05

## Влияние содержания корунда и температуры спекания на механические свойства керамических композитов CaO—ZrO<sub>2</sub>—Al<sub>2</sub>O<sub>3</sub>

© А.А. Дмитриевский, А.И. Тюрин, А.О. Жигачев, Д.Г. Гусева, П.Н Овчинников

Тамбовский государственный университет им. Г.Р. Державина, Тамбов, Россия

E-mail: aadmitr@yandex.ru

Поступило в Редакцию 23 июня 2017 г.

Исследованы зависимости механических свойств (микротвердости  $H_V$  и вязкости разрушения  $K_C$ ) наноструктурированных композиционных керамик  ${\rm CaO-ZrO_2-Al_2O_3}$  от концентрации корунда ( $0\leqslant C_{{\rm Al_2O_3}}\leqslant 25\%$ ) и температуры спекания ( $1250\leqslant T_1\leqslant 1500^{\circ}{\rm C}$ ). Установлены оптимальные соотношения концентрации корунда ( $C_{{\rm Al_2O_3}}=5\%$ ) и температуры двухстадийного спекания ( $T_1=1300^{\circ}{\rm C}$  в течение 5 min и  $T_2=1200^{\circ}{\rm C}$  в течение 4 h), при которых достигаются наиболее высокие показатели механических свойств композитов ( $H_V=12.25~{\rm GPa}$  и  $K_C=8.47~{\rm MPa\cdot m}^{1/2}$ ).

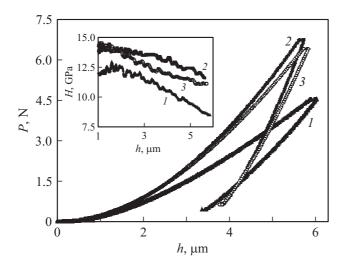
DOI: 10.21883/PJTF.2018.04.45635.16933

Технический прогресс способствует постоянному ужесточению требований к рабочим характеристикам материалов. В отношении инженерных керамик это улучшение соотношения твердость/вязкость разрушения, снижение коэффициента трения, повышение износостойкости и пр. Керамика на основе диоксида циркония, обладающая комплексом уникальных физико-химических и механических свойств, химической инертностью и биосовместимостью, уже многие годы находит широкое применение в самых разнообразных областях (от производства износостойких подшипников до создания медицинских хирургических инструментов и имплантатов) [1,2]. От других керамик ее выгодно отличает высокое значение вязкости разрушения  $K_C$ . Причиной этого является мартенситное фазовое превращение тетрагональной фазы

t-ZrO $_2$  в моноклинную m-ZrO $_2$ , вызываемое полями упругих напряжений распространяющейся трещины [3]. Потеря части упругой энергии на переход  $t \to m$  затрудняет развитие трещины, обеспечивая диоксиду циркония так называемое трансформационное упрочнение. Для стабилизации тетрагональной фазы t-ZrO $_2$  при комнатной температуре используется введение окисей металлов: MgO, CaO, Y $_2$ O $_3$ , CeO $_2$  и др.

Основными недостатками циркониевой керамики являются низкотемпературная деградация (потеря прочности во влажной среде при комнатной температуре) и относительно невысокое значение твердости. С целью снижения степени деградации используют комбинирование стабилизаторов (Y2O3-CeO2, CaO-CeO2 и др.) [4]. Для повышения твердости идут по пути комбинирования ZrO2 с более твердыми керамиками, что, однако, приводит к снижению вязкости разрушения синтезируемого материала. Наибольшую распространенность получили композиты диоксида циркония с корундом (полиморфная модификация оксида алюминия  $Al_2O_3$ ) [5]. Системы  $ZrO_2-Al_2O_3$ , как правило, представляют собой сплав зерен диоксида циркония, частично стабилизированного окисью иттрия или кальция, и корунда. При невысоких концентрациях корунда в таких структурах может реализоваться не только присущий диоксиду циркония механизм трансформационного упрочнения, но и механизм дисперсионного упрочнения, обусловленный присутствием в композите дискретных частиц корунда. Малые концентрации корунда (единицы процентов) обеспечивают возможность спекания композита при сравнительно низких (характерных для ZrO<sub>2</sub>) температурах, не вызывающих роста зерен ZrO<sub>2</sub>. Кроме того, имеются данные [6] о подавлении низкотемпературной деградации механических свойств диоксида циркония при добавлении Al<sub>2</sub>O<sub>3</sub> в матрицу ZrO2. Таким образом, весь комплекс механических свойств композита (включая стойкость к низкотемпературной деградации) зависит от процентного содержания корунда в матрице диоксида циркония.

Одним из основополагающих факторов, оказывающих влияние на рабочие характеристики таких композитов, является режим спекания (количество стадий, температура, длительность) [7]. Различие в температурах и кинетике спекания компонентов обусловливает нелинейность зависимости механических свойств композитов (особенно с различным процентным соотношением  $ZrO_2$  и  $Al_2O_3$ ) от температуры


и длительности их спекания. В связи с этим цель настоящей работы состояла в установлении оптимального процентного содержания корунда в матрице диоксида циркония (стабилизированного оксидом кальция) и режима низкотемпературного спекания, способствующих получению наноструктурированных композитов  $CaO-ZrO_2-Al_2O_3$  с высоким соотношением твердости и вязкости разрушения.

наноструктурированной композиционной керамики Образцы CaO-ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> готовились следующим образом. Компоненты композита (оксид кальция, диоксид циркония и корунд) смешивались с таким расчетом, чтобы молярная концентрация стабилизатора (CaO) по отношению к ZrO<sub>2</sub> имела значение 6.5%, а массовая концентрация Al<sub>2</sub>O<sub>3</sub> по отношению к смеси CaO-ZrO<sub>2</sub> варьировалась в диапазоне от 0 до 25%. Полученная смесь порошков диспергировалась в дистиллированной воде (в массовом соотношении 1:1) и гомогенизировалась при помощи ультразвука. Затем производился помол в планетарной мельнице в течение 5 h. Компоненты композита и мелющие тела имели массовое соотношение 1:5. После помола следовала усушка смеси в печи при температуре  $T_0 = 80^{\circ}$ C в течение 24 h. Формовка образцов осуществлялась путем одноосного сухого прессования при нагрузке 5000 kg в течение 30 s.

Спекание образцов проводилось на воздухе в двухстадийном режиме, широко используемом для спекания циркониевых керамик [8]. На первом этапе образцы нагревались с постоянной скоростью (5°С/min) до температуры  $T_1$  и выдерживались в течение 5 min. Затем образцы охлаждались до температуры  $T_2$  и спекались в течение 4 h. Охлаждение до комнатной температуры производилось со скоростью, не превышающей 5°С/min. Температуры  $T_1$  и  $T_2$  варьировались в интервалах от 1250 до 1500°С и от 1150 до 1400°С соответственно (с интервалом в 50°С). После спекания образцы подвергались механической шлифовке и полировке.

Микротвердость по Виккерсу  $H_V$  тестировалась на автоматизированном микротвердомере Duramin-A300 при нагрузке 50 N. Кроме того, с использованием микрозондовой системы NanoIndentr G200 в режиме CSM (continuous stiffness measurement) производилась регистрация P-h-диаграмм и зависимости нанотвердости H от глубины внедрения индентора h.

Для визуализации отпечатков индентора использовался металлографический инвертированный микроскоп Axio Observer A1m с анализатором изображения "Структура 5.0". Появление трещин около отпечатка



**Рис. 1.** Типичные P-h-диаграммы, зарегистрированные в процессе наноиндентирования композиционных керамик CaO-ZrO $_2-$ Al $_2$ O $_3$  с концентрацией корунда  $C_{\mathrm{Al}_2\mathrm{O}_3}=2.5~(I), 5~(2)$  и 10% (3). На вставке представлены зависимости нанотвердости соответствующих композитов от глубины внедрения индентора, полученные при индентировании в режиме CSM.

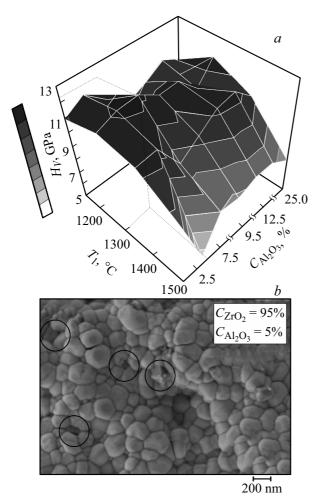
при внедрении индентора позволяет применить метод индентирования для определения вязкости разрушения  $K_C$  [9,10]. Величина  $K_C$  определялась с помощью выражения [10]

$$K_C = k \left(\frac{E}{H}\right)^{1/2} \frac{P}{L^{3/2}},\tag{1}$$

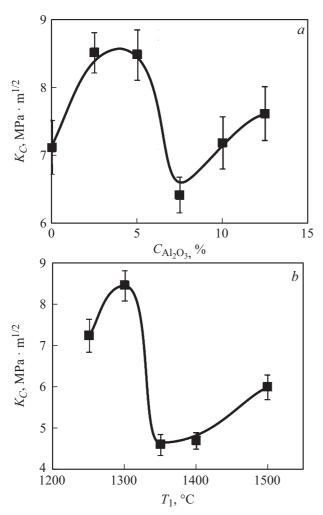
где L — длина радиальных трещин около отпечатка, k — эмпирический калибровочный коэффициент ( $k=0.016\pm0.004$  [10]).

Структура композитов исследовалась при помощи сканирующего электронного микроскопа (СЭМ) Merlin. Информацию о фазовом составе композитов получали, анализируя рентгеновские дифракционные спектры (дифрактометр 2DPhaser).

В качестве основной тестируемой характеристики механических свойств синтезируемых композиционных керамик, различающихся процентным содержанием корунда и температурой спекания, была выбрана


величина микро- и нанотвердости. Так, на рис. 1 представлены характерные P-h-диаграммы, зарегистрированные в процессе наноиндентирования (в режиме CSM) композитов с концентрацией корунда 2.5, 5 и 10%, спеченных при  $T_1=1300^{\circ}\mathrm{C}$ . Как следует из представленных данных, варьирование концентрации корунда  $\mathrm{C}_{\mathrm{Al_2O_3}}$  сопровождается немонотонным изменением H. Следует отметить, что, несмотря на некоторое уменьшение H по мере увеличения нагрузки, немонотонный характер зависимости  $H=f(C_{\mathrm{Al_2O_3}})$  характерен для всего исследуемого интервала глубин внедрения индентора (втавка на рис. 1).

Такая немонотонность может быть вызвана следующими причинами. С одной стороны, введение в матрицу  $CaO-ZrO_2$  более твердых частиц корунда способствует увеличению H композита (что наблюдается при  $C_{\mathrm{Al_2O_3}} \leqslant 5\%$ ). С другой стороны, в силу существенного различия в температурах спекания компонентов [11] повышение концентрации корунда, температура спекания которого значительно выше используемой, по-видимому, вызывает снижение твердости композита (что наблюдается уже при  $C_{\mathrm{Al_2O_3}} \geqslant 7.5\%$ ).


Известно [7], что механические свойства керамик и их композитов в сильной степени зависят от режима спекания. С учетом немонотонности зависимости  $H=f(C_{\mathrm{Al_2O_3}})$  это дает основание для поиска оптимального соотношения концентрации  $\mathrm{Al_2O_3}$  в композите и температуры его спекания. На рис. 2, a представлена зависимость микротвердости (по Виккерсу)  $H_V$  от концентрации корунда в матрице  $\mathrm{CaO-ZrO_2}$  и температуры спекания  $T_1$ . Видно, что максимальное значение микротвердости ( $H_V=12.25\pm0.25\,\mathrm{GPa}$ ) достигается при концентрации корунда  $C_{\mathrm{Al_2O_3}}=5\%$  и температуре спекания  $T_1=1300^\circ\mathrm{C}$  ( $T_2=1200^\circ\mathrm{C}$ ).

Структура полученной в таких условиях композиционной керамики характеризуется высоким содержанием тетрагональной фазы ( $C_{t\text{-}ZrO_2}=96\%$ ) и довольно равномерным распределением кристаллитов корунда по объему матричного материала, средний размер зерен которого имеет значение  $\sim 150\,\mathrm{nm}$  (рис. 2, b). Повышение температуры спекания композитов, как известно, способствует росту среднего размера зерна, что вызывает наблюдаемое снижение микротвердости при  $T_1 > 1300^\circ\mathrm{C}$  (рис. 2, a).

Важно отметить, что зависимости вязкости разрушения  $K_C$  от концентрации корунда в композите  $C_{\mathrm{Al_2O_3}}$  (рис. 3,a) и от температуры его спекания  $T_1$  (рис. 3,b) также имеют немонотонный вид. При этом  $K_C$ 



**Рис. 2.** Зависимость микротвердости  $H_V$  композиционной керамики  $CaO-ZrO_2-Al_2O_3$  от концентрации оксида алюминия  $C_{Al_2O_3}$  и температуры спекания  $T_1$  (a) и CЭМ-изображение наноструктурированной композиционной керамики  $CaO-ZrO_2-Al_2O_3$  с концентрацией корунда  $C_{Al_2O_3}=5\%$  (b). Кружками отмечены кристаллиты  $Al_2O_3$ .



**Рис. 3.** Зависимости вязкости разрушения  $K_C$  композиционной керамики CaO—ZrO<sub>2</sub>—Al<sub>2</sub>O<sub>3</sub> от концентрации оксида алюминия  $C_{Al_2O_3}$  (a) и температуры спекания  $T_1$  (b).

достигает максимального значения  $(8.47\pm0.37 \mathrm{MPa\cdot m^{1/2}})$  в композитах с содержанием корунда  $C_{\mathrm{Al_2O_3}}=5\%$  и композитах, спеченных при температуре  $T_1=1300^{\circ}\mathrm{C}$ .

Таким образом, синтезирована наноструктурированная композиционная керамика на основе химически преципитированного диоксида циркония (стабилизированного оксидом кальция) с добавлением корунда, обладающая сочетанием высоких значений твердости (12.25 GPa) и вязкости разрушения (8.47 MPa ·  $\mathrm{m}^{1/2}$ ). Показано, что оптимальными при этом являются добавление 5 wt.% корунда и двухстадийный режим спекания с температурами  $T_1 = 1300^{\circ}\mathrm{C}$  (в течение 5 min) и  $T_2 = 1200^{\circ}\mathrm{C}$  (в течение 4 h). Следует отметить, что получение композиционной керамики  $\mathrm{CaO-ZrO_2-Al_2O_3}$  с высокими показателями рабочих характеристик при столь низких температурах спекания обеспечивает существенную экономическую выгоду не только за счет снижения энергопотребления в процессе термической обработки, но и за счет резкого снижения стоимости используемых печей.

Исследование выполнено за счет гранта Российского научного фонда (проект № 16-19-10405).

## Список литературы

- [1] Novik N.N., Konakov V.G., Archakov I.Yu. // Rev. Adv. Mater. Sci. 2015. V. 40. P. 188–207.
- [2] Nevarez-Rascon A., González-Llopez S., Acosta-Torres L.S., Nevarez-Rascon M.M., Orrantia-Borunda E. // Dental Mater. J. 2016. V. 35. P. 392–398.
- [3] Szutkowska M. // J. Mater. Proc. Technol. 2004. V. 153–154. P. 868–874.
- [4] Huang S.G., Vleugels J., Li L., Van der Biest O., Wang P.L. // J. Eur. Ceram. Soc. 2005. V. 25. P. 3109–3115.
- [5] Danilenko I., Lasko G., Brykhanova I., Burkhovetski V., Ahkhozov L. // Nanoscale Res. Lett. 2017. V. 12. P. 125–134.
- [6] Lughi V., Sergo V. // Dental. Mater. 2010. V. 26. P. 807–820.
- [7] Fan J., Lin T., Hu F., Yu Y., Ibrahim M., Zheng R., Huang Sh., Ma J. // Ceram. Int. 2017. V. 43. P. 3647–3653.
- [8] Galusek D., Ghillanyova K., Sedlacek J., Kozankova J., Sajgalik P. // J. Eur. Ceram. Soc. 2012. V. 32. P. 1965–1970.

- [9] Головин Ю.И. // ФТТ. 2008. Т. 50. В. 12. С. 2113–2142.
- [10] Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B. // J. Am. Ceram. Soc. 1981. V. 64. P. 533–538.
- [11] *Суржсиков А.П., Франгульян Т.С., Гынгазов С.А.* // Системы. Методы. Технологии. 2012.  $\mathbb{N}_2$  4(16). С. 93–97.