03,04,19

Высокотемпературная теплоемкость TmBiGeO₅ и YbBiGeO₅

© Л.Т. Денисова, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов, Е.О. Голубева

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

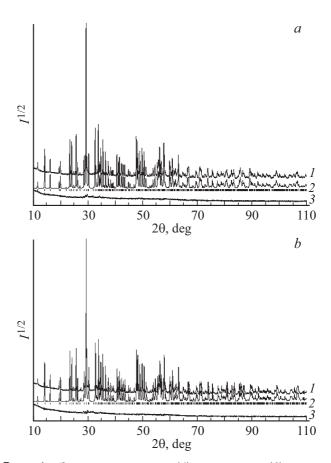
(Поступила в Редакцию 15 августа 2017 г.)

Твердофазным синтезом из Tm_2O_3 (Yb_2O_3), Bi_2O_3 и GeO_2 последовательным обжигом при 1003, 1073, 1123, 1143, 1173 и 1223 К получены $TmBiGeO_5$ и $YbBiGeO_5$. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость оксидных соединений. На основании экспериментальных зависимостей $C_p = f(T)$ рассчитаны их термодинамические свойства (изменение энтальпии и энтропии).

Работа выполнена при частичной финансовой поддержке в рамках государственного задания Министерства образования и науки РФ Сибирскому федеральному университету на 2017—2019 годы (проект 4.8083.2017/БЧ "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

DOI: 10.21883/FTT.2018.02.45378.248

1. Введение


О получении семейства германатов с общей формулой $R_x \text{Bi}_{2-x} \text{GeO}_5$ (R — редкоземельные элементы; $0 \le x \le 2$) сообщено в работах [1–4]. В случае x = 2 образуются германаты редкоземельных элементов R_2 GeO₅, а при x = 0 — германат висмута Bi₂GeO₅. Для этих соединений имеются сведения о структуре, оптических свойствах и люминесценции [2-4]. Следует отметить, что сведения о фазовых равновесиях в системах R_2 GeO₅ –Bi₂GeO₅ в литературе отсутствуют. В то же время данные о теплофизических свойствах из всего семейства соединений $R_x \text{Bi}_{2-x} \text{GeO}_5$ имеются только для YBiGeO₅, GdBiGeO₅ [5] и Bi₂GeO₅, SmBiGeO₅ [6]. Для установления фазовых равновесий методами термодинамики требуются сведения о термодинамических свойствах подобных соединений, которые в литературе практически отсутствуют.

Целью настоящей работы является исследование высокотемпературной теплоемкости $TmBiGeO_5$ и $YbBiGeO_5$ и определение их термодинамических свойств.

2. Эксперимент

Образцы TmBiGeO $_5$ и YbBiGeO $_5$ для измерений теплоемкости получали твердофазным синтезом. Для этого стехиометрические смеси предварительно прокаленных оксидов (Tm $_2$ O $_3$, Yb $_2$ O $_3$ и GeO $_2$ — 1173 K, Bi $_2$ O $_3$ — 873 K) перетирали в агатовой ступке и прессовали в таблетки. Их последовательно обжигали на воздухе при 1003, 1073 и 1123 K (по 20 h), 1143 K (10 h), 1173 K (50 h) и 1223 K (100 h). Отличие условий синтеза от данных [6] заключалось в увеличении времени обжига при 1223 K с 50 h до 100 h для достижения полноты протекания твердофазной реакции. Через каждые 10 h таблетки перетирали и снова прессовали.

Контроль фазового состава синтезированных оксидов проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD, PANalytical, Нидерлан-

Рис. 1. Экспериментальный (I), расчетный (2) и разностный (3) профили рентгенограмм TmBiGeO₅ (a) и YbBiGeO₅ (b); штрихи указывают расчетные положения рефлексов.

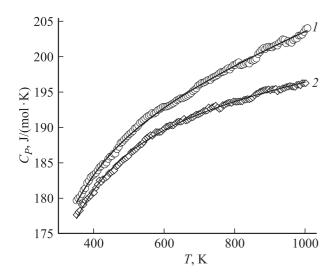
Параметры	TmBiGeO ₅		YbBiGeO ₅	
<i>a</i> , Å	5.2993(4)	5.3070(2)	5.2885(3)	5.2946(2)
b, Å	15.180(1)	15.2094(7)	15.166(8)	15.2014(6)
c, Å	10.9680(9)	10.9773(4)	10.9354(6)	10.9423(4)
V , $Å^3$	882.3(1)	886.05(6)	877.08(8)	880.70(5)
Пространственная группа	Pbca	Pbca	Pbca	Pbca
Литература	[4]	Настоящая работа	[4]	Настоящая работа

Таблица 1. Параметры элементарных ячеек TmBiGeO₅ и YbBiGeO₅

Таблица 2. Термодинамические свойства TmBiGeO₅ и YbBiGeO₅

<i>T</i> , K	C_P , J/(mol · K)	$H^0(T) - H^0(350 \mathrm{K}), \mathrm{kJ/mol}$	$S^{0}(T) - S^{0}(350 \mathrm{K}), \mathrm{J/(mol \cdot K)}$	$\Phi^0(T)$, J/(mol · K)
	•	TmBiGeO	\mathcal{O}_5	
350	179.3	_	_	_
400	183.3	9.07	24.22	1.54
450	183.4	18.32	45.99	5.29
500	188.9	27.70	65.77	10.36
550	191.0	37.20	83.87	16.24
600	192.7	46.80	100.8	22.58
650	194.5	56.48	116.1	29.18
700	196.0	66.25	130.5	35.91
750	197.5	76.09	144.1	42.68
800	198.8	86.00	156.9	49.42
850	200.1	95.97	169.0	56.10
900	201.3	106.0	180.5	62.70
950	202.6	116.1	191.4	69.18
1000	203.7	126.3	201.8	75.56
		YbBiGeC	O_5	
350	177.0	_	_	_
400	181.2	8.96	23.92	1.52
450	184.2	19.00	45.44	5.23
500	186.4	27.37	64.97	10.24
550	188.2	36.73	82.83	16.04
600	189.7	46.18	99.27	22.30
650	190.9	55.70	114.5	28.81
700	192.0	65.27	128.7	35.45
750	192.9	74.90	142.0	42.11
800	193.8	84.56	154.5	48.75
850	194.5	94.27	166.2	55.31
900	195.2	104.0	177.4	61.78
950	195.9	113.8	187.9	68.15
1000	196.5	123.6	198.0	74.39

ды) на излучении $\mathrm{Cu}K_{\alpha}$. Регистрация выполнялась с помощью высокоскоростного детектора PIXcel. Полученные результаты показаны на рис. 1. Параметры решеток полученных соединений определены путем полнопрофильного уточнения методом минимизации производной разности [7].


Измерение теплоемкости $TmBiGeO_5$ и $YbBiGeO_5$ проводили на приборе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной ранее [8,9]. Полученные результаты обрабатывали с помощью пакета анализа NETZSCH Proteus Thermal

Analysis и лицензионного программного инструмента Sistat Sigma Plot 12.

3. Результаты и их обсуждение

Параметры элементарных ячеек синтезированных нами соединений в сравнении с данными других авторов приведены в табл. 1.

Из нее следует, что полученные нами результаты согласуются с данными [4], а также с установленной в [10]

Рис. 2. Температурная зависимость молярной теплоемкости $TmBiGeO_5$ (1) и $YbBiGeO_5$ (2).

закономерностью изменения параметров элементарной ячейки для соединений $RBiGeO_5$ от ионных радиусов редкоземельных элементов.

На рис. 2 показаны данные по влиянию температуры на теплоемкость $TmBiGeO_5$ и $YbBiGeO_5$. Видно, что с ростом температуры значения C_P закономерно увеличиваются, а на зависимостях $C_P = f(T)$ нет экстремумов. Это может свидетельствовать о том, что исследованные оксидные соединения в интервале температур $350-1000\,\mathrm{K}$ не имеют полиморфных превращений. Полученные результаты могут быть описаны классическим уравнением Майера—Келли (в единицах $J/(\mathrm{mol}\cdot\mathrm{K})$): для $TmBiGeO_5$

$$C_P = (185.22 \pm 0.27) + (20.05 \pm 0.30) \cdot 10^{-3} T$$

- $(15.90 \pm 0.31) \cdot 10^5 T^{-2}$, (1)

для YbBiGeO5

$$C_P = (190.22 \pm 0.28) + (8.26 \pm 0.30) \cdot 10^{-3} T$$

- $(19.77 \pm 0.31) \cdot 10^5 T^{-2}$. (2)

Коэффициенты корреляции для уравнений (1) и (2) равны 0.9988 и 0.9989 соответственно. Максимальные отклонения экспериментальных точек от сглаживающих кривых составляют 0.31 и 0.25%.

С использованием уравнений (1) и (2) по известным термодинамическим соотношениям рассчитаны термодинамические функции (изменения энтальпии и энтропии, приведенная энергия Гиббса) оксидных соединений. Эти результаты приведены в табл. 2.

Сравнить полученные нами результаты по теплоемкости $TmBiGeO_5$ и $YbBiGeO_5$ с данными других авторов не представлялось возможным вследствие их отсутствия. Можно отметить, что значения C_P для этих соединений близки к данным для других оксидов $RBiGeO_5$: $YBiGeO_5$, $GdBiGeO_5$ [5] и $SmBiGeO_5$ [6].

4. Выводы

Измерена высокотемпературная теплоемкость $TmBiGeO_5$ и $YbBiGeO_5$. Установлено, что экспериментальные данные по теплоемкости в области температур 350-1000~K хорошо описываются уравнением Майера— Келли. Рассчитаны термодинамические свойства оксидных соединений.

Список литературы

- [1] И.А. Бондарь, Н.В. Виноградова, Л.Н. Демьянец, Ж.А. Ежова, В.В. Илюхин, В.Ю. Кара-Ушанов, Л.Н. Комиссарова, Е.В. Лазаревски, Б.Н. Литвин, П.П. Мельников, Д.А. Мурашов, В.П. Орловский, К.К. Палкина, М.А. Петрова, И.А. Розанов, Н.Н. Чудинова, А.А. Фотиев. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. Наука, М. (1983). 288 с.
- [2] C. Cascales, J.A. Campa, E.G. Puebla, M.A. Monge, C.R. Valero, I. Rasines. J. Mater. Chem. **12**, 3626 (2002).
- [3] C. Cascales, C. Zaldo. J. Solid State Chem. 173, 262 (2003).
- [4] C. Cascales, C. Zaldo. Chem. Mater. 18, 3742 (2006).
- [5] Л.Т. Денисова, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов. ФТТ 59, 5, 1019 (2017).
- [6] Л.Т. Денисова, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов, В.П. Жереб. ФТТ **59**, *8*, 1659 (2017).
- [7] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [8] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, 7, 1274 (2010).
- [9] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы **53**, *1*, 71 (2017).
- [10] Л.Т. Денисова, А.Д. Изотов, Ю.Ф. Каргин, В.М. Денисов, Н.А. Галиахметова. ДАН 473, 4, 449 (2017).