01,13

О проявлении эффекта задержанного ускорения переходного процесса при 180° импульсном перемагничивании реальных пленок ферритов-гранатов с плоскостной анизотропией

© О.С. Колотов , А.В. Матюнин [¶] , Г.М. Николадзе, П.А. Поляков

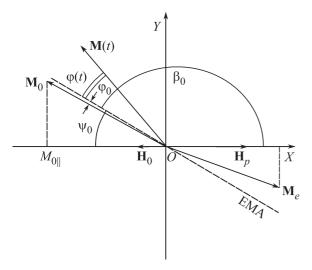
Московский государственный университет им. М.В. Ломоносова, Москва, Россия

(Поступила в Редакцию 18 июля 2016 г. В окончательной редакции 22 марта 2017 г.)

Впервые исследован режим 180° импульсного перемагничивания пленок ферритов-гранатов с плоскостной анизотропией в области внешних полей, в которой действует механизм однородного вращения намагниченности. Анализ численных решений уравнения Ландау—Лифшица, рассчитанных и экспериментальных сигналов показал, что наличие в реальных пленках ферритов-гранатов двухосной анизотропии приводит к тому, что при конечной длительности фронта перемагничивающего импульса начальное медленное вращение в определенный момент времени резко ускоряется — так, что за интервал ~ 0.7 пs азимутальный угол изменяется от 45° до равновесного значения $(160-170^\circ)$. В результате становится возможным возникновение нелинейных затухающих колебаний намагниченности с периодом основной гармоники ~ 1.5 ns.

DOI: 10.21883/FTT.2017.10.44955.299

1. Введение


Одним из важных факторов, определяющих поведение намагниченности при переходных процессах в магнетиках, является наличие в них магнитной анизотропии. Очевидно, что для развития физики переходных процессов и получения магнитных материалов с заданными импульсными свойствами необходимо исследование зависимости этих свойств от типа анизотропии и ее количественных характеристик. Однако сколько-нибудь систематическое изучение этого вопроса проводилось применительно только к процессам, связанным с движением доменных границ [1–3]. Что касается более быстрых процессов, осуществляющихся путем вращения намагниченности, то в основном исследовались магнетики с одноосной анизотропией [4–9].

В данной работе впервые приводятся результаты изучения процесса 180° импульсного перемагничивания пленок ферритов-гранатов с плоскостной анизотропией, в плоскости которых проявляется двухосная анизотропия. При проведении исследований этого режима мы опирались на опыт изучения более простого режима — 90° импульсного намагничивания пленок ферритов-гранатов [10-14]. Из него, в частности, следует, что наличие двухосной анизотропии приводит к интересным особенностям поведения намагниченности, которые не наблюдались ни в одном из ранее исследованных материалов. Эти особенности являются признаками так называемого "эффекта задержанного ускорения переходного процесса" [11-14]. Эффект наблюдается, когда амплитуда намагничивающего поля $H_{\rm ma}$ существенно (на 40-50%) превышает значение порогового поля ($\sim 14{-}20\,\mathrm{Oe}$) механизма однородного вращения намагниченности. Тогда при относительно медленном начальном вращении намагниченности в пределах длительности фронта намагничивающего импульса $au_f \ (\geq 2{-}14\,\mathrm{ns})$ в некоторый момент времени $t=t^*$ достигается критическое значение угла $\phi=\phi^*$, после которого наблюдается резкое возрастание скорости вращения, обусловленное в значительной степени тем, что энергия двухосной анизотропии, накопленная в результате начального вращения намагниченности, быстро — за интервал времени $\Delta t < 1$ ns — переходит в магнитную подсистему кристалла. В результате становится возможным возбуждение затухающих нелинейных колебаний намагниченности с периодом колебаний основной гармоники $T_{\rm os} \sim 1.6 - 1.8\,{\rm ns.}$ Характерным признаком обсуждаемого эффекта является слабая зависимость интенсивности колебаний от длительности фронта импульса. Нелинейные колебания возбуждаются при $\tau_f \geq (5-7)T_{\rm os}$, тогда как линейные — свободные — колебания намагниченности, обычно возбуждаемые в тех же пленках в полях, существенно меньших порогового поля однородного вращения, уже не возникают при длительности фронта $\tau_f \ge (0.5-0.6)T_{\rm os}$. Целью данной работы было исследование возможности проявления подобного эффекта в режиме 180° импульсного перемагничивания.

2. Некоторые особенности численного анализа и экспериментального исследования режима 180° импульсного перемагничивания пленок ферритов-гранатов

Из всего сказанного следует, что интересующий нас эффект должен проявляться, если перемагничивание

[¶] E-mail: physphak@mail.ru

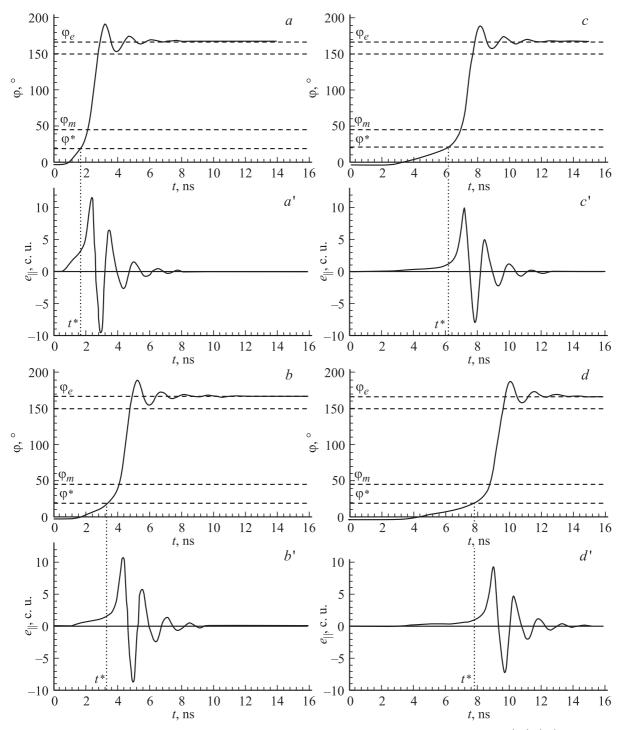
Рис. 1. Геометрия опыта при 180° импульсном перемагничивании. ЕМА — ось легкого намагничивания.

пленок ферритов-гранатов происходит путем однородного вращения намагниченности. Для этого необходимо, чтобы перемагничивающее поле \mathbf{H}_{p} было направлено к исходному направления вектора намагниченности \mathbf{M}_0 под углом β_0 , заметно меньшим 180° , а абсолютная его величина превышала пороговое поле однородного вращения. При исследовании материалов с одноосной анизотропией (например, Fe-Ni пленок с прямоугольной петлей гистерезиса) достижение необходимой ориентации (и одновременное снижение порогового поля однородного вращения) осуществляется с помощью постоянного поперечного поля H_{\perp} , прикладываемого перпендикулярно оси легкого намагничивания (ОЛН). Тогда угол $\beta_0 = 180 - \arcsin H_{\perp}/H_{K1}$, где H_{K1} ($\sim 3-5 \, \mathrm{Oe}$) эффективное поле одноосной анизотропии. К сожалению, этот метод ориентации исходного направления вектора намагниченности \mathbf{M}_0 неприменим к пленкам ферритов-гранатов, исследуемым в данной работе. Дело в том, что в этих пленках при некотором критическом значении поперечного поля $H_{\perp {
m cr}}$ происходит переориентация вектора намагниченности \mathbf{M}_0 : он ориентируется вдоль другой ОЛН за время $\sim 10^{-6}\,\mathrm{s}$ [15]. Весьма существенно, что поле $H_{\perp cr}$ близко к 4–5 Oe, что значительно меньше эффективного поля двухосной анизотропии H_{K2} ($\sim 35-70\,\mathrm{Oe}$). В этих условиях нами использовалась несколько иная геометрия опыта (представленная на рис. 1). Чтобы обеспечить требуемую ориентацию вектора \mathbf{M}_0 и перемагничивающего поля \mathbf{H}_{p} , последнее направляется вдоль прямой — оси OX, отклоненной на угол $\psi_0~(\geq 10-50^\circ)$ от одной из ОЛН. Исходное состояние технического насыщения обеспечивается с помощью постоянного установочного магнитного поля H_0 , направленного в сторону, противоположную направлению перемагничивающего поля \mathbf{H}_{p} . В исходном состоянии вектор намагниченности \mathbf{M}_0 отклонен от ОЛН на небольшой угол φ_0 ($\sim 1-2^{\circ}$) (рис. 1), значение которого находится путем анализа свободной энергии. Мгновенное направление намагниченности характеризуется углом φ между проекцией вектора намагниченности на плоскость XY и направлением ОЛН. В плоскости YZ, перпендикулярной полю \mathbf{H}_{p} , расположен продольный съемный виток (на рисунке не показан), который регистрирует изменение продольной (коллинеарной полю \mathbf{H}_{p}) составляющей вектора намагниченности $\mathbf{M}(t)$. Напряжение продольного сигнала на выходе витка

$$e_{\parallel}(t) = K_{\parallel} \cdot M_S \cdot \sin(\psi_0 + \varphi(t)) \cdot \frac{d\varphi}{dt},$$
 (1)

где M_S — намагниченность насыщения, а K_{\parallel} — коэффициент пропорциональности, зависящий от конструкции витка, размеров и формы исследуемой пленки.

Для анализа поведения намагниченности использовались численные решения одномерного уравнения Ландау—Лифшица, учитывающего конкретную специфику исследуемых пленок ферритов-гранатов с достаточно большим значением эффективного поля плоскостной анизотропии $H_{Kp}~(\geq 1~\mathrm{kOe})$


$$\ddot{\varphi} + \alpha \lambda \dot{\varphi} + a \gamma^2 \frac{\partial W}{\partial \varphi} = 0, \tag{2}$$

где параметр $a=(4\pi M_S+H_{Kp})/M_S$ учитывает силы, удерживающие вектор намагниченности в плоскости пленки, λ — постоянная затухания Ландау—Лифшица, γ — гиромагнитное отношение, а W — плотность свободной энергии. При расчете последней в общем случае учитывался вклад энергии одноосной и двухосной анизотропии и энергии намагниченности во внешних полях \mathbf{H}_0 и \mathbf{H}_p . Плотность энергии двухосной анизотропии полагалась равной [16]

$$W_{A2} = -K_2 \cos 4\varphi, \tag{3}$$

где K_2 — константа двухосной анизотропии.

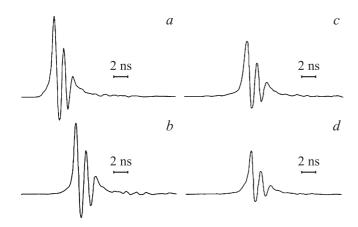

При расчетах использовались следующие параметры конкретной пленки, на которой проводились экспериментальные исследования обсуждаемого переходного процесса: намагниченность насыщения $M_S = 14 \,\mathrm{G}$, поле технического насыщения (вдоль каждой из ОЛН) $H_{\rm sat} = 2.5\,{
m Oe}$ и эффективные поля одноосной, двухосной и плоскостной анизотропии соответственно: $H_{K1} = 4 \,\mathrm{Oe},$ $H_{K2} = 16K_2/M_s = 36 \,\text{Oe}$ и $H_{Kp} = 1100 \,\text{Oe}$. Состав пленки — $(YLuBi)_3(FeGa)_5O_{12}$, толщина $d = 4 \mu m$. Пленка имела форму неправильного четырехугольника со средними поперечными размерами ≈ 1 cm. Значение постоянной затухания Ландау-Лифшица λ выбиралось так, чтобы рассчитанный сигнал перемагничивания в наибольшей степени соответствовал реальному сигналу. Оказалось, что наилучшее совпадение имеет место при $\lambda = 2 \cdot 10^7 \, \text{Hz}$, что примерно в два раза превышает значение λ, используемое для режима 90° импульсного намагничивания [12] и в 7 раз превышает значение $\lambda = \lambda_0$, полученное экспериментально из опытов по затуханию свободных колебаний намагниченности [17].

Рис. 2. Численные решения $\varphi(t)$ (a,b,c,d) и рассчитанные продольные сигналы перемагничивания (a',b',c',d'), полученные для разных значений длительности фронта перемагничивающего импульса τ_f : a,a'-1.5 ns; b,b'-3.5 ns; c,c'-6.5 ns; d,d'-9 ns. Амплитуда перемагничивающего поля $H_{\rm pa}=29$ Oe.

В данной пленке ОЛН одноосной анизотропии была коллинеарна одной из осей двухосной анизотропии. Обсуждаемые далее результаты получены для ситуации, когда рассмотренная выше ориентация внешних полей \mathbf{H}_0 и \mathbf{H}_p производилась относительно этой оси. Особо отметим, что переход к другой возможной ситуации, осуществляемый поворотом всех осей на 90° , приводит

к незначительному и предсказуемому изменению поведения намагниченности. Другие подробности проводимых расчетов, а также методики эксперимента можно найти в работах [11–14].

Рис. 3. Осциллограммы экспериментальных продольных сигналов перемагничивания, полученных для разных значений длительности фронта перемагничивающего импульса τ_f : $a-1.5\,\mathrm{ns};\ b-3.5\,\mathrm{ns};\ c-6.5\,\mathrm{ns};\ d-9\,\mathrm{ns}.$ Амплитуда перемагничивающего поля $H_\mathrm{pa}=29\,\mathrm{Oe}.$

3. Результаты и обсуждение

Убедимся сначала, что возможность проявления ожидаемого эффекта непосредственно следует из решений уравнения Ландау-Лифшица. При проведении расчетов нами использовался стандартный математический пакет "Wolfram Mathematica", в основе которого лежит метод Рунге-Кутта второго порядка. На рис. 2 а, b, с и d приведены примеры численных решений $\varphi(t)$, полученных для случая, когда перемагничивающее поле с амплитудой $H_{\rm pa}=29\,{\rm Oe}$ направлено под углом $\psi_0 = 30^{\circ}$ к ОЛН. Указанному углу соответствует расчетное значение порогового поля механизма однородного вращения $H_{po} = 18$ Ое. Решения получены для четырех значений длительности фронта импульса τ_f : 1.5, 3.5, 6.5 и 9 ns. На рис. 2 пересекающиеся с кривыми $\varphi(t)$ горизонтальные линии соответствуют четырем характерным значениям угла φ : среднему значению угла $\varphi^* = 18 \pm 2^\circ$, при котором заметно резкое возрастание угла φ в момент времени $t=t^*$; углу $\varphi_m=45^\circ$, при котором энергия двухосной анизотропии переходит через первое свое максимальное значение; углу $\varphi = 150^{\circ}$, при котором значение синуса в выражении (1) обращается в ноль (для обсуждаемой здесь ориентации магнитного поля \mathbf{H}_p , т. е. для значения угла $\psi_0 = 30^{\circ}$) и напряжение продольного сигнала изменяет свой знак; значению равновесного угла $\varphi_e = 166^{\circ}$, достигаемому в конце переходного процесса (которому соответствует установившееся значение вектора намагниченности \mathbf{M}_{ρ} (рис. 1)).

Из расчетов следует, что, как и для ранее изученного режима 90° -импульсного намагничивания, в момент времени t^{*} начинается заметное ускорение вращения намагниченности. Наибольшая скорость вращения достигается после того, как энергия двухосной анизотропии, накопленная в результате начального мед-

ленного вращения, начинает поступать в магнитную подсистему. В итоге значение угла φ быстро — за время $\cong 0.7\,\mathrm{ns}$ — изменяется от 45° до равновесного значения φ_e (= 166°), что и делает возможным возбуждение нелинейных колебаний намагниченности с периодом первой гармоники, близкой к $1.45\,\mathrm{ns}$, т.е. на частоте $\cong 700\,\mathrm{MHz}$. Согласно расчетам, колебания должны затухать за 2-3 периода. Из решений также следует, что интенсивность колебаний, подобно случаю 90° -импульсного намагничивания, очень некритичны к длительности фронта перемагничивающего импульса: при изменении τ_f от $1.5\,\mathrm{дo}$ 9 ns интенсивность колебаний уменьшается не более чем на 17%.

Следует особо подчеркнуть, что начальные части сигналов на рис. 2, a', b', c' и d', оканчивающиеся моментом первого перехода значения сигнала через нулевое значение, отражают наиболее существенное изменение намагниченности: направление намагниченности изменяется на угол, близкий к 150° . Оставшаяся часть сигнала, связанная с колебаниями, отражает периодическое приближение вектора намагниченности к равновесному направлению. В результате этого процесса угол φ изменяется от 150° до 166° , причем равновесное направление намагниченности отклонено (под влиянием сил анизотропии) от направления поля $\mathbf{H}_{\rm p}$ на угол, равный 16° (рис. 1).

При получении экспериментальных сигналов (рис. 3) применялись все возможные меры, чтобы обеспечить максимальное соответствие расчетных и реальных условий эксперимента. Значения амплитуды импульсов устанавливались с ошибкой $\sim 5\%$, при расчетах использовались экспериментальные значения длительности фронта. К сожалению, из-за наличия в конструкции перемагничивающего устройства съемного витка, затрудняющего возможность использования каких-либо устройств для точного отсчета угла ψ_0 , последний определялся с ошибкой $\sim 5^{\circ}$. Тем не менее, сопоставление расчетных и экспериментальных сигналов показывает, что "эффект задержанного ускорения переходного процесса" явно проявляется и при 180° импульсном перемагничивании реальных пленок ферритов-гранатов, в плоскости которых наличествует двухосная анизотропия. В то же время, как и в случае 90° импульсного намагничивания [13,14], интенсивность колебаний напряжения экспериментальных сигналов с увеличением длительности фронта спадает быстрее, чем на расчетных. Это объясняется тем, что с увеличением длительности фронта до возникновения колебаний (и наряду с ними) могут образовываться зародыши с новой фазой намагниченности, и используемая модель перемагничивания становится просто неприменимой. Тем не менее, колебания намагниченности проявляются заметным образом и при длительности фронта τ_f , равной 9 ns (рис. 3, d).

Заключение

Таким образом, эффект задержанного ускорения переходного процесса наблюдается и при 180° импульсном перемагничивании реальных пленок ферритов-гранатов с плоскостной анизотропией, в плоскости которых заметным образом проявляется двухосная анизотропия.

Список литературы

- [1] А. Малоземов, Дж. Слонзуски. Доменные стенки в материалах с цилиндрическими магнитными доменами. Мир, M. (1982). 382 c.
- [2] F.H. De Leeuw, R. Van Den Doel, U. Enz. Rep. Prog. Phys. **43**, 6, 689 (1980).
- В.В. Волков, В.А. Боков. ФТТ 50, 193 (2008).
- [4] F.B. Humphrey, E.M. Gyorgy. J. Appl. Phys. 30, 939 (1959).
- [5] B.R. Hearn. J. Electron. And Control 16, 1, 33 (1964).
- [6] J. Hoper. IEEE Trans. Magn. 3, 2, 166 (1967).
- [7] Y. Suezawa, F.B. Humphrey. IEEE Trans. Magn. 8, 3, 319
- [8] B.C. Choi, M. Belov, W.K. Hiebert, G.E. Ballentine, M.R. Freeman. Phys. Rev. Lett. 86, 4, 728 (2001).
- [9] H.W. Schumacher, C. Chappert, R.C. Sousa, P.P. Freitas, J. Miltat. Phys. Rev. Lett. 90, 1, 017204 (2003).
- [10] E.I. Il'yashenko, O.S. Kolotov, A.V. Matyunin, O.A. Mironets. JMMM 306, 2, 309 (2006).
- [11] Е.И. Ильяшенко, О.С. Колотов, А.В. Матюнин, В.А. Погожев. ЖТФ 78, 6, 39 (2008).
- [12] О.С. Колотов, А.В. Матюнин, П.А. Поляков. Изв. РАН. Сер. физ. 74, 10, 1529 (2010).
- [13] О.С. Колотов, А.В. Матюнин, Г.М. Николадзе, П.А. Поляков. ФТТ 54, 12, 2254 (2012).
- [14] О.С. Колотов, А.В. Матюнин, Г.М. Николадзе, П.А. Поляков. ЖТФ 85, 12, 74 (2015).
- [15] Е.И. Ильяшенко, О.С. Колотов, А.В. Матюнин, В.А. Погожев, И.С. Титов. В сб.: Труды XXI Междунар. конф. "Новое в магнетизме и магнитных материалах". МГУ, М. (2009). C. 871.
- [16] И.С. Эдельман. Изв. АН СССР. Сер. физ. ХХХ, 88 (1966).
- [17] Е.Н. Ильичева, Е.И. Ильяшенко, О.С. Колотов, А.В. Матюнин, В.В. Смирнов. ФТТ 45, 6, 1037 (2003).