08 Улучшения качества лазерного скрайбирования прозрачного проводящего оксида при изготовлении тонкопленочного солнечного модуля

© Ф.С. Егоров,^{1,2} А.В Кукин,³ Е.И. Теруков,^{3,4} А.С. Титов^{3,4,¶}

¹ ООО "Хевел",

429952 Новочебоксарск, Россия

² Чувашский государственный университет им. И.Н. Ульянова,

428000 Чебоксары, Россия

³ ООО "Научно-технический центр тонкопленочных технологий в энергетике",

194064 Санкт-Петербург, Россия

⁴ Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

[¶] e-mail: titovoz@gmail.com

(Поступило в Редакцию 22 мая 2017 г.)

Неоднородность толщины фронтального прозрачного проводящего оксида (ППО) при изготовлении тонкопленочного солнечного модуля (ТПСМ) на основе микроморфной технологии влияет на качество лазерного скрайбирования P1 (P1 — скрайбирование во фронтальном слое ППО). Предложен метод улучшения неоднородности толщины фронтального ППО путем модификации существующей системы подачи газов вакуумной установки LPCVD (TCO1200) с использованием газораспределительных трубок. Неравномерность осаждения по толщине снижена с 15.2 до 11.4%, что улучшило неравномерности по сопротивлению фронтального ППО и светорассеивающего фактора ТПСМ. Помимо этого, в 7 раз уменьшилось количество лазерных скрайбов P1 с недопустимым значением сопротивления изоляции (менее $2M\Omega$), снизилось количество объемов расплавов по краям скрайба P1, что привело к увеличению шунтирующего сопротивления ТПСМ на 56 Ω . Улучшение параметров фронтального ППО с применением метода газораспределительных труб увеличило выходную мощность ТПСМ на 0.4 W.

DOI: 10.21883/JTF.2018.04.45726.2346

Введение

В производстве тонкопленочных солнечных модулей (ТПСМ) на основе аморфного и микрокристаллического кремния для снижения электрических потерь проводится сегментация ячеек и их последовательное соединение [1]. Данный процесс проводится в три этапа лазерного скрайбирования: Р1, Р2 и Р3, качество которых влияет на выходные характеристики ТПСМ [2]. Первый этап лазерного скрайбирования Р1 необходим для разделения фронтального прозрачного проводящего оксида (ППО) в соседних ячейках ТПСМ. Скрайб Р1 имеет два вида потерь — это электрические [2] и оптические [3]. Электрические потери обусловлены сопротивлением изоляции R_{is} скрайба Р1 и его влиянием на шунтирующее сопротивление R_{sh} ТПСМ, а оптические потери связаны с площадью, занимаемой скрайбом Р1. В данном случае решалась проблема уменьшения потерь на скрайбах P1 путем улучшения неоднородности толщины фронтального ППО при помощи модификации существующей системы подачи газов вакуумной установки LPCVD (ТСО1200) с использованием газораспределительные трубок.

Методика эксперимента

Скрайб Р1 влияет на эффективность ТПСМ через следующие электрические свойства: сопротивление изоляции R_{is} ; шунтирование структуры a-Si : H/ μc -Si : H (R_{sh} — шунтирующее сопротивление ТПСМ).

При лазерном скрайбировании с облучением со стороны стекла удаление пленки проводится при помощи двух различных механизмов: микровзрыва или теплового расширения [4]. Микровзрыв — это процесс, при котором пленка облучается лазерным импульсом с энергией, достаточной для испарения поверхностного слоя (со стороны стекла), до состояния плазмы. Это приводит к созданию избыточного давления и возникновению волнового удара. Волновой удар инициирует увеличение избыточного давления в 5 раз [5] вследствие ограничивающего фактора. Ограничивающим фактором в данном случае является та часть пленки, которая не подвергалась фазовому переходу.

В случае, когда энергия лазерного импульса недостаточна для плавления пленки, т.е. в местах, где толщина фронтального ППО больше критического значения, удаление происходит при помощи механизма теплового расширения. При этом удаление пленки механизмом теплового расширения происходит за время $\sim 5 \mu$ s, а

Рис. 1. a — шунтирующий элемент при $h > 1.9 \mu$ m; b — расплав при $h < 1.4 \mu$ m.

Рис. 2. Схематическое изображение сопротивлений в структуре ТПСМ (w_a — активная площадь ячейки, w_{dt} — мертвая зона ячейки, R_{FC} и R_{BC} — сопротивление фронтального и тыльного ППО соответственно), области front и rear — ППО область. a — SiiH $j\mu$ —Si H — генерирующие слои.

микровзрывом менее 25 ns [4]. В следствие преобладания механизма теплового расширения перед микровзрывом возникают нарушения изоляции (шунты) R_{is} скрайба P1 (рис. 1, *a*).

На рис. 1, *а* показан шунт скрайба P1, возникший изза отколотого элемента (скола) с фронтального ППО. Здесь нарушение R_{is} скрайба P1 вызвано тем, что толщина *h* фронтального ППО составила более 1.9 μ m. Причину возникновения отколотого элемента на месте фронтального ППО, где его толщина *h* более 1.9 μ m, можно объяснить из следующих соображений. Существует формула для расчета температуры пленки под воздействием лазерного излучения:

$$T = \frac{q_0 A t}{\rho c h},\tag{1}$$

где T — температура, q_0 — мощность импульса, h — толщина ППО, A — поглощательная способность ППО, t — длительность лазерного импульса, ρ — плотность ППО, c — теплоемкость.

Таким образом, можно сделать вывод, что пленка не нагрелась по толщине до требуемых значений для микровзрыва [1], а именно — до температуры испарения пленки [4]. С другой стороны, если толщины пленки менее $1.4\,\mu$ m, по краям скрайбов образуются расплавы (рис. 1, *b*). Эти расплавы становятся причиной шунтирования структуры *a*-Si : H/ μ c-Si : H, а также уменьшают шунтирующее сопротивление $R_{\rm sh}$ в ТПСМ [6]. На локальных участках с расплавами фронтального ППО структура *a*-Si : H/ μ c-Si : H подвержена механическим напряженностям. Данные напряженности частично снимаются образованием дефектов в структуре *a*-Si : H/ μ c-Si : H [1], что ведет к уменьшению значения $R_{\rm sh}$ в ТПСМ.

Сопротивление изоляции R_{is} скрайба P1 после процесса скрайбирования фронтального ППО должно быть больше 2 МΩ [3]. После формирования слоев оно зависит от качества скрайба и удельного сопротивления структуры *a*-Si : H/µ*c*-Si : H (рис. 2). Значение удельного сопротивления *a*-Si : H/µ*c*-Si : H практически постоянно по всей площади ТПСМ, поэтому R_{is} определяется только качеством лазерного скрайбирования P1. Фронтальный ППО с толщиной более 1.9µm в местах лазерного скрайбирования P1 может привести к падению R_{is} до нуля, что фактически означает соединение фронтальных ППО у двух соседних ячеек (рис. 2). Это приводит к

Рис. 3. Газораспределительные трубки в системе подачи газов установки TCO1200.

уменьшению напряжения холостого хода $U_{\rm oc}$ на ВАХ ТПСМ [7].

Целью настоящей работы является улучшение характеристик каждого скрайба Р1 для достижения сопротивления изоляции $R_{\rm is}$ более 2 М Ω и снижения объемов расплавов фронтального ППО на скрайбах. Для достижения поставленной цели необходимо решить задачу по уменьшению неравномерности толщины *h* фронтального ППО, которая должна находиться в пределах значений от 1.4 μ m до 1.9 μ m.

Для уменьшения неравномерности толщины фронтального ППО была создана модификация существующей системы подачи газов вакуумной установки LPCVD (TCO1200) с использованием газораспределительных трубок (рис. 3). В трубках проделаны специальные отверстия в количестве 29 штук диаметром 2 mm, расположенные друг от друга на расстоянии 40 mm, длина трубки — 1203 mm, диаметр боковых отверстий — 10 mm.

При осаждении фронтального ППО (оксида цинка легированного бором – ZnO : В), используются следующие параметры установки TCO1200:

— давление в процессной камере 5.15 ± 0.03 mbar;

— потоки газов: а) диэтилцинк 2690 ± 3 sccm (sccm — стандартный кубический сантиметр в минуту), б) диборан 250 ± 1 sccm, в) вода 3273 ± 4 sccm, г) водород 400 ± 1 sccm.

В процессе лазерного скрайбирования фронтального ППО используются следующие параметры лазера: мощность лазерного луча $q_0 = 300$ mW, гауссовское распределение интенсивности по сечению луча, частота следований лазерных импульсов f = 50 kHz, скорость сканирования v = 72000 mm/m; расстояние между двумя центрами отверстий в скрайбе Р1 30μ m; длительность лазерного импульса t = 30 ns.

Экспериментальные результаты

В эксперименте проводилось осаждение фронтального ППО с использованием газораспределительных трубок и без них. Изготовленные подложки подверглись лазерному скрайбированию P1 и анализу.

В табл. 1 показано распределение неравномерности толщины фронтального ППО, осажденного с применением газораспределительных труб и без них. Видно, что толщина фронтального ППО меняется от $1.36 \,\mu$ m до $2.05 \,\mu$ m. Далее фронтальный ППО подвергался к процессу лазерного скрайбирования P1. Затем проводились измерения сопротивления изоляции R_{is} и визуальный осмотр оптическим микроскопом каждого скрайба P1. В ходе исследования были обнаружены расплавы по краям скрайбам P1 в координате $x = 17 \,\text{mm}, y = 17 \,\text{mm}$ в табл. 1. Измерения R_{is} показаны на рис. 4. Нарушение R_{is} скрайба P1 в основном наблюдается в области, где $h > 1.9 \,\mu$ m, из них в 4 скрайбах P1 $R_{is} = 0$. Шунтирующее сопротивление данного ТПСМ $R_{sh} = 211 \,\Omega$.

В табл. 2 показано распределение толщины фронтального ППО, осажденного с применением газораспределительных трубок. Видно, что h меняется от 1.44 до 1.89 μ m, таким образом, неравномерность распределения толщины по площади уменьшилась на 5.7%.

Таблица 1. Распределение толщины h nm фронтального ППО, осажденного без применения газораспределительных трубок. Абсолютная точность измерения ± 7 nm

N 1100	x, mm									
<i>y</i> , μm	17	198	379	560	740	921	1102	1283		
1083	1403	1698	1736	1772	1813	1731	1744	1566		
931	1608	1633	1758	1774	1753	1741	1727	1787		
778	1942	1882	1913	1957	1959	1943	1901	2050		
626	1960	1816	1925	1925	1947	1928	1870	2026		
474	1969	1839	1930	1944	1959	1942	1903	2029		
322	1951	1851	1925	1976	1954	1926	1869	2017		
169	1673	1709	1841	1875	1846	1814	1748	1774		
17	1358	1538	1611	1737	1738	1600	1693	1430		

Таблица 2. Распределение толщины *h* nm фронтального ППО, осажденного с применением газораспределительных трубок

N 1100				<i>x</i> , 1	mm			
<i>y</i> , μm	17	198	379	560	740	921	1102	1283
1083	1411	1662	1605	1661	1730	1696	1689	1433
931	1662	1687	1742	1742	1772	1795	1743	1694
778	1800	1773	1804	1817	1866	1878	1817	1858
626	1818	1729	1787	1794	1806	1839	1770	1865
474	1874	1769	1797	1789	1812	1834	1765	1872
322	1892	1781	1817	1813	1831	1842	1794	1888
169	1770	1751	1787	1792	1788	1784	1766	1811
17	1443	1688	1640	1826	1729	1610	1742	1504

Рис. 4. Результаты измерения сопротивления изоляции после скрайбирования фронтального ППО. Точность измерения $1 k\Omega < \pm 0.02\% < 10 M\Omega$ и $10 M\Omega < \pm 0.41\% < 100 M\Omega$.

b

Таблица 3. Распределение Наzе-фактора [%]: *a* — без применения газораспределительных трубок, *b* — с применением газораспределительных трубок. Для измерения параметра Наze используется монохроматическое излучение с длиной волны 600 nm. Относительная точность измерения ±0.1%

v um		x, mm								
	<i>y</i> , μm	75	363	650	938	1225				
а	1025	21.0	31.9	27.1	30.7	21.0				
	788	24.1	34.2	37.5	36.4	26.6				
	550	20.6	23.2	29.4	27.8	21.4				
	313	19.8	27.5	36.2	34.2	26.9				
	75	15.5	31.1	34.8	30.0	24.3				

v um				x, mm		
	<i>y</i> , μm	75	363	650	938	1225
b	1025	27.1	27.8	27.1	29.8	27.5
	788	25.8	29.2	30.8	30.9	29.8
	550	24.3	27.3	28.7	28.5	28.0
	313	23.1	29.3	30.9	29.6	28.6
	75	26.4	28.7	28.8	27.0	27.8

Далее данный образец подвергся процессу лазерного скрайбирования, а затем было измерено сопротивление изоляции каждой ячейки R_{is} (рис. 5). Видно, что отсутствуют скрайбы P1 с значением сопротивления изоляции R_{is} менее 2 М Ω .

При визуальном осмотре скрайбов P1 не обнаружено наличие расплавов в изготовленном данном ТПСМ, что объясняется достаточно высоким значением шунтирующего сопротивления $R_{\rm sh} = 378 \ \Omega$.

Применение газораспределительных трубок для осаждения фронтального ППО не только улучшает сопротивления изоляции скрайбов, но и положительно влияет на неравномерность распределения светорассеивающего фактора (Haze) и сопротивления ($R_{\rm FC}$). Улучшение данных параметров увеличивает стабильность согласованности по фототоку ячеек, соединенных последовательнопараллельно, что, в свою очередь увеличивает эффективность ТПСМ [6,7]. В табл. 3 показано распределение Наze-фактора. Без применения газораспреде-

Таблица 4. Распределение $R_{\rm FC} [\Omega/m^2]$ фронтального ППО: *а* — без применения газораспределительных трубок, *b* — с применением газораспределительных труб. Относительная точность измерения $\pm 1\%$

	x, mm										
y, µm	17	198	379	560	740	921	1102	1283			
1083	40.34	31.01	28.92	27.74	27.38	29.74	29.10	30.10			
931	30.55	29.01	26.29	26.29	27.02	27.29	27.02	24.48			
778	21.40	19.32	19.68	21.31	20.22	20.13	19.41	19.77			
626	21.58	19.41	17.33	18.05	18.23	17.96	18.41	20.50			
474	21.31	18.50	17.33	17.42	17.42	17.51	17.60	20.41			
322	21.22	19.23	18.23	18.32	19.4	19.86	19.32	20.95			
169	25.75	25.84	23.76	22.67	23.40	24.75	25.66	2.48			
17	43.69	35.17	31.64	27.65	28.56	32.64	32.91	41.61			

	x, mm									
<i>y</i> , μm	17	198	379	560	740	921	1102	1283		
1083	35.72	26.20	28.29	26.11	24.57	25.21	26.02	35.81		
931	25.57	22.13	22.13	22.31	21.67	21.13	21.95	25.75		
778	20.77	17.96	18.50	19.14	18.96	18.32	18.41	21.22		
626	20.68	17.87	17.69	18.87	19.05	18.32	18.59	20.68		
474	20.22	17.51	18.50	18.96	18.87	18.23	18.77	20.59		
322	18.96	17.42	18.23	18.87	18.87	18.59	18.23	19.68		
169	21.04	19.69	19.86	20.22	20.41	20.59	20.04	21.40		
17	33.18	25.57	26.39	24.30	24.03	27.02	24.48	31.64		

Рис. 5. Результаты измерения сопротивления изоляции после скрайбирования фронтального ППО.

TCO1200	R _{is} , MΩ	$R_{ m sh},$ Ω	$h^*,\%$	Haze*,%	$R_{\mathrm{FC}}^*,\%$	P,W
без труб	6.8	310	15.2	37	51.1	136.3
с трубками	8.5	366	11.4	13.8	37.4	136.7

Таблица 5. Сравнение средних параметров

лительных трубок неравномерность Наze изменяется от 15.5 до 37.5% (табл. 3, a). В случае применения газораспределительных труб неравномерность распределения Наze-фактора уменьшается на 13.3% (табл.3, b). Максимальное и минимальное значения Наze-фактора составляет 23.1 и 30.9% соответственно.

В табл. 4 показано распределение сопротивления $R_{\rm FC}$ фронтального ППО. Распределение сопротивления $R_{\rm FC}$, в случае осаждения фронтального ППО без применения газораспределительных трубок изменяется в диапазоне от 17.33 до 43.69 $\Omega/{\rm m}^2$ (табл. 4, *a*). При применении газораспределительных трубок сопротивление $R_{\rm FC}$ изменяется лишь от 17.42 до 35.81 $\Omega/{\rm m}^2$ (табл. 4, *b*).

Для уменьшения случайных погрешностей, связанных с эксплуатацией оборудования TCO1200, проведены серии испытаний: на одном и том же оборудовании TCO1200 (на заводе ООО "Хевел", Новочебоксарск) проведено осаждение фронтального ППО в количестве 6000 штук подложек, с газораспределительными трубками и без них. До начала серии испытаний установка TCO1200 подвергалось техническому обслуживанию. После технического обслуживания установка (с трубками и без) имеет одинаковые технические условия осаждения ППО. Затем данные подложки подверглись процессу лазерному скрайбированию Р1 вышеуказанными параметрами. Каждая 200-я подложка подверглась измерению следующих параметров: R_{is} , R_{sh} , h фронтального ППО, Наze и R_{FC} . В результате данного эксперимента толщина h фронтального ППО находится в диапазоне $1.4 < h < 1.9 \,\mu{\rm m}.$

В табл. 5 показаны усредненные значения данных параметров. При применении газораспределительных труб среднее значение сопротивления изоляции R_{is} скрайба Р1 выше на 1.7 МΩ. Среднее значение количество скрайбов Р1, имеющих сопротивление изоляции R_{is} менее 2 МΩ составляет 1.6 штук. В системе без с труб — это среднее значение в 7 раз больше и составляет 11.2 штук.

Сопротивление изоляции $R_{is} < 2 M\Omega$ у скрайба P1 в случае применении газораспределительных труб можно объяснить следующим образом: на стекле имеются поверхностные явления в виде коррозийных локальных участков антиотражающего слоя на основе Fe₂O₃, различные загрязнения, дефекты и пр. Данные локальные участки влияют на параметр адгезии пленки фронтального ППО к стеклу. В свою очередь, параметр адгезии ППО к стеклу и площадь поверхностных локальных явлений напрямую влияют на качество лазерной обработки пленочных элементов [8]. Соответственно все вышеперечисленное сказывается на сопротивлении изоляции R_{is} скрайба P1.

При осаждении фронтального ППО среднее значение шунтирующего сопротивления $R_{\rm sh}$ ТПСМ увеличилось на 56 Ω (табл. 5). Также существенно улучшились неравномерности распределения по толщине h^* , светорассеивающему фактору Наze^{*} и сопротивлению $R_{\rm FC}^*$.

В итоге применение газораспределительных труб на установке TCO1200 стало причиной увеличения выходной мощности *Р* ТПСМ с 136.3 до 136.7 W.

Заключение

Осаждение фронтального ППО с применением газораспределительных труб улучшило равномерность осаждения в ТПСМ. Таким образом, цель, поставленная в настоящей работе, достигнута. Уменьшено количество расплавов фронтального ППО. Качество скрайбирования фронтального проводящего оксида возросло в 7 раз (исходя из количества скрайбов Р1 с сопротивлением $R_{\rm is} > 2 \, {\rm M}\Omega$. За счет модификации газовой системы установки LPCVD осаждения снижена неравномерность толщины по площади подложки $1100 \times 1300 \, {\rm mm}^2$, полученные значения толщины слоя при этом укладываются в диапазон $1.4-1.9\,\mu{\rm m}$. За счет всего вышеперечисленного удалось повысить сопротивление шунтирующего сопротивления ($R_{\rm sh}$) ТПСМ.

Список литературы

- [1] Heather Booth // JLMN. 2010. Vol. 5. N 3. P. 183–190.
- [2] Егоров Ф.С., Охоткин Г.П., Мукина В.А., Редька Д.Н., Кукин А.В. // Вестник Чувашского ун-та. 2015. № 1. С. 59– 65.
- [3] Joar J., Uwe Z., Marika E. // 22nd European Photovoltaic solar Energy Conference. 2007. P. 1922–1925.
- [4] Hongliang W. et al. // Proc. of NAMRI/SME. 2012. Vol. 40. N 10. P. 361–370.
- [5] Zhang W., Yao Y.L. // J. Manufacturing Science and Engineering. 2002. Vol. 124/2. P. 369–378.
- [6] Shah Arvin. Thin Film Silicon Solar Cells. Lausanne, EPFL Press, 2010, p. 249.
- [7] Chin-Yi Tsai, Chin-Yao Tsai. // J. Nanomaterials. 2014.
 Vol. ID 86174, P. 10.
- [8] Вейко В.П. Лазерная обработка пленочных элементов. Л.: Машиностроение. 1986. 248 с.