Нелинейные поверхностные волны в симметричной трехслойной структуре, обусловленные генерацией экситонов и биэкситонов в полупроводниках

© О.В. Коровай, П.И. Хаджи

Приднестровский государственный университет им. Т.Г. Шевченко, МД 3300 Тирасполь, Молдавия

E-mail: tdsu@tirastel.md

(Поступила в Редакцию 20 февраля 2002 г.)

Построена теория нелинейных ТЕ-поляризованных поверхностных волн, распространяющихся вдоль плоских границ раздела симметричной планарной трехслойной структуры с линейной сердцевиной и нелинейными обкладками. Нелинейность обкладок обусловлена учетом процесса оптической экситон-биэкситонной конверсии. Получены и исследованы законы дисперсии распространяющихся волн.

В связи с бурным развитием интегральной оптики большой интерес представляет исследование свойств поверхностных, интерфейсных и волноводных мод, направляемых границами раздела нелинейных сред и нелинейными световодами [1,2]. Важным результатом явилось доказательство принципиальной возможности распространения *s*-поляризованных нелинейных поверхностных волн на границе раздела кристалл-вакуум [3-5] либо двух нелинейных сред [6]. В ряде работ были изучены пространственные профили полей нелинейных поверхностных волн (НПВ) с различными модельными выражениями для диэлектрических функций нелинейных сред [7,8]. Практически во всех работах, посвященных исследованию свойств НПВ, используется выражение для диэлектрической функции ε кристалла, в котором зависимость от поля распространяющейся волны представлена в виде квадратичной по полю (керровской) поправки. Такое выражение справедливо в области не слишком больших полей. Кроме того, оно практически не дает информации о модели нелинейной среды и типе квантовых переходов. Тем не менее в некоторых работах [9-13] изучались свойства НПВ для некерровских сред. В последовательной теории диэлектрическая функция среды должна определяться самосогласованно из материальных уравнений типа Блоха с учетом конкретных механизмов нелинейности и типа квантовых переходов.

Далее представлены результаты теоретических исследований свойств НПВ (точнее было бы назвать их нелинейными интерфейсными волнами), распространяющихся вдоль границы раздела симметричной трехслойной структуры (рис. 1).

1. Постановка задачи. Основные уравнения

Изучим распространение нелинейных ТЕ-поляризованных поверхностных волн в симметричной трехслойной структуре, состоящей из линейной пластинки толщиной $2d \ (-d \le z \le +d)$, окруженной с обеих сто-

рон полубесконечными нелинейными полупроводниками (рис. 1). Предполагаем, что пластинка характеризуется постоянной диэлектрической проницаемостью ε_0 , а обкладки являются полупроводниками, в которых распространяющаяся световая волна может возбуждать экситоны из основного состояния кристалла и одновременно превращать их в биэкситоны благодаря процессу оптической экситон-биэкситонной конверсии. Это возможно для кристаллов типа CdS, CdSe, где энергия связи биэкситонов исчезающе мала. Гигантская сила осциллятора процесса оптической экситон-биэкситонной конверсии позволяет рассматривать эффекты нелинейного распространения лазерного излучения при умеренных уровнях возбуждения. Для решения задачи необходимо получить выражение для диэлектрической функции ε нелинейной среды, зависящей от частоты ω и амплитуды Eэлектромагнитного поля распространяющейся волны, обусловленной взаимодействием света и экситонами и биэкситонами кристалла. Гамильтониан взаимодействия имеет вил

$$H = -\hbar g(a^{+}E^{+} + aE^{-}) - \hbar \sigma(b^{+}aE^{+} + a^{+}bE^{-}), \quad (1)$$

где $E^+(E^-)$ — положительно (отрицательно)-частотная компонента поля электромагнитной волны, a(b) — амплитуда экситонной (биэкситонной) волны поляри-

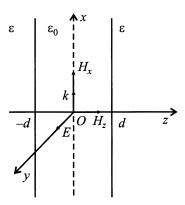


Рис. 1. Геометрия задачи и направления компонент полей.

зации кристалла, g — константа экситон-фотонного взаимодействия, σ — константа оптической экситон-би-экситонной конверсии. Гейзенберговские уравнения для амплитуд a и b имеют вид

$$i\dot{a} = \omega_0 a - gE^+ - \sigma bE^-, \tag{2}$$

$$i\dot{b} = \Omega_0 b - \sigma a E^+,\tag{3}$$

где ω_0 и Ω_0 — собственные частоты экситонного и биэкситонного переходов. В стационарном режиме $a, E \sim e^{-i\omega t}, b \sim e^{-2i\omega t}$. Тогда легко найти решения (2), (3), затем получить выражение для поляризации и, наконец, определить диэлектрическую функцию кристалла

$$\varepsilon = \varepsilon_{\infty} \left(1 - \frac{\omega_{LT}}{\Delta} \frac{E_s^4}{(E_s^2 - E^2)^2} \right),\tag{4}$$

где $E_s^2=2\Delta^2/\sigma^2$, $\Delta=\omega-\omega_0$ — расстройка резонанса для частоты ω распространяющегося излучения относительно частоты ω_0 экситонного перехода, $\omega_{LT}=4\pi\hbar g^2/\varepsilon_\infty$ — частота продольно-поперечного расщепления экситонного состояния, ε_∞ — фоновая диэлектрическая постоянная. Отметим, что выражение (4) использовалось ранее при рассмотрении свойств поверхностных волн, распространяющихся на границе раздела между полубесконечными линейной и нелинейной средами [9], при рассмотрении явления оптической бистабильности [14], а также эффета самоотражения [15].

Используя (4), изучим закономерности стационарного распространения ТЕ-поляризованных поверхностных волн в геометрии рис. 1. Считаем, что электромагнитная волна распространяется вдоль оси x и характеризуется волновым вектором k. Поле волны содержит поперечные электрическую E (параллельную оси y) и магнитную H_z , а также продольную компоненту магнитного поля H_x . Используя уравнения Максвелла, приходим к следующим волновым уравнениям, описывающим пространственное распределение электрического поля электромагнитной волны в стационарном режиме

$$\frac{d^2E}{dz^2} = \frac{\omega^2}{c^2} \left(n^2 - \varepsilon_{\infty} \right)$$

$$\times \left(1 - \frac{\omega_{LT}}{\Delta} \frac{E_s^4}{(E_s^2 - E^2)^2} \right) E, \quad |z| \ge d, \quad (5)$$

$$\frac{d^2E}{dz^2} = \frac{\omega^2}{c^2}(n^2 - \varepsilon_0)E, \quad |z| \le d,$$
 (6)

где $n=ck/\omega$ — эффективный показатель преломления среды, c — скорость света в вакууме. Поскольку мы ищем ограниченные в пространстве поверхностные волны, энергия которых локализована в окрестности границ раздела |z|=d, при решении уравнения (5) необходимо удовлетворить условиям обращения в нуль амплитуды поля и ее производной на бесконечности

$$\lim_{z \to \pm \infty} E \to 0, \quad \lim_{z \to \pm \infty} dE/dz \to 0. \tag{7}$$

Вводя новую переменную $z=\frac{\omega}{c}x$ и интегрируя (5) с учетом (7), для области $|z|>d=\frac{\omega}{c}d$ получаем

$$\left(\frac{dE}{d\bar{z}}\right)^2 + W(E) = 0, \tag{8}$$

где

$$W(E) = -E^2 \left(n^2 - \varepsilon_{\infty} + \varepsilon_{\infty} \frac{\omega_{LT}}{\Delta} \frac{E_s^2}{E_s^2 - E^2} \right).$$
 (9)

Здесь W(E) играет роль потенциальной энергии нелинейного осциллятора, движение которого описывается первым интегралом (8).

Отметим, что для оптически линейной среды выражение для W(E) имеет вид $W(E)=-E^2(n^2-\varepsilon_0)$, где ε_0 — диэлектрическая проницаемость средней области. Распространяя это обстоятельство на нелинейный случай, W(E) можно представить в виде $W(E)=-E^2(n^2-\varepsilon^*)$, где, в соответствии с (9),

$$\varepsilon^* = \varepsilon_{\infty} \left(1 - \frac{\omega_{LT}}{\Delta} \frac{E_s^2}{E_s^2 - E^2} \right). \tag{10}$$

Назовем ε^* эффективной диэлектрической функцией среды. Из (8) следует, что решения в виде поверхностных волн существуют для тех значений амплитуды поля E(z), для которых $W(E) \leq 0$. Это обстоятельство существенно ограничивает область значений параметров, в пределах которой существуют искомые решения. Анализ показывает, что решения возможны при $\Delta < 0$ и для $n^2 > \varepsilon_{ex} = \varepsilon_{\infty} \left(1 - \frac{\omega_{TT}}{\Delta}\right)$. Могут существовать волны, амплитуда E которых изменяется в пределах

$$0 \le E^2 \le E_m^2 = \frac{n^2 - \varepsilon_{\text{ex}}}{n^2 - \varepsilon_{\infty}} E_s^2. \tag{11}$$

Здесь $\varepsilon_{\rm ex}$ — диэлектрическая функция линейной среды в области экситонного перехода, а E_m является максимально возможной амплитудой поля поверхностной волны. Таким образом, отсюда следует, что нелинейные поверхностные волны могут существовать только в длинноволновой области от частоты экситонного перехода, причем $n^2 \geq \varepsilon_0$ либо $n^2 \geq \varepsilon^*$. Что касается формы профиля поля $E(\bar{z})$ этой волны, то в области $|\bar{z}| > D$ она имеет максимум. Интегрируя (8), получаем следующее решение для профиля поля E(z) вне слоя (при $|\bar{z}| > D$):

$$\ln \frac{\sqrt{E_s^2 - E^2} + \sqrt{E_m^2 - E^2}}{\sqrt{E_s^2 - E_0^2} + \sqrt{E_m^2 - E_0^2}} + \frac{E_s}{E_m} \ln \left(\frac{E}{E_0} \frac{E_s \sqrt{E_m^2 - E_0^2} + E_m \sqrt{E_s^2 - E_0^2}}{E_s \sqrt{E_m^2 - E^2} + E_m \sqrt{E_s^2 - E^2}} \right)$$

$$= q(\bar{z} - D)$$
(12)

при $D \leq \bar{z} \leq \bar{z}_m$ и

$$\ln \frac{\sqrt{E_s^2 - E_m^2}}{\sqrt{E_s^2 - E^2} + \sqrt{E_m^2 - E^2}} + \frac{E_s}{E_m} \ln \left(\frac{E_s \sqrt{E_m^2 - E^2} + E_m \sqrt{E_s^2 - E^2}}{E \sqrt{E_s^2 - E_m^2}} \right)$$

$$= q(\bar{z} - \bar{z}_m) \tag{13}$$

при $\bar{z} \geq \bar{z}_m$, где положение максимума $\bar{z} = \bar{z}_m$ профиля поля $E(\bar{z}) = E_m$ определяется выражением

$$q(\bar{z}_m - D) = \ln \frac{\sqrt{E_s^2 - E_m^2}}{\sqrt{E_s^2 - E_0^2} + \sqrt{E_m^2 - E_0^2}} + \frac{E_s}{E_m} \ln \left(\frac{E_s \sqrt{E_m^2 - E_0^2} + E_m \sqrt{E_s^2 - E_0^2}}{E_0 \sqrt{E_s^2 - E_m^2}} \right), \quad (14)$$

где $q=\sqrt{n^2-\varepsilon_\infty}$, а E_0 — значение амплитуды поля на границе раздела световода при $\bar z=D$. Из (12) следует, что при $\bar z\gg\bar z_m$, где $E\ll E_m$, поле убывает экспоненциально: $E\sim \exp\left(-\sqrt{n^2-\varepsilon_{\rm ex}}(\bar z-\bar z_m)\right)$.

Рассмотрим сначала свойства симметричных (четных) НПВ. Решение уравнения (6) для этого случая имеет вид

$$E = \frac{C}{q_0} \operatorname{ch}(q_0 \bar{z}), \tag{15}$$

где $q_0 = \sqrt{n^2 - \varepsilon_0}$, а C — константа интегрирования, которая в данном случае определяет амплитуду поля в центре пластинки. Удовлетворяя условию сохранения тангенциальных компонент электрического и магнитного полей на границе раздела в точке $\bar{z} = D$, из (15) и (8) получаем

$$q_0 \text{th} (q_0 D) = \sqrt{n^2 - \varepsilon_\infty - \varepsilon_\infty \frac{\omega_{LT}}{|\Delta|} \frac{E_s^2}{E_s^2 - E_0^2}}. \tag{16}$$

Это выражение можно рассматривать как дисперсионное соотношение, определяющее зависимость $\omega(k)$ или в данном случае эффективного показателя преломления среды n в зависимости от расстройки резонанса Δ при фиксированных значениях толщины пленки d и параметра E_0 — амплитуды поля волны на границе раздела сред в точке $\bar{z}=D$. Следует отметить, что величину амплитуды поля E_0 невозможно контролировать экспериментально. Экспериментально определяемой величиной является поток энергии P, переносимой распространяющейся волной. Полный поток энергии в сечении волновода P можно разделить на сумму линейного потока P_{L} в сердцевине и нелинейного потока P_{NL} в обкладках, которые определяются выражениями

$$P_L = \frac{c^2 n}{4\pi\omega} \frac{E_0^2}{4q_0 \cosh^2(q_0 D)} \left(\sinh(2q_0 D) + 2q_0 D \right), \tag{17}$$

$$P_{NL} = \frac{c^2 n}{8\pi\omega} \frac{1}{q} \left\{ E_s E_m + \sqrt{(E_s^2 - E_0^2)(E_m^2 - E_0^2)} + (E_s^2 - E_m^2) \ln \frac{\sqrt{E_s^2 - E_0^2} + \sqrt{E_m^2 - E_0^2}}{E_s - E_m} \right\}. \quad (18)$$

Исключая из (17)–(18) E_0 с помощью (16), получаем зависимость $P(n,\Delta)$ либо зависимость эффективного показателя преломления нелинейного световода n от потока энергии, переносимой волной.

Что касается антисимметричных (нечетных) нелинейных поверхностных волн, то решение для внутренней области $(|\bar{z}| \leq D)$ имеет вид

$$E = \frac{C}{q_0} \operatorname{sh}(q_0 \bar{z}). \tag{19}$$

Решение для внешней области по-прежнему выражается формулами (12)–(14), (18). Поток в пластине соответственно равен

$$P_L = \frac{c^2 n}{4\pi\omega} \frac{E_0^2}{4q_0 \,\text{sh}^2(q_0 D)} \left(\text{sh}(2q_0 D) - 2q_0 D\right),\tag{20}$$

а закон дисперсии выражается формулой

$$q_0 \operatorname{cth}(q_0 D) = \sqrt{n^2 - \varepsilon_\infty - \varepsilon_\infty \frac{\omega_{LT}}{|\Delta|} \frac{E_s^2}{E_s^2 - E_0^2}}.$$
 (21)

2. Обсуждение результатов

Для простоты далее используем нормированные на величину продольно-поперечного расщепления ω_{LT} расстройку резонанса Δ и частоту Раби σE_0 : $\delta = \Delta/\omega_{LT}$, $f_0 = \sigma E_0/\omega_{LT}$. Рассмотрим сначала закон дисперсии для четных мод и в соответствии с (15) изучим поведение дисперсионных кривых $n(\delta, f_0)$. Из (16) следует, что $n^2 > \varepsilon_0, \varepsilon^*$, где $\varepsilon^* = \varepsilon_\infty (1 + |\delta|/(\delta^2 - f_0^2/2))$. Нелинейные поверхностные волны существуют только в спектральной области $\delta < 0$. При фиксированном значении f_0 кривая $\delta(n)$ начинается с точки $n=\sqrt{\varepsilon_0}$, где $|\delta| = |\delta_0| = \left(1 + \sqrt{1 + 2f_0^2}\right)/2$, затем с ростом n функция $\delta(n)$ монотонно растет, достигает максимума при значении $n=\sqrt{\varepsilon_0+x_m^2D^{-2}},$ где x_m определяется из решения уравнения $x \cdot \text{th } x = 1$, а $|\delta_m| = \frac{1}{1 + (x_m^2 - 1)/4D^2}$, затем с дальнейшим ростом n функция $\delta(n)$, убывая, асимптотически стремится к значению $|\delta| = |\delta_0|$. Заданному значению $|\delta|$ соответствуют два значения n. С ростом Dточка максимума приближается к значению $n=\sqrt{\varepsilon_0}$. На рис. 2, a представлена поверхность $n(\delta, f_0)$. С ростом f_0 область существования нелинейных поверхностных волн смещается в длинноволновую сторону, так что имеет место втягивание длинноволнового участка в спектр световода и выталкивание коротковолновых участков из световода. Если зафиксировать $|\delta| > |\delta_m|$, то функция $f_0(n)$ имеет максимум при $n = (\varepsilon_0 + x_m D^{-2})^{1/2}$, причем

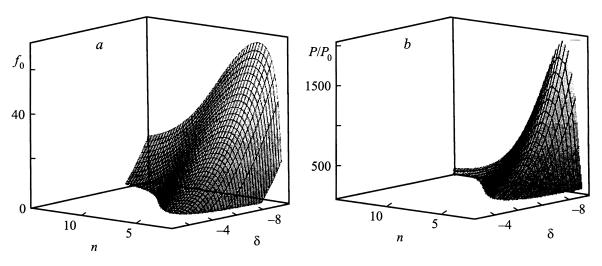


Рис. 2. Закон дисперсии симметричных ТЕ-поляризованных поверхностных волн при $\varepsilon_0 = 5.6, \, \varepsilon_\infty = 5 \,$ и D = 1/3.

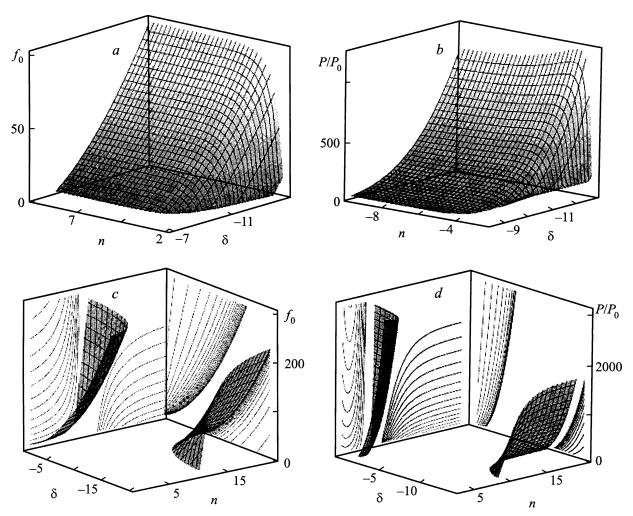


Рис. 3. Законы дисперсии антисимметричных ТЕ-поляризованных поверхностных волн при $\varepsilon_0 = 5.6$, $\varepsilon_\infty = 5$ для случаев D = 1 (a,b) и 1/3 (c,d).

положение максимума не зависит от величины $|\delta|$. Чем меньше $|\delta|$, тем выше максимум функции $f_0(n)$.

На рис. 2, b представлен график зависимости $P(n,\delta)$ для симметричных НПВ. Видно, что при фиксированном значении $|\delta|$ поток сначала быстро растет с ростом n, достигает максимума, затем монотонно убывает. Величина потока быстро убывает с ростом $|\delta|$ при фиксированном n. Заметим, что одному и тому же значению потока соответствуют два различных значения эффективного показателя преломления n.

На рис. 3, a-c представлены графики закона дисперсии для антисимметричных нелинейных поверхностных волн при двух значениях нормированной толщины слоя D. Из (21) следует, что при $D > (\varepsilon_0 - \varepsilon_\infty)^{-1/2}$ закон дисперсии в пространстве (n, δ, f_0) определяет поверхность, ограниченную по δ и n (рис. 3, a). Однако при $D<(arepsilon_0-arepsilon_\infty)^{-1/2}$ закон дисперсии задает две различные поверхности, так как имеет место разрыв области существования закона дисперсии (рис. 3, c). Первая область ограничена значениями n в пределах $\sqrt{\varepsilon_0} \le n \le n^*$, где n^* является корнем уравнения $(\varepsilon_0 - \varepsilon_\infty) \sinh^2(q_0 D) = q_0^2$. Видно, что граничные значения эффективного показателя преломления n^* зависят только от параметров $\varepsilon_0, \varepsilon_\infty$ и D, но не зависят от расстройки резонанса δ . Более дальняя область существования закона дисперсии удовлетворяет неравенству $n \ge n^{**}$, где n^{**} является корнем уравнения $(arepsilon_0-arepsilon_\infty-arepsilon_\infty/|\delta|)\,{
m sh}^2\,q_0D=q_0^2$ и зависит не только от параметров $\varepsilon_0, \varepsilon_\infty$ и D, но также и от расстройки резонанса δ . При расстройках $|\delta|\gg 1$ "щель" по n(ширина запрещенной области значений п) сужается и $n^{**} \rightarrow n^*$.

Из представленных на рис. 3, b, d результатов видно, что закон дисперсии в зависимости от потока также существует в одной либо двух различных областях при изменении параметра D.

Таким образом, полученные результаты для *s*-поляризованных НПВ, обусловленных взаимодействием экситонов и биэкситонов со светом, существенно отличаются от результатов других работ, где изучались свойства таких же волн для керровских сред. Важным моментом здесь является резонансный характер нелинейной диэлектрической функции. Это приводит к разбиению области существования антисимметричных НПВ на две независимые, отделенные друг от друга, подобласти при определенных значениях параметров. Полученные законы дисперсии существенно зависят от потока переносимой энергии.

Список литературы

- [1] Поверхностные поляритоны / Под ред. В.М. Аграновича, Д.Л. Миллса. Наука, М. (1985).
- [2] Н.Л. Дмитрук, В.Г. Литовченко, В.Л. Стрижевский. Поверхностные поляритоны в полупроводниках. Наук. думка, Киев (1989).

- [3] В.М. Агранович, В.С. Бабиченко, В.А. Черняк. Письма в ЖЭТФ **32**, *8*, 532 (1980).
- [4] W.I. Tomlinson. Opt. Lett. 5, 7, 323 (1980).
- [5] A.A. Maradudin. A. Phys. B 41, 4, 341 (1980).
- [6] А.И. Ломтев. Письма в ЖЭТФ 34, 2, 64 (1981).
- [7] П.И. Хаджи, Е.С. Киселева. ЖТФ 57, 2, 395 (1987).
- [8] A.D. Boardman, T. Twardowski. J. Opt. Soc. Am. B5, 2, 523 (1988).
- [9] P.I. Khadzhi, E.S. Kiseleva. Phys. Stat. Sol. (b) 147, 2, 741 (1988).
- [10] П.И. Хаджи. ФТТ 29, 9, 2721 (1987).
- [11] П.И. Хаджи, Л.В. Федоров. ЖТФ 61, 5, 110 (1991).
- [12] Л.С. Асланян, Ю.С. Чилингарян. Письма в ЖТФ 20, 9, 1 (1994).
- [13] В.Г. Бордо. Письма в ЖТФ 14, 13, 1172 (1988).
- [14] П.И. Хаджи, Г.Д. Шибаршина, А.Х. Ротару. Оптическая бистабильность в системе когерентных экситонов и биэкситонов в полупроводниках. Штиинца, Кишинев (1988).
- [15] П.И. Хаджи, К.Д. Ляхомская. Квантовая электроника 29, 1, 43 (1999).