Фазовый переход в CdHfO₃

© Н.В. Шпилевая, М.Ф. Куприянов, Б.С. Кульбужев, Ю.В. Кабиров

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия

E-mail: shpilevay@mail.ru

(Поступила в Редакцию 16 апреля 2004 г.)

С помощью структурных исследований фазового перехода $CdHfO_3$ из орторомбической фазы (пространствиная группа Pnma) в ромбоэдрическую (пространственная группа R3m) показано, что эти фазы содержат полярные структурные элементы (октаэдры и кубооктаэдры), и поэтому могут быть антисегнетоэлектрической и сегнетоэлектрической фазами соответственно.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-03-32039).

1. Введение

Ранее при изучении монокристаллов и керамики CdHfO₃ [1,2] обнаружен фазовый переход с максимумом диэлектрической проницаемости при $T = 605^{\circ}$ С. В [1] данный переход интерпретирован как антисегнетоэлектрический в связи с тем, что фаза при комнатной температуре идентифицировалась как орторомбическая и характеризовалась сверхструктурной (по отношению к перовскитовой) ячейкой. В [3] для данной фазы CdHfO₃ была определена элементарная орторомбическая ячейка с пространственной группой симметрии Pbnm и параметрами $A_{\rm O} = 5.5014(8),\ B_{\rm O} = 5.6607(8)$ и $C_{\rm O} = 7.969(1)$ Å. Температурные исследования поликристаллического CdHfO₃ [2] позволили установить следующую последовательность фаз с ростом температуры: орторомбическая I $(0-605^{\circ}C)$ — орторомбическая II $(605-700^{\circ}C) \rightarrow$ ромбоэдрическая (выше $700^{\circ}C$). Однако, в [3] орторомбическая фаза II не обнаружена. Высокотемпературная ромбоэдрическая фаза в [3] характеризовалась пространственной группой $R\bar{3}c$, параметры гексагональной ячейки $A_{\rm H}=5.747(4)$ и $C_{\rm H}=13.49(1)$ Å.

Ограниченность информации о структуре $CdHfO_3$ и ее изменениях с температурой, а также необходимость выяснения того, является ли действительно $CdHfO_3$ сегнетоэлектриком или антисегнетоэлектриком, определили задачи настоящей работы, которые состояли в уточнении структурных параметров $CdHfO_3$ как при комнатной температуре, так и в окрестности фазовых измерений.

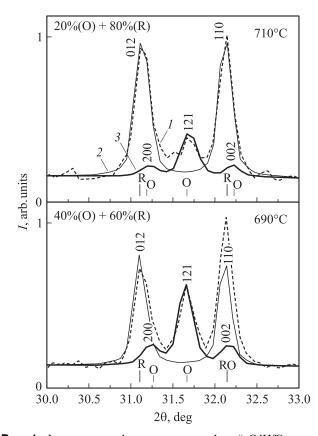
2. Эксперимент

Структура поликристаллического $CdHfO_3$ изучалась методом рентгеновской дифракции на установке ДРОН-3М (CuK_α -излучение) с использованием температурной камеры УВР-1200. Стабилизация температуры в образце достигалась с помощью терморегулятора ВРТ-2 с точностью ± 0.5 К. Съемка велась методом Брэгга—

Брентано в интерале углов $20 < 2\theta < 100^\circ$ с шагом сканирования детектора 0.08 градусов и временем экспозиции в каждой точке $1\,\mathrm{s}$ с компьютерной записью информации. Дифракционные профили $\mathrm{CdHfO_3}$ сняты при разных температурах с разным шагом ΔT : вдали от фазового перехода ΔT составлял $50\,\mathrm{K}$, вблизи фазового перехода — $20\,\mathrm{K}$. Уточнение структуры $\mathrm{CdHfO_3}$ проводилось с использованием компьютерной программы PowderCell 2.3 [4]. При этом уточнялись параметры ячеек и атомные параметры (тепловые и позиционные) и рассматривались различные варианты возможных пространственных групп.

3. Результаты и обсуждение

Обработка экспериментальных данных позволила уточнить пространственную группу симметрии и определить атомные параметры во всем интервале температурных исследований.


Устновлено, что в интервале $20 \le T \le 500^{\circ}\mathrm{C}$ CdHfO₃ характеризуется, как и в [3], орторомбической симметрией с пространственной группой Pnma. Температруные исследования структурных изменений CdHfO₃ показали, что в интервале $550 \le T \le 730^{\circ}\mathrm{C}$ орторомбическая (O) фаза сосуществует с ромбоэдрической (R) фазой, пространственная группа которой определена как R3m. На рис. 1 показаны фрагменты рентгендифракционных профилей CdHfO₃ при температурах 690 и 710°C, обработка которых позволила определить кроме структурных параметров О- и R-фаз и их концентрации. Выше 730°C CdHfO₃ имеет чисто ромбоэдрическую структуру.

В таблице приведены структурные параметры орторомбической фазы при 20° С и ромбоэдрической фазы при 900° С. Здесь $A_{\rm O}$, $B_{\rm O}$ и $C_{\rm O}$ — параметры орторомбической элементарной ячейки, которая является сверхструктурной (четырехкратной) по отношению к моноклинной перовскитовой подъячейке с параметрами $a_M = c_M$, b_M и β_M . A_H и C_H — параметры элементарной ячейки ромбоэдрической фазы в гексагональной

Структурные параметры и длины межатомных связей металл–кислород $l_{(\mathrm{M-O})}$ орторомбической (O) и ромбоэдрической (R) фаз $\mathrm{CdHfO_3}$

$CdHfO_3(O)$ $T=20^{\circ}C$ Пространственная группа $Pnma=D_{2h}^{16}$ $N=51$ $P=12$ $A_0=5.6559\text{Å}$ $a_{\rm M}=c_{\rm M}=3.9423\text{Å}$ $B_0=7.9654\text{Å}$ $b_{\rm M}=3.9827\text{Å}$ $C_0=5.4934\text{Å}$ $\beta_{\rm M}=91^{\circ}47'$					СdHfO ₃ (R) $T=900^{\circ}$ С Пространственная группа $R3m=C_{3v}^5$ $N=28$ $P=8$ $A_{\rm H}=5.5838(5)$ Å $a_{\rm R}=4.0109$ Å $C_{\rm H}=7.1592$ Å $\alpha_{\rm R}=91^{\circ}47'$				
Атом	x	у	z	$B, Å^2$	Атом	x	у	z	B, \mathring{A}^2
Cd Hf OI OII	0.550 0.500 0.260 0.530	0.250 0.000 0.020 0.250	0.505 0.000 0.235 0.030	0.9(2) 0.9 0.4 0.4	Cd Hf O	0.000 0.000 0.550	0.000 0.000 0.550	0.010 0.510 0.000	2.1 2.1 1
A	том	Длины связей			Атом		Длины связей		
M	О	l _(M-O) , Å			M	О	l _(M-O) , Å		
Cd Cd Cd Cd Hf Hf Hf	OI(1) OI(2) OII(1) OII(2) OI(1) OI(2) OI(2) OII	2.79(2) 2.54 2.77 2.53 1.88 2.08 2.01			Cd Cd Hf Hf	O(1) O(2) O(1) O(2)	2.79 2.73 2.05 1.96		

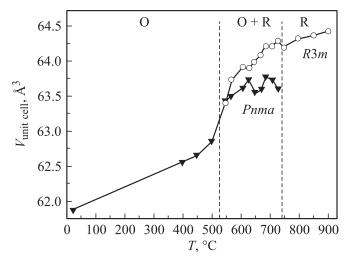
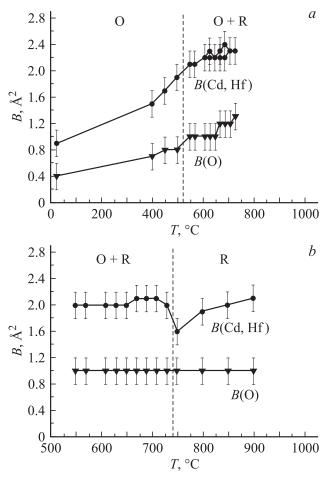

 Π р и м е ч а н и е. N — число рефлексов, P — число уточняемых параметров.

Рис. 1. Фрагменты дифракционных профилей CdHfO₃, содержащие разные концентрации О- и R-фаз. I — экспериментальный профиль, 2, 3 — расчетные профили для R- и для О-фазы соответственно.

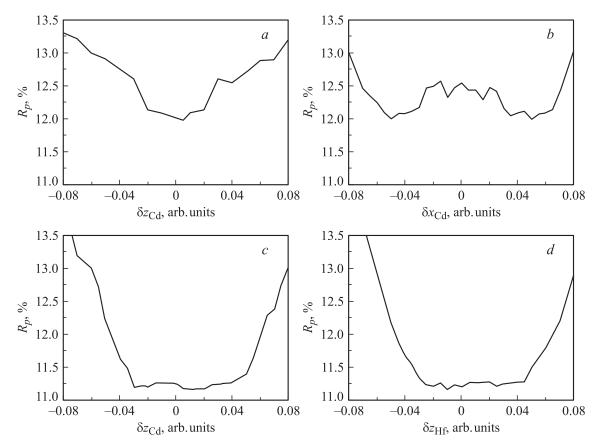
установке, a_R и α_R — параметры ромбоэдрической перовскитовой подъячейки. Координаты атомов x, y, u zданы в долях ячейки. В таблице приведены также длины связей металл-кислород $l_{(M-O)}$, рассчитанные по значениям структурных параметров. Орторомбическая фаза характеризуется разнообразием длин связей металлкислород: атомы Cd имеют две коротких и две длинных связи с атомами О сорта II (OII), расположенными в том же слое (перпендикулярно ребру $B_{\rm O}$), а также четыре длинных и четыре коротких связи с атомами О сорта I (OI), находящимися в одном слое с атомами Hf. У атомов Hf есть две короткие и две длинные связи с атомами OI и две относительно длинные связи с атомами ОІІ. В ромбоэдрической фазе атомы Сf имеют шесть удлиненных связей с атомами О, расположенными в том же слое плотнейшей кубической упаковки (перпендикулярно ребру C_H) и шесть укороченных связей с атомами О из ближайших слоев упаковки. Атомы Hf лежат между слоями плотнейшей кубической упаковки и имеют три короткие и три длинные связи с атомами О из соседних слоев.

Обращает на себя внимание (таблица) особенность в соотношениях параметров фактора Дебая—Валлера (B), состоящая в том, что $B(\mathrm{Cd})$ приближенно равен $B(\mathrm{Hf})$ и заметно превышает $B(\mathrm{O})$ как в орторомбической, так и в ромбоэдрической фазах. Такое соотношение тепловых параметров означает, что среднеквадратичные смещения атомов металлов существенно больше, чем у атомов кислорода. Эта особенность ранее отмечена для

Рис. 2. Зависимости объемов элементарных подъячеек CdHfO₃ от температуры.


многих Рb-содержащих перовскитов [5–8] и объяснялась наличием не только тепловых колебаний атомов, но и статистически неупорядоченных локальных смещений атомов.

По температурным зависимостям параметров перовскитовых подъячеек О- и R-фаз построены зависимости объемов подъячеек обеих фаз от температуры (рис. 2), что позволило определить коэффициенты объемного расширения β . Введем $\beta_{\rm M}$ и $\beta_{\rm R}$ — коэффициенты объемного расширения соответственно для моноклинной и ромбоэдрической подъячеек. Можно видеть, что в случае чистых орторомбической и ромбоэдрической фаз величина β значительно меньше, чем в интервале их сосуществования: коэффициент β_{M} в области $20 \le T \le 525^{\circ}$ С приближенно равен значению $\beta_{
m R}$ на участке $740 \le T \le 900^{\circ}$ С и составляет $2.86 \cdot 10^{-5} \,\mathrm{K}^{-1}$, а β_{M} и β_{R} в области $525 \leq T \leq 740^{\circ}\mathrm{C}$ имеют значение около $12.7 \cdot 10^{-5} \, \mathrm{K}^{-1}$. Следует отметить резкое уменьшение объема перовскитовой подъячейки при понижении температуры с появлением орторомбической фазы при 730°С, составляющее $0.687\,\text{Å}^3$ (что характерно для фазовых переходов в антисегнетоэлектрические фазы).


Построенные температурные зависимости длин связей металл–кислород обнаружили следующее. С ростом температуры в фазах О и R наибольшие изменения наблюдаются в длинах связей Cd–O. Так, в орторомбической фазе в области $650 \le T \le 710^{\circ}\mathrm{C}$ длинная связь Cd–OII резко укорачивается, короткая связь Cd–OI удлиняется, и эти связи становятся почти равными. Длинная связь Cd–OI также заметно укорачивается. В ромбоэдрической фазе при повышении температуры короткая связь Cd–O удлиняется, приближаясь по величине к длинной Cd–O. Длины связей Hf–O как в орторомбической, так и в ромбоэдрической фазах слабо меняются с температурой.

На рис. З приведены температурные зависимости параметров факторов Дебая—Валлера атомов для орторомбической и ромбоэдрической фаз. Можно видеть, что как в О-, так и в R-фазе параметры $B(\mathrm{Cd},\mathrm{Hf})$ заметно выше, чем $B(\mathrm{O})$. Причем если в орторомбической фазе $B(\mathrm{Cd},\mathrm{Hf})$ и $B(\mathrm{O})$ монотонно увеличиваются с ростом температуры, то в случае ромбоэдрической фазы величина $B(\mathrm{O})$ не зависит от температуры. Наблюдаемый заметный минимум параметров B атомов Cd и Hf при $T\approx730-750^{\circ}\mathrm{C}$ (рис. 3,b), по-видимому, отражает характер фазового перехода I рода из орторомбической фазы в ромбоэдрическую [9].

По данным таблицы, для обеих фаз рассчитаны расстояния d между атомами металлов и центрами тяжести атомов кислорода ближайшего окружения O_{Σ} (атомы Cd находятся в кубооктаэдрическом кислородном окружении, атомы Hf — в октаэдрическом окружении). В орторомбической фазе $d_{(\mathrm{Cd-O_{\Sigma}})}=0.21\,\mathrm{\mathring{A}},$ $d_{(\mathrm{Hf-O_{\Sigma}})}=0$ ($T=20\,\mathrm{^{\circ}C}$). Для ромбоэдрической фазы $d_{(\mathrm{Cd-O_{\Sigma}})}=d_{(\mathrm{Hf-O_{\Sigma}})}=0.072\,\mathrm{\mathring{A}}$ ($T=900\,\mathrm{^{\circ}C}$). Наличие в обеих фазах атомных групп, в которых центры тяжести атомов кислорода и металла не совмещены, позволяет

Рис. 3. Зависимости параметров фактора Дебая–Валлера атомов CdHfO₃ от температуры в орторомбической (a) и ромбоэдрической (b) фазах.

Рис. 4. Зависимости профильного фактора недостоверности R_p от величин смещений атомов CdHfO₃ в орторомбической (a, b) и ромбоэдрической (c, d) фазах.

предположить в них антисегнетоэлектрическое и сегнетоэлектрическое состояния.

Для обоснования достоверности определения структуры CdHfO $_3$ в орторомбической и ромбоэдрической фазах проведен анализ чувствительности профильного R-фатора (R_p) к координатным параметрам атомов (рис. 4). Можно видеть, что в О-фазе минимальная величина R_p достигается при $\delta z_{\rm Cd}=0.005$ и $\delta x_{\rm Cd}=\pm 0.05$ (рис. 4, a, b). Таким образом, процедура уточнения структуры CdHfO $_3$ в данной фазе приводит к наиболее вероятной структурной модели антипараллельных смещений атомов Cd вдоль оси x. В R-фазе R_p минимален при значениях $\delta z_{\rm Cd}=\delta z_{\rm Hf}=0.01$ (рис. 4, c, d).

Авторы выражают благодарность Р.И. Спинко за предоставленные образцы гафната кадмия.

Список литературы

- Л.И. Аверьянова, И.Н. Беляев, Ю.И. Гольцов, Л.А. Соловьев, Р.И. Спинко, О.И. Прокопало. ФТТ 10, 11, 3416 (1968).
- [2] Р.И. Спинко, В.Н. Лебедев, Р.В. Колесова, Е.Г. Фесенко. Кирсталлография 18, 4, 849 (1973).
- [3] P.D. Dernier, J.P. Remeika. Mat. Res. Bull. 10, 187 (1975).
- [4] W. Kraus, G. Nolze. J. Appl. Cryst. 29, 301 (1996).

- [5] P. Bonneau, H. Garnier, E. Husson, A. Morell. Mat. Res. Bull. 24, 201 (1989).
- [6] V. Chernyshov, S. Zhukov, S. Vakhrushev, H. Shenk. Ferroelektric Lett. 23, 1, 43 (1997).
- [7] A.R. Lebedinskaya, M.F. Kupriyanov. Phase Transitions 75, 3, 289 (2002).
- [8] R. Kolesova, V. Kolesov, M. Kupriyanov, R. Skulski. Phase Transitions 68, 621 (1999).
- [9] K. Itoh, K. Fujihara. Ferroelektrics **120**, 175 (1991).