04,06

Антирезонансные диэлектрические спектры: теория и эксперимент

© А.В. Турик 1,2 , Н.А. Болдырев 1 , Е.И. Ситало 1 , Л.А. Резниченко 1

1 Научно-исследовательский институт физики Южного федерального университета,

Ростов-на-Дону, Россия

² Южный федеральный университет,

Ростов-на-Дону, Россия

E-mail: turik1934@yandex.ru

(Поступила в Редакцию 20 декабря 2016 г.)

Установлено, что в керамиках твердых растворов мультиферроиков BiFeO $_3$ -SrTiO $_3$ и BiFeO $_3$ -BaTiO $_3$, наряду с релаксационными и резонансными диэлектрическими спектрами, возможен еще один, не описанный в литературе, вид спектров — антирезонансные. Выполнено моделирование антирезонансных диэлектрических спектров и получены экспериментальные данные, подтверждающие результаты моделирования. Показано, что для антирезонансных спектров характерна большая энергия активации ($U > 1\,\mathrm{eV}$). Предположена связь антирезонансных спектров с явлениями прыжковой проводимости.

Работа выполнена при финансовой поддержке базовой части гос. задания МОН РФ (проекты № 3.6371.2017/БЧ, № 3.6439.2017/БЧ) с использованием оборудования ЦКП "Электромагнитные, электромеханические и тепловые свойства твердых тел" НИИ физики ЮФУ.

DOI: 10.21883/FTT.2017.07.44590.448

1. Введение

В керамиках твердых растворов (ТР) на основе мультиферроика феррита висмута BiFeO₃-SrTiO₃ и ВіГеО3-ВаТіО3 при высоких температурах нами наблюдались отрицательные значения действительной части $\varepsilon^{*\prime}$ комплексной диэлектрической проницаемости $arepsilon^* = arepsilon^{*\prime} - iarepsilon^{*\prime\prime}$ ($arepsilon^{*\prime\prime}$ — мнимая часть комплексной диэлектрической проницаемости) в области инфранизких частот. Для объяснения наблюдаемых явлений мы использовали предложенный в [1] подход, основанный на применении эквивалентной схемы замещения керамики параллельно включенными емкостью C и комплексной проводимостью $G=1/R=(G_1-iG_2)$. Такой подход позволяет корректно описать экспериментальные данные, в том числе монотонную зависимость $\varepsilon^{*\prime}$ и $\varepsilon^{*\prime\prime}$ от круговой частоты $\omega = 2\pi \nu$ электрического поля и прохождение действительной части комплексной емкости C^* или комплексной диэлектрической проницаемости ε^* керамики через нуль.

2. Теория

Существование отрицательных проницаемостей $\varepsilon'<0$ в металлах и плазме было предсказано в работе [2], но не было измерено вследствие чрезвычайно большого отношения электропроводности к диэлектрической проницаемости. Однако недавно [3,4] вновь возник интерес к механизмам возникновения отрицательной емкости в неупорядоченных твердых телах. Гигантская отрицательная диэлектрическая проницаемость в инфранизкочастотном диапазоне была обнаружена в керамике $CaCu_3Ti_4O_{12}$ [5]. Авторы [5] предположили, что основным механизмом может

быть механизм заполнения и опустошения ловушек. Ниже 10^{-2} Hz как действительная $|\varepsilon'|$, так и мнимая ε'' части проницаемости увеличивались при уменьшении частоты ν , и $|\varepsilon'|$ быстро достигала величин $|\varepsilon'| > 10^6$ на частоте $\nu \approx 10^{-4}$ Hz. При этом действительная часть удельной проводимости $\gamma' \approx {\rm const.}$ Согласно [1], такое поведение можно промоделировать в терминах цепи конденсатор—резистор [3,4].

Захваченные на ловушки с различной глубиной залегания носители заряда должны для дальнейшего движения преодолевать потенциальные барьеры различной высоты U. Керамика является гетерогенной средой и может быть охарактеризована эффектом запаздывания, который описывается формулой Аррениуса [6]

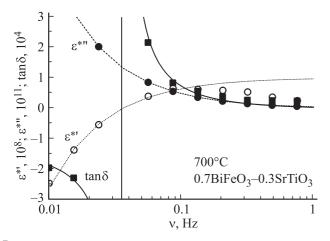
$$\tau = \tau_0 \exp\left(\frac{U}{kT}\right). \tag{1}$$

Здесь τ — время релаксации, U — средняя высота потенциального барьера, T — абсолютная температура, k — постоянная Больцмана и τ_0 — предэкспоненциальный фактор, обратно пропорциональный частоте малых колебаний захваченного носителя вблизи локального минимума потенциальной энергии. Дальнейшее движение носителей можно интерпретировать путем введения комплексной подвижности носителей и комплексной проводимости [1].

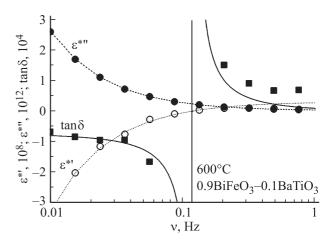
Параллельное включение емкости и проводимости позволяет адекватно описать экспериментальные данные и прохождение через нуль действительной части комплексной емкости C^* и проницаемости ε^* . В отличие от гомогенных материалов, характеризующихся действительными величинами емкости и проводимости, емкость и проводимость гетерогенных материалов комплексны и имеют как действительные, так и мнимые части.

Следуя [1], мы будем использовать параллельную цепь с действительной емкостью C и комплексной проводимостью $G=1/R=(G_1-iG_2)$. Комплексный адмитанс Y^* и комплексная емкость C^* такой цепи равны

$$Y^* = \frac{1}{R} + i\omega C = G_1 - iG_2 + i\omega C, \quad C^* = C - \frac{G_2}{\omega} - i\frac{G_1}{\omega}$$
(2)


соответственно. При этом действительная $\varepsilon^{*'}$ и мнимая $\varepsilon^{*''}$ части диэлектрической проницаемости керамики связаны с мнимой γ'' и действительной γ' частями удельной проводимости соотношениями

$$\varepsilon^{*\prime} = \varepsilon^{\prime} - \frac{\gamma^{\prime\prime}}{\omega \varepsilon_0}, \quad \varepsilon^{*\prime\prime} = \frac{\gamma^{\prime}}{\omega \varepsilon_0},$$
 (3)


где $\varepsilon_0 = 8.854 \cdot 10^{-12} \, \text{F/m}$ — проницаемость вакуума. (Здесь и в дальнейшем символами со звездочкой нами обозначены параметры гетерогенной среды — керамики, а символами без звездочки — параметры гомогенных компонентов эквивалентной схемы замещения).

3. Основные результаты и обсуждение

На рис. 1 и 2 приведены экспериментально полученные с помощью универсального измерительного моста Novocontrol ALPHA High—Resolution Dielectric Analyzer и рассчитанные по приведенным выше формулам диэлектрические спектры исследуемых объектов. Керамики TP BiFeO₃—SrTiO₃ и BiFeO₃—BaTiO₃ синтезировались методом твердофазных реакций обжигом в две стадии с промежуточным помолом [7]. Подгонка экспериментальных данных с помощью формул (2) и (3) для параллельной RC-цепи вполне удовлетворительна. Гиперболическая зависимость $\varepsilon^{*\prime}$ и $\varepsilon^{*\prime\prime}$ от частоты ω — следствие прыжковой проводимости. Причем для возникновения антирезонанса с отрицательной величиной $\varepsilon^{*\prime}$ достаточно, чтобы диэлектрик имел нормальную величи-

Рис. 1. Полученные экспериментально и рассчитанные по формулам (2) и (3) диэлектрические спектры TP 0.7BiFeO₃-0.3SrTiO₃ при температуре 700° C. $\varepsilon'=10^{8}$, $\gamma'=0.22\,(\Omega\cdot m)^{-1}$, $\gamma''=2\cdot 10^{-4}\,(\Omega\cdot m)^{-1}$.

Рис. 2. Полученные экспериментально и рассчитанные по формулам (2) и (3) диэлектрические спектры TP 0.9BiFeO₃ – 0.1BaTiO₃ при температуре 600° C. $\varepsilon' = 0.3 \cdot 10^{8}$, $\gamma' = 1.45 \, (\Omega \cdot m)^{-1}$, $\gamma'' = 2.17 \cdot 10^{-4} \, (\Omega \cdot m)^{-1}$.

ну ε' , большую γ' и малую γ'' . Критическая частота, на которой $\varepsilon^{*'}=0$, определяется как $\omega_c=2\pi v_c=\gamma''/\varepsilon_0\varepsilon'$. Частотные зависимости действительной $M'(\omega)$ и мнимой $M''(\omega)$ частей электрического модуля $M=1/\varepsilon^*$ монотонны, причем $M'(\omega)=0$ при $\omega=\omega_c$. Для антирезонансных спектров характерна большая $(U>1~{\rm eV})$ энергия активации, которую можно оценить по формуле Аррениуса (1). Следует отметить, что большие величины удельной проводимости γ' характерны не только для резонансных, но и для релаксационных (вследствие максвелл-вагнеровской релаксации) спектров некоторых близких по структуре к исследуемым ТР материалов, таких как керамика $\mathrm{Bi}_{0.5}\mathrm{La}_{0.5}\mathrm{MnO}_3$ [7].

4. Заключение

Установлено теоретически и подтверждено экспериментально, что, наряду с релаксационными и резонансными спектрами диэлектриков, возможен новый, не описанный в литературе, вид спектров — антирезонансные с большой $(U>1\ {\rm eV})$ энергией активации. Обсуждена связь антирезонансных спектров с явлениями прыжковой проводимости.

Список литературы

- [1] A.V. Turik, A.S. Bogatin. Func. Mater. Lett. **8**, *4*, 1550035 (2015).
- [2] O.V. Dolgov, D.A. Kirzhnits, E.G. Maksimov. Rev. Mod. Phys. 53, 81 (1981).
- [3] H.L. Kwok. Solid-State Electron. 47, 1089 (2003).
- [4] H.L. Kwok. Phys. Status Solidi C 5, 2, 638 (2008).
- [5] Yu. Kabirov, V. Gavrilyachenko, E. Panchenko, E. Milov, A. Klenushkin. Adv. Mater. Res. 705, 52 (2013).
- [6] Г. Фрёлих. Теория диэлектриков. ИИЛ, М. (1960). 252 с.
- [7] А.В. Турик, А.В. Павленко, Л.А. Резниченко. ФТТ 58, 1499 (2016).