07

Акустическая эмиссия при взаимодействии скользящей дислокации с точечными препятствиями

© В.В. Благовещенский, И.Г. Панин ¶

Костромской государственный университет, Кострома, Россия

¶ E-mail: igpanin@list.ru

(Поступила в Редакцию 22 декабря 2016 г. В окончательной редакции 17 января 2017 г.)

С помощью математической модели движения скользящей дислокации вычисляется сигнал акустической эмиссии, сопровождающий процесс преодоления дефектов в кристалле. Дана оценка величин упругих напряжений в излучаемом сигнале. Установлено, что сигнал акустической эмиссии при срыве дислокации с дефекта значительно превосходит сигнал при торможении скользящей дислокации при встрече с дефектом. Эти сигналы имеют различную форму.

DOI: 10.21883/FTT.2017.08.44757.457

1. Введение

Явление акустической эмиссии происходит в кристаллических твердых телах при деформации, сопровождающейся образованием и эволюцией дислокационных ансамблей. Упругая энергия, излучаемая при этом, может регистрироваться диагностической аппаратурой, используемой для контроля над состоянием металлических конструкций [1,2]. Одним из возможных механизмов эмиссии является акустическое излучение, возникающее при работе источника Франка-Рида. Начальная стадия этого процесса, начинающаяся задолго до момента блокировки образующегося скопления обратными напряжениями, и сопровождающего его излучения моделировалась в работах Нацика и Чишко [3,4]. Теоретические расчеты акустической эмиссии при пластической деформации с коллективным движением дислокаций [5] показывают, что релаксация напряжений начинается с момента максимального значения акустического импульса, совпадающего по времени с максимальным значением напряжений в кристалле. В то же время полученная при этом кривая напряжения не совсем точно описывает реальный процесс деформирования ни с точки зрения опытных данных [6], ни с точки зрения результатов моделирования [7].

В [8,9] экспериментально показано, что максимальной величины импульсы эмиссии достигают на пределе текучести.

В настоящей работе представлены данные акустической эмиссии при скольжении дислокации на площадке моделирования вплоть до выхода дислокации на поверхность кристалла.

2. Модель

Для исследования акустической эмиссии, сопровождающей скольжение дислокации через систему дефектов, была использована разработанная авторами ранее

модель скольжения дислокации через систему дефектов [7]. Движение дислокации происходит в модельном образце, в котором расположены однородные дефекты (стопоры). Дислокационная линия, состоящая из отдельных связанных между собой дислокационных сегментов, опирающихся своими концами на стопоры, двигается от одного края площадки моделирования к другому (рис. 1). Каждый сегмент при движении изгибается, может столкнуться со встречными стопорами или сорваться с удерживающих его стопоров, при этом образуются новые сегменты.

Каждый шаг движения любого сегмента рассчитывается при помощи решения уравнения (1) [3,10]

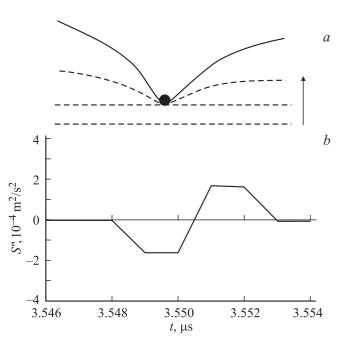
$$p\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial \lambda^2} = S - \frac{1}{R(\lambda)},$$

$$U(0,t) = U(L,t) = 0 \,\forall t, \quad U(\lambda,0) = 0 \,\forall \lambda, \tag{1}$$

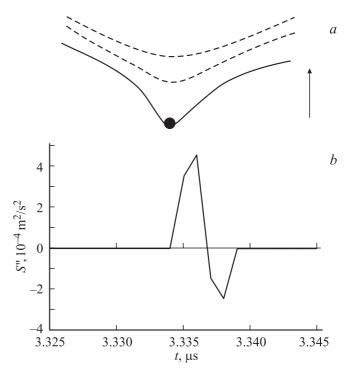
где $p=B/Gb^2,~S=\sigma/Gb,~t$ — время, G — модуль сдвига, b — модуль вектора Бюргерса, B — коэффициент динамической вязкости, U — смещение точек дислокационного сегмента, $R(\lambda)$ — радиус кривизны сегмента в точке λ, σ — величина внешнего напряжения, λ — криволинейная координата вдоль сегмента, L — длина сегмента. Уравнение (1) справедливо для таких смещений U сегмента, что $U\gg L$, решается численно, методом сеток.

Таким образом, скольжение дислокаций будет прерывистым, существенно неравномерным, и сопровождается

Рис. 1. Фрагмент работы модели движения дислокации.


акустической эмиссией, которая возникает в моменты сталкивания дислокации с новым стопором или при срыве ее с одного из опорных стопоров.

3. Результаты


Акустическое излучение, сопровождающее процесс скольжения дислокации и выхода ее на поверхность, можно оценить формулой [4,11]:

$$\omega \approx G \frac{b}{r} \left(\frac{\rho b^2 c}{l_0 B}\right)^2 \frac{d^2 S}{d\tau^2},$$
 (2)

где c — скорость звука, ρ — плотность кристалла, r — расстояние от источника до приемника сигнала, $\tau = tD/Bl_0^2$ — безразмерное время, D =

Рис. 2. Столкновение дислокации со стопором: a) схема столкновения, b) сигнал звуковой эмиссии.

Рис. 3. Срыв дислокации со стопора: a) схема срыва, b) сигнал звуковой эмиссии.

 $=(Gb^2/4\pi)\ln(l_0/b)$. Из выражения (2) видно, что величина упругих напряжений излучения пропорциональна второй производной от заметаемой дислокацией площади, поэтому в исходную математическую модель было добавлено вычисление площади и ее второй производной для каждого момента времени.

Расчеты, проведенные на полученной модели, показали, что в моменты сталкивания со стопорами и срыва с них вторая производная заметаемой дислокацией площади скачкообразно меняет свое значение, в то время как при нормальном движении дислокации она меняется плавно. На рис. 2 и 3 представлены схематические изображения столкновения дислокации со стопором и

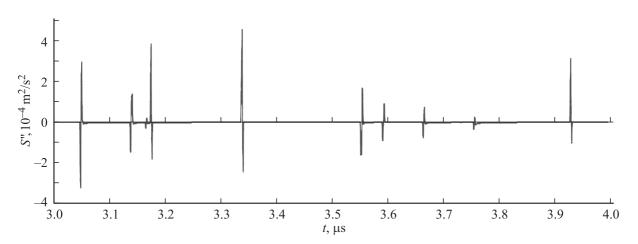


Рис. 4. Фрагмент последовательности сигналов акустической эмиссии.

срыва с него, а также соответствующие им импульсы акустической эмиссии, полученные с помощью моделирования. Стрелками показаны направления движения дислокации.

В обоих случаях сигнал имеет форму двуполярного импульса. Но при сталкивании сначала имеем отрицательный "выброс", затем положительный, а при срыве — наоборот. Причем при срыве амплитуда импульса, как правило, на порядок больше, чем при сталкивании.

Необходимо заметить, что, хотя мощность всех дефектов и одинакова (угол срыва у всех дефектов равный), амплитуда импульсов на разных дефектах может отличаться, иногда значительно. На рис. 4 изображен сигнал акустической эмиссии при прохождении дислокации по площадке моделирования.

Пользуясь формулой (2), можно оценить упругие напряжения сигнала. Подставляя используемые параметры модели: $G=1.8\cdot 10^{10}$ Pa, $b=4\cdot 10^{-10}$ m, $\rho=5\cdot 10^3$ kg/m³, $r=10^{-2}$ m, $B=8\cdot 10^{-4}$ Pa · s, $c=5\cdot 10^3$ m/s, $l_0=0.5\cdot 10^{-6}$ m, получим оценку для максимального импульса в серии (рис. 4) $\omega\sim 10^2$ Pa.

4. Заключение

Амплитуда звукового импульса при срыве дислокации с дефекта значительно превышает амплитуду сигнала при торможении скользящей дислокации при встрече с дефектом, при этом соответствующие сигналы имеют существенно различную форму. Амплитуда положительного импульса, образовавшегося после срыва дислокации с дефекта, на порядок меньше величины импульса при срыве мощного дислокационного скопления, содержащего десяток дислокаций [12]. И может быть сравнима по величине с импульсом при срыве малодислокациоонного скопления.

Список литературы

- [1] Т.В. Муравьев, Л.Б. Зуев. ЖТФ 78, 8, (2008). С. 135.
- [2] N.V. Kamyshanchenko, I.S. Nikulin, E.S. Kungurtsev, M.S. Kungurtsev. Techn. Phys. Lett. 39, 5 (2013). P. 469.
- [3] В.Д. Нацик, К.А, Чишко. ФТТ 17, 1 (1975). С. 342.
- [4] В.Д. Нацик, К.А. Чишко. ФТТ 20, 7 (1978). С. 1933.
- [5] J. Kumar, G. Ananthakrishna. Phys. Rev. Lett. 106, 10 (2011).P. 106001.
- [6] П.И. Полухин, Г.Я. Гун, А.М. Галкин. Сопротивление пластической деформации металлов и сплавов. Металлургия, М. (1983) 352 с.
- [7] В.В. Благовещенский, И.Г. Панин. ФММ Т. 109. 3 (2010).С. 286
- [8] И.И. Папиров. East Eur. J. Phys. 2, 1 (2015). С. 63.
- [9] Н.В. Камышанченко, И.Н. Кузьменко, М.Н. Роганин. Вестн. Тамбовского ун-та. Сер. Естеств. и техн. науки. 10, 2 (2005). С. 153.
- [10] В.В. Благовещенский, И.Г. Панин. Изв. вузов. Матер. электрон. техники 2 (2007). С. 51.
- [11] А.М. Косевич. Успехи физ. наук 84, 4 (1964) С. 579.
- [12] Д.С. Андрианов, В.В. Благовещенский, И.Г. Панин. ЖТФ 86, 5 (2016). С. 124.