08,04

Влияние решеточного и спин-фононного вкладов на температурное поведение расщепления основного состояния Gd³⁺ в SrMoO₄

© А.Д. Горлов

Уральский федеральный университет, Институт естественных наук и математики, Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@urfu.ru

(Поступила в Редакцию 24 мая 2017 г.)

Исследовано температурное поведение спектров ЭПР примесного центра Gd^{3+} в монокристаллах $\mathrm{SrMoO_4}$ в диапазоне температур T=99-375 К. Проведен анализ температурных зависимостей параметров спинового гамильтониана $b_2^0(T)=b_2(F)+b_2(L)$ и $P_2^0(T)=P_2(F)+P_2(L)$ (для Gd^{157}), описывающих спектр ЭПР и дающих вклад в расщепление ΔE основного состояния Gd^{3+} . В рамках суперпозиционной модели Ньюмена оценены значения $b_2(L)$ и $P_2(L)$, зависящие от температурного расширения статической решетки, затем выделены спин-фононные вклады $b_2(F)$ и $P_2(F)$, определяемые колебаниями ионов решетки. Анализ $b_2^0(T)$ и $P_2^0(T)$ указывает на положительный вклад спин-фононного взаимодействия, а модель локальных колебаний примесного кластера с близкими частотами ω хорошо описывает температурное поведение $b_2(F)$ и $P_2(F)$.

Работа выполнена в рамках государственного задания Минобрнауки России для Уральского федерального университета (3.6115.2017/8.9) на оборудовании Центра коллективного пользования "Современные нанотехнологии" УрФУ.

DOI: 10.21883/FTT.2018.02.45388.169

1. Введение

Соединения молибдатов были и остаются интересными материалами для изучения, обусловленного их применением в практических устройствах. Хорошие оптические свойства, химическая инертность обусловили их применение в виде различных оптоэлектронных элементов в различных устройствах [1-3], лазерных решеток [4]. С развитием технологий криогенного детектирования интерес к соединениям молибдатов возрос, а СаМоО₄ наиболее используемый материал для некоторых устройств. SrMoO₄, как сцинтиллятор в рентгеновском диапазоне, также проявляет более высокую эффективность, чем многие другие молибдаты, поэтому он может использоваться и считается дополнительным материалом [5]. Физические параметры кристаллов определяют эффективность устройств и существенным образом зависят от фононного спектра, меняющегося с температурой (T). Теоретические модели, объясняющие такие температурные изменения, связанные с фононным спектром, еще несовершенны, поэтому новые экспериментальные результаты, из которых можно выделить спин-фононный вклад (СФВ), могут помочь в их развитии.

Данная работа является продолжением наших ЭПР-исследований [6,7], посвященных анализу изменения параметров начального расщепления ΔE основного состояния примесных центров (ПЦ) Gd^{3+} в кристаллах $\mathrm{CaWO_4}$ и $\mathrm{CaMoO_4}$ за счет температурного изменения координат лигандов (implicit effect) и действию решеточных колебаний, или $\mathrm{C\Phi B}$ (explicit effect) [8,9].

Кроме наибольшего из параметров спинового гамильтониана (СГ) b_2^0 , определяющего расщепление ΔE для SrMoO4:Gd³+, в рассмотрение мы включили еще и квадрупольное взаимодействие (КВ) P_2^0 . Известно, что КВ, определяемое градиентом электрического кристаллического поля (КП) лигандов на ПЦ, пропорционально величине этого поля A_2^0 [10,11]. Следовательно, выделив СФВ из величин $b_2^0(T)$ и $P_2^0(T)$, можно ожидать, что при правильном описании спин-фононного взаимодействия некоторые модельные параметры этих зависимостей должно быть одинаковы.

2. Экспериментальные результаты

Кристалл SrMoO₄:Gd³⁺ выращен методом Чохральского с примесью 0.02% по весу $\mathrm{Gd_2O_3}$ (с природным содержанием изотопов) в шихте. Спектры ЭПР были записаны на спектрометре Bruker EMX plus в 3-ст диапазоне при разных T и ориентациях внешнего магнитного поля \mathbf{H} . Разрешенная сверхтонкая структура (СТС), обязанная нечетному изотопу $\mathrm{Gd^{157}}$ (электронный спин S=7/2, ядерный спин I=3/2), наблюдалась на всех сигналах ЭПР в ориентациях $\mathbf{H} \parallel \mathbf{S_4}$ — главной оси кристалла и на нескольких — при $\mathbf{H} \perp \mathbf{S_4}$.

Спектр ЭПР от четных и нечетного изотопов прекрасно описывается спин-гамильтонианом, соответствующим локальной симметрии ПЦ D_{2d} , т.е. Gd^{3+} замещает Sr^{2+} [12]. Численная минимизация среднеквадратичного отклонения экспериментальных и расчетных положений сигналов показала, что величины параметров $b_n^m(T)$ (n=2,4,6 и m=0,4,6) для четных и нечетного

330 А.Д. Горлов

T, K	Параметры СГ				Расчетный вклад статической решетки	
	b_2^0	b_4^0	b_4^4	P_2^0	$b_2(L)$	$P_2(L)$
99	-2496.0(3)	-39.29(15)	-249.3(20)	-57.3(4)	-2519.7	-58.3
111	-2492.7(3)	-39.10(15)	-248.0(31)	-57.3(4)	-2523.1	-58.5
125	-2489.4(4)	-39.09(30)	-247.3(23)	-57.2(5)	-2527.4	-58.7
150	-2482.0(3)	-38.84(30)	-247.7(10)	-57.2(4)	-2536.1	-59.2
175	-2472.7(3)	-38.55(29)	-246.5(11)	-57.0(4)	-2545.9	-59.7
200	-2463.3(4)	-38.18(33)	-243.5(12)	-56.9(5)	-2556.8	-60.3
250	-2443.0(3)	-37.73(3)	-238.7(20)	-56.7(4)	-2581.2	-61.7
273	-2434.4(4)	-37.40(23)	-237.1(18)	-56.4(5)	-2593.5	-62.4
298	-2427.3(4)	-37.20(22)	-235.6(20)	-56.3(4)	-2605.7	-63.2
375	-2394.5(9)	-36.2(5)	-230.0(12)	-55.9(6)	-2653.5	-65.7

Таблица 1. Экспериментальные параметры спинового гамильтониана примесного иона Gd^{157} в $\mathrm{SrMoO_4}$ и расчетный решеточный вклад статической решетки в $Z_2(L)$ (в MHz) при разных T

Примечание. $g_x=g_y=1.9915(4),\ g_z=1.9918(3),\ b_6^0=0.16(10),\ b_6^4=6(8),\ b_6^6=2(6),\ A_x=A_y=16.2(3),\ A_z=16.2(3).$ Средняя ошибка в $b_2(L)$ за счет неточности параметров решетки $\sim 0.8\%,\ (\sim 20\,\mathrm{MHz}),\ \mathrm{a}\ \mathrm{B}\ P_2(L)\sim 2.2\%,\ (\sim 1.3\,\mathrm{MHz}).$

изотопов Gd^{3+} в $SrMoO_4$ практически совпадают в пределах ошибок измерений, причем близки и среднеквадратичные ошибки. Использование $C\Gamma$ для реальной локальной симметрии $\Pi \coprod S_4$ не приводило к уменьшению ошибок в определении параметров. В табл. 1 приведены их значения для Gd^{157} в $SrMoO_4$.

3. Модельные расчеты

Определим $Z_n^m(T) = b_n^m(T)$ (либо $P_n^0(T)$) как экспериментально определенные константы СГ, а СФВ в диагональные параметры (m=0) $Z_n(F) = b_n(F)$ (либо $P_n(F)$). Тогда [6,7]

$$Z_n(F) = Z_n^0(T) - Z_n(L).$$
 (1)

Для n=2 $Z_2(L)=b_2(L)$ (либо $P_2(L)$) являются вкладами статической решетки при данной T. Величины $Z_2(L)$ при разных T рассчитаем с помощью суперпозионной модели Ньюмена $\begin{bmatrix} 13-15 \end{bmatrix}$ в виде, представленном в работе $\begin{bmatrix} 16 \end{bmatrix}$.

3.1. Расчет параметров решетки. Для определения $b_2(L)$ и $P_2(L)$ нам необходимо знать a и c — параметры решетки для SrMoO₄ в широком диапазоне T. В литературе нет таких данных для низких температур, однако приведены экспериментально измеренные параметры a и c для SrMoO₄ в диапазоне T=299-931 К [17]. Мы предположили, что зависимости a(T) и c(T) имеют полиномный вид, как в работе [18] ((6) для CaWO₄)

$$l(T) = l_0(1 + l_1T^2 + l_2T^3 + l_3T^4), (2)$$

где l=a либо c. Используя в качестве опорных точек в процедуре fitting данные работы [17] и (2), мы получили

зависимости a(T) и c(T) с параметрами (в Å):

$$a_0 = 5.3888(16), \quad a_1 = 2.0438(199) \cdot 10^{-8},$$

$$a_2 = -2.045(245) \cdot 10^{-11}, \quad a_3 = 8.6(28) \cdot 10^{-15},$$

$$c_0 = 11.9861(48), \quad c_1 = 4.6014(836) \cdot 10^{-8},$$

$$c_2 = -4.565(110) \cdot 10^{-11}, \quad c_3 = 1.85(12) \cdot 10^{-14}.$$

Приведенные ошибки (цифры в скобках) соответствуют утроенному среднеквадратичному отклонению 3σ .

Чтобы проверить достоверность применения (2), мы провели аналогичную процедуру с данными работы [19] для CаMoO4, взятыми в диапазоне $T\sim300-1273\,\mathrm{K}.$ Полученные нами a(T) и c(T) неплохо совпадают с экспериментальными результатами [20] в области $T=10-300\,\mathrm{K}.$ Используя (2) с определенными выше a_i и c_i , мы рассчитали параметры решетки SrMoO4 при нужных T, а затем и сферические координаты R, θ , φ ближайших к Gd^{3+} 8 ионов кислорода (O^{2-}) в чистой решетке SrMoO4. Координаты x,y,z этих O^{2-} взяты из данных работы [21].

3.2. Оценка параметров $Z_2(L)$. Процедура расчета параметров $Z_2(L)$ в суперпозионной модели [13–16] аналогична описанной в [6,7]. В выражении

$$Z_2(L) = \sum_i k_i(\theta) \left[Z_{2p} (R_0/R_i)^3 + Z_{2s} (R_0/R_i)^{10} \right]$$
 (3)

"intrinsic" параметры Z_{2p} (равные $b_{2p}=-1.289\cdot 10^4\,\mathrm{MHz}$ либо $P_{2p}=-545.6\,\mathrm{MHz}$ [16]) являются вкладами от точечного заряда $\mathrm{O^{2-}}$. Координационные факторы $k_i(\theta)=n(3\cos^2\theta_i-1)/2$. Поскольку ближайшие к $\mathrm{Gd^{3+}}$ кислороды разбиваются на 2 четверки, эквивалентные по вкладам в b_2^0 и P_2^0 , то i=1,2, а n=4. Расстояния $\mathrm{Gd^{3+}}-\mathrm{O^{2-}}$ рассчитано по формуле $R_i=R+(r-r_h)/2$ [22], где r,r_h — ионные радиусы примесного и замещаемого иона, взятые из таблиц

Таблица 2. Модельные параметры температурных зависимостей $Z_n^m(T)$ и $Z_2(F)$ (в MHz) для Gd^{3+} в $\mathrm{SrMoO_4}$

Зависимость	Параметры модели					
Subhenwoord	$Z_n^m(0)$	$Z_n(0)$	$\omega \cdot 10^{-13}$, rad/s			
$b_2^0(T)$	-2506.1(20)	50.0(18)	3.15(10)			
$P_2^{0}(T)$	-57.4(46)	1.65(48)	5.58(87)			
$b_4^0(T)$	-39.6(8)	1.3(1)	2.73(13)			
$b_4^4(T)$	-250(5)	16.3(51)	4.6(8)			
$b_2(F)$	_	126.8(96)	3.4(2)			
$P_2(F)$	-	4.9(5)	3.47(50)			

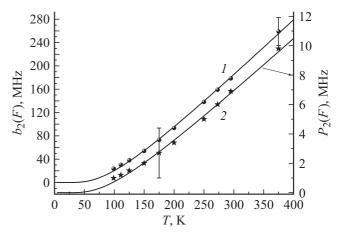
Примечание. Ошибки в параметрах соответствуют 3σ .

Шеннона [23]. Параметры Z_{2s} ($b_{2s} = 1.008 \cdot 10^4 \,\mathrm{MHz}$, а $P_{2s} = 555.8 \,\mathrm{MHz}$), т.е. вклады от перекрывания ковалентности на расстоянии $R_0 = 2.34 \,\text{Å}$ [16], определены для Gd^{3+} в $SrMoO_4$ следующим образом. Из зависимостей экспериментальных величин $b_2^0(T)$ и $P_2^0(T)$ в модели "жесткой решетки" согласно (2)-(4)из [24] получены величины $Z_2^0(RL)$. Как показано в [6,7] значения $Z_2^0(RL)=b_2^0(0)$ либо $P_2^0(0)$ (далее $Z_2^0(RL) = Z_2^0(0)$), т.е. близки к величинам экспериментальных параметров при $T \sim 1.8-4.2 \, \mathrm{K}$, поскольку фононный вклад в этой области T очень мал [6-9,25-27]. Заметим также, что эти величины получаются практически равными при использовании любой из моделей параметризации, изложенных в работах [24-27]. Определив согласно (2) a и c при $T\sim 2$ K, затем R_i , θ_i и φ_i для кластера $Gd^{3+}-8O^{2-}$ и используя (3), можно легко получить b_{2s} и P_{2s} . В табл. 1 приведены расчетные значения $b_2(L)$ и $P_2(L)$ при нужных температурах, а в табл. 2 даны параметры $b_2^0(0)$ и $P_2^0(0)$.

4. Температурная зависимость $Z_2(F)$ и обсуждение результатов

Выделим из наших экспериментальных данных зависимость от температуры $b_2(F)$ и $P_2(F)$, который определим согласно (1) и данных табл. 1. Видно, что $b_2(F)$ и $P_2(F)$ положительны. Зависящее от температуры СФВ, влияющее на начальное расщепление ΔE уровней энергии для ПЦ в кристаллах, можно попытаться описать тремя наиболее известными теоретическими моделями [25–27]. В этих моделях предполагается доминирующий влияние оптических фононов [25], либо акустических [26] в СФВ. В модели [27] показано, что основную роль в фононно-индуцированном вкладе (или в СФВ) играют локальные оптические колебания примесного кластера. Хотя каждой модели соответствует своя функциональная температурная зависимость для $Z_2(F)$, в области $T > 200 \,\mathrm{K}$ все они дают практически линейную зависимость от T.

4.1. Температурная зависимость $b_2(F)$. Анализ показал, что в моделях [25,26] зависимость фо-


нонно-индуцированного вклада $b_2(F)$ от T можно описать только тремя подгоночными параметрами, один из которых не имеет теоретического обоснования. С другой стороны, модель локальных колебаний [27] с двумя параметрами очень хорошо описывает зависимость $b_2(F)$ от T выражением

$$Z_2(F) = Z_2(0)[\coth(\omega/2kT) - 1],$$
 (4)

где $Z_2(0)=b_2(0)$ — вклад за счет "нулевых колебаний" решетки, ω — частота локальных колебаний примесного кластера, k — постоянная Больцмана. На рисунке показана зависимость $b_2(F)$ от T (кривая I), полученная в процедуре genfit. Точки на кривой определены согласно (1), а в табл. 2 приведены модельные параметры, причем в скобках приведены их отклонения при 3σ .

4.2. Температурная зависимость $P_2(F)$. Хотя изменения $P_2^0(T)$ малы тем не менее рассчитав $P_2(L)$, мы видим, что фононно-индуцированный вклад $P_2(F) \sim 7\,\mathrm{MHz}$ при $T \sim 300\,\mathrm{K}$. Как и для $b_2(F)$ в выражениях для температурной зависимости $P_2(F)$ в моделях [25,26] требуются три подгоночных параметра в процедуре genfit, а модель локальных колебаний [27] хорошо описывает $P_2(F)$ согласно (4) (на рисунке это кривая 2). Модельные параметры даны в табл. 2, приведенные ошибки определены также при 3σ .

Отношение изменений решеточного вклада $\Delta b_2(L)==|b_2(L)-b_2^0(0)|$ к $|b_2(F)|\sim 0.56$ при T=298 K, причем $\Delta b_2(L)<0$. Это значит, что вклад в температурное изменение $b_2^0(T)$ локальных колебаний узлов примесного кластера в 1.7 раза больше, чем изменение $\Delta b_2(L)$ из-за расширения статической решетки. Аналогичные оценки для KB дают $\Delta P_2(L)=P_2(L)-P_2^0(0)<0$, а $|\Delta P_2(L)/P_2(F)|\sim 0.8$, что также означает более сильное влияние локальных колебаний на температурную

Температурные зависимости $b_2(F)$ (1), $P_2(F)$ (2). Кривые 1 и 2 описываются выражением (4) с параметрами, приведенными в табл. 2. Положения точек и звездочек определено согласно (1) и (3). Приведенные ошибки включают максимальную экспериментальную ошибку в $b_2^0(T)$ и $P_2^0(T)$ плюс разброс в $b_2(L)$ и $P_2(L)$ из-за неточностей при расчете параметров решетки.

332 А.Д. Горлов

зависимость КВ. Поскольку эти два механизма (фононно-индуцированный и решеточный) дают вклады разного знака в $Z_2^0(T)$, они частично компенсируют друг друга, что наиболее заметно в величинах $P_2^0(T)$.

Таким образом, мы видим, что положительные величины СФВ $b_2(F)$ и $P_2(F)$ описываются (4) с частотами ω , совпадающими в пределах ошибок. Исходя из этого результата, мы считаем, что однозначное описание температурных зависимостей для вышеуказанных параметров указывает на правомерность использования модели Пфистера [27], предполагающей доминирующую роль локальных колебаний примесного кластера в фононно-индуцированном вкладе. Заметим, что существенное влияние локальных колебаний на процессы диссипации энергии от ПЦ в решетку отмечено также в оптическом диапазоне, что влияет на эффективность работы практических устройств (см. работу [28] и ссылки).

4.3. Температурная зависимость b_n^m . Параметры $b_4^m(T)$ (m=0,4) анализировались только в "модели жесткой решетки" [24], поскольку нет хорошей модели для определения b_n^m , а модель Ньюмена [13–15] для их расчета дает неоднозначные результаты, как это было показано ранее в [7]. Взяв (2), (3), (4) из [24] для трех моделей СФВ, мы получили величины $b_4^m(RL)$, средние значения которых приведенные в табл. 2.

5. Заключение

Анализ экспериментальных зависимостей параметров $C\Gamma$ $b_2^0(T)$ и $P_2^0(T)$ для примесного центра Gd^{+3} (нечетный изотоп) в SrMoO₄ показал, что учет температурных изменений вклада статической решетки $\Delta Z_2(L) < 0$ позволил однозначно и с минимальным числом модельных параметров описать температурное поведение спин-фононного взаимодействия $b_2(F)$ и $P_2(F) > 0$. Из трех моделей СФВ наиболее подходящей оказалась модель локальных колебаний примесного кластера Пфистера [27], причем частоты локальных колебаний для $b_2(F)$ и $P_2(F)$ совпадают (в пределах ошибок). Отношение спин-фононного вклада к температурным изменениям решеточного вклада ~ 1.7 в области линейной зависимости для $b_2^0(T)$ и ~ 1.25 для $P_2^0(T)$. Это указывает на большее влияние на температурное поведение начального расщепления колебаний примесного кластера, чем расширение решетки. Поскольку это вклады разного знака, они частично компенсируют друг друга в широкой области температур, что заметно ослабляет зависимость $Z_2^0(T)$. Отметим также, что эти результаты аналогичны полученным для Gd³⁺ в CaMoO₄ и CaWO₄.

Список литературы

- L.-Y. Zhou, J.-S. Wei, F.-Z. Gong, J.-L. Huang, L.-H. Yi. J. Solid. State Chem. 181, 1337 (2008).
- [2] A. Khanna, P.S. Dutta. J. Solid. State Chem. 198, 93 (2013).

- [3] A.S. Shcherbakov, A.O. Arellanes, S.A. Nemov. Opt. Engineering **52**, 064001, (2013).
- [4] В. Осико, И. Щербаков. Фотоника 39, 14 (2013).
- [5] H. Bhang, R.S. Boiko, D.M. Chernyak, J.H. Choi, S. Choi, F.A. Danevich, K.V. Efendiev, C. Enss, A. Fleischmann, A.M. Gangapshev, L. Gastaldo, A.M. Gezhaev, Y.S. Hwang, H. Jiang, W.G. Kang, V.V. Kazalov, N.D. Khanbekov, H.J. Kim, K.B. Kim, S.K. Kim, S.C. Kim, Y.D. Kim. Y.H. Kim, V.V. Kobychev, V.N. Kornoukhov, V.V. Kuzminov, V.M. Mokina, H.S. Lee, J.I. Lee, J.M. Lee, K.B. Lee, M.J. Lee, M.K. Lee, S.J. Lee, J. Li, X. Li, S.S. Myung, A.S. Nikolaiko, S. Olsen, S.I. Panasenko, H. Park, D.V. Poda, R.B. Podviyanuk, O.G. Polischuk, P.A. Polozov, S.S. Ratkevich, Y.Satou, J.H. So, K. Tanida, V.I. Tretyak, S.P. Yakimenko, Q Yue, Y. Yuryev. J. Phys. Conf. Ser. 375, 042023 (2012).
- [6] А.Д. Горлов. ФТТ 57, 1371 (2015).
- [7] А.Д. Горлов. ФТТ **59**, 559 (2017).
- [8] W.M. Walsh, jr. Phys. Rev. 114, 1473 (1959).
- [9] W.M. Walsh, jr., J. Jeener, N. Bloembergen. Phys. Rev. 139, A1338 (1965).
- [10] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. 1. 651 с.
- [11] Б. Блини. В сб.: Сверхтонкие взаимодействия в твердых телах / Под ред. Е.А. Турова. Мир, М. (1970). С. 15.
- [12] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). 672 с.
- [13] D.J. Newman, W. Urban. Adv. Phys. 24, 793 (1975).
- [14] G.G. Siu, D.J. Newman J. Phys. C 15, 6753 (1982).
- [15] D.J. Newman J. Phys. C 8, 1862 (1975).
- [16] L.I. Levin, A.D. Gorlov. J. Phys.: Cond. Matter. 4, 1981 (1992).
- [17] V.T. Deshpande, S.V. Suryanarayana. Acta Cryst. A 28, 94 (1972).
- [18] A. Senyshyn, H. Kraus, V.B. Mikhailik, V. Yakovyna. Phys. Rev. B 70, 214306 (2004).
- [19] S.N. Achary, S.J. Patwe, M.D. Mathews, A.K. Tyagi. J. Phys. Chem. Solid. 67, 774 (2006).
- [20] A. Senyshyn, H. Kraus, V.B. Mikhailik, L. Vasylechko, M. Knapp. Phys. Rev. B 73, 014104 (2006).
- [21] E. Gurmen, E. Daniels, J.S. King. J. Phys. Chem. Phys. 55, 1093 (1971).
- [22] W.C. Zheng, S.Y. Wu. Physica B 304, 137 (2001).
- [23] R.D. Shennon. Acta. Crystallogr. A 32, 751 (1976).
- [24] T. Rewajt, J. Kuriata, J. Typek, J.Y. Buzare. Acta Phys. Pol. A 84, 1143 (1993).
- [25] C.Y. Huang. Phys. Rev. 159, 683 (1967).
- [26] K.N. Shrivastava. Phys. Rev. 187, 446 (1969).
- [27] G. Pfister, W. Draybrodt, W. Assmus. Phys. Status Solidi B 36, 351(1969).
- [28] M.P. Hehlen, A. Kuditcher, S.C. Rand, M.A. Tischler. J. Chem. Phys. 107, 4886 (1997).