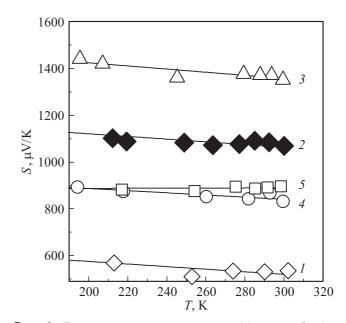
Примечание. Значения приведены в мкВт/м · K².

тропроводности. При этом добавление ниобия в WSe_2 приводит к замене экспоненциальной температурной зависимости электропроводности на степенной зависимостью. При добавлении 15% Nb происходит увеличение электропроводности на 4 порядка. Добавление Nb в WS_2 также приводит к увеличению электропроводности.

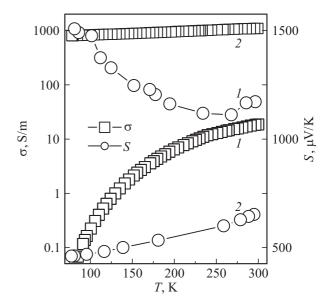
В ряде работ [5,6] показано, что анионное замещение атомов S атомами Se приводит к изменению запрещенной зоны материала. Было установлено, что добавление Se уменьшает величину запрещенной зоны. В свою очередь в полупроводниках уменьшение ширины запрещенной зоны приводит к увеличению электропроводности. Зависимости электропроводности при комнатной температуре от содержания Se в образце $WS_{2-y}Se_y$ представлены в табл. 1. Согласно работе [6], ширина запрещенной зоны для образцов имеет следующие значения: ~ 1.81 эВ в $WS_{1.9}Se_{0.1}$, ~ 1.8 эВ в $WS_{1.8}Se_{0.2}$, ~ 1.79 эВ в $WS_{1.75}Se_{0.25}$. Очевидно, что добавление Se ведет к значительно меньшему изменению электропроводности, чем при катионном замещении W атомами Nb.

3.2. Исследование температурных зависимостей коэффициента Зеебека

Полупроводниковые материалы имеют обратно пропорциональную зависимость коэффициента Зеебека от температуры ($S \propto 1/T$). На рис. 2, a представлены температурные зависимости коэффициента Зеебека для $W_{1-x} Nb_x Se_2$. Видно, что добавление Nb уменьшает коэффициент Зеебека и меняет характер зависимости на металлический ($S \propto T$). В случае дисульфида вольфрама добавление Nb также уменьшает коэффициент Зеебека.


Температурные зависимости для $W_{1-x}Nb_xS_2$ представлены на рис. 2, b.

В образцах $WS_{2-y}Se_y$ анионное замещение S атомами Se привело к увеличению коэффициента Зеебека по


сравнению с исходным дисульфидом вольфрама. Температурные зависимости коэффициента Зеебека представлены на рис. 3. Возможным объяснением такого эффекта является малая концентрация носителей.

Так как и катионное, и анионное замещения имеют разное влияние на термоэлектрические характеристики, были исследованы образцы $W_{1-x} Nb_x S_{2-y} Se_y$. Результаты исследования представлены на рис. 4.

При добавлении 1 и 2% Nb в WSe $_2$ не изменяется вид температурной зависимости электропроводности по отношению к WSe $_2$ ($\sigma \propto T$). Однако в образце

Рис. 3. Температурные зависимости коэффициента Зеебека для образцов $WS_{2-y}Se_y$: $I-WS_2$, $2-WSe_2$, $3-WS_{1.9}Se_{0.1}$, $4-WS_{1.8}Se_{0.2}$, $5-WS_{1.75}Se_{0.25}$.

Рис. 4. Температурные зависимости электропроводности и коэффициента термоэдс: I — $W_{0.99}Nb_{0.01}S_{0.1}Se_{1.9}$, 2 — $W_{0.98}Nb_{0.02}S_{0.1}Se_{1.9}$.

 $W_{0.98}Nb_{0.02}S_{0.1}Se_{1.9}$ ход температурной зависимости меняется на металлический ($\sigma \propto 1/T$). При этом значения коэффициента термоэдс больше в образцах с двойным замещением. Для сравнительного анализа был рассчитан фактор мощности. Результаты представлены в табл. 2.

4. Заключение

В данной работе было изучено влияние катионного и анионного замещений в $W_{1-x}Nb_xS_2$, $W_{1-x}Nb_xS_2$, $W_{1-x}Nb_xS_2$, $W_{2-y}Se_y$, $W_{1-x}Nb_yS_{2-y}Se_y$ на термоэлектрические свойства при низких температурах. Наилучшее значение фактора мощности имеют материалы с катионным замещением атомов W атомами Nb. Максимальное значение фактора мощности в образцах с двойным замещением примерно в 2 раза меньше фактора мощности лучших составов $W_{1-x}Nb_xSe_2$. Однако при двойном замещении возможно более эффективное подавление решеточной теплопроводности, поэтому термоэлектрическая эффективность ZT образцов $W_{1-x}Nb_xS_{2-y}Se_y$ может оказаться выше, чем $WS_{2-y}Se_y$. Этот вопрос требует дальнейшего исследования.

Работа выполнена при поддержке гранта Российского научного фонда № 14-13-00674.

Список литературы

- [1] H. Wang, H. Yuan, S.S. Hong, Y. Li, Y. Cui. Royal Soc. Chem., 44, 2664 (2015).
- [2] J.Y. Kim, S.M. Choi, W.S. Seo, W.S. Cho. Korean Chem. Soc., 3, 3225 (2010).
- [3] G.K. Solanki, D.N. Gujarathi, M.P. Lakshminarayana, M.K. Agarwal. Cryst. Res. Technol., 43, 179 (2008).
- [4] V.E. Fedorov, N.G. Naumov, A.N. Lavrov, M.S. Tarasenko, S.B. Artemkina, A.I. Romanenko, M.V. Medvedev. Proc. 36th Int. Conf. on Information and Communication Technology, Electronics and Microelectronics (Opatija, Croatia, 2013) p. 11.
- [5] D.N. Gujarathi, G.K. Solanski, M.P. Deshpande, M.K. Agarwal. Mater. Sci. Semicond. Processing, 8, 576 (2005).
- [6] J. Kang, S. Tongay, J. Li, J. Wu. J. Appl. Phys., 113, 143703 (2013).

Редактор Л.В. Шаронова

Effect of anionic and cationic substitution on conductivity and thermopower in tungsten disulfide and tungsten diselenide

G.E. Yakovleva¹, A.I. Romanenko¹, A.S. Berdinsky², V.A. Kuznetsov¹, A.Yu. Ledneva¹, S.B. Artemkina¹, V.E. Fedorov¹

 Nicolaev Institute of Inorganic Chemistry, Russian Academy of Sciences,
630090 Novosibirsk, Russia
Novosibirsk State Technical University,
630073 Novosibirsk, Russia

Abstract The temperature dependences of electrical conductivity and thermopower of $W_{1-x}Nb_xS_2$, $W_{1-x}Nb_xS_2$, $WS_{2-y}Se_y$, $W_{1-x}Nb_xS_2$, $WS_{2-y}Se_y$, $WS_{2-y}Se_y$, $WS_{2-y}Se_y$ samples have been investigated in low temperature range. It is found that cationic substitution of W by W bleads to increase of electrical conductivity and to decrease of thermopower. Anionic substitution of S by S eleads to increase of both, electrical conductivity and thermopower. $W_{0.8}Nb_{0.2}Se_2$ has the best value of power factor among the samples prepared.