01,10,19

Решеточная теплоемкость наноструктурированных материалов на основе титана/циркония и алюминия

© Е.Б. Долгушева, В.Ю. Трубицын

Физико-технический институт УрО РАН,

Ижевск, Россия

E-mail: elena@ftiudm.ru

(Поступила в Редакцию 15 ноября 2017 г.)

Методом молекулярной динамики исследованы динамические и тепловые свойства наноструктурированных материалов на основе алюминия с периодическими включениями кластеров Ті или Zr. Для различных систем Ti—Al и Zr—Al получены упругие модули, спектральные плотности колебательных состояний решетки, температурные зависимости теплоемкости. Проведено исследование влияния особенностей фононного спектра на теплоемкость решетки нанокомпозитов. Показано, что тип упорядочения и размеры кластеров Ti/Zr в матрице алюминия существенно влияют на упругие свойства и теплоемкость. Полученные результаты могут быть использованы для создания новых композиционных материалов на основе алюминия, титана и циркония с заданными свойствами.

Работа выполнена при поддержке гранта РФФИ № 16-07-00592 и проекта УрО РАН № 15-9-2-62.

DOI: 10.21883/FTT.2018.05.45774.329

1. Введение

В настоящее время большое внимание уделяется изучению нового класса периодических наноструктурированных материалов обладающих уникальными свойствами, связанными с периодическим изменением структуры, сопоставимым с межатомным расстоянием [1]. Анализ накопленных результатов показывает, что в нанокристаллическом твердом теле важную роль играет не только размер "сверхъячеек" (периодически повторяющихся структурных элементов), но и состояние границ между ними. Теоретическое описание свойств наноразмерных систем требует развития новых подходов. Существенный вклад в понимание процессов, происходящих при формировании наноструктурированных материалов, сделан в последние годы благодаря активному развитию методов молекулярной динамики (ММД). ММД позволяет моделировать различные периодические системы с одинаковым параметром сверхрешетки, отличающиеся друг от друга расположением в элементарной ячейке атомов разного сорта. В то время как физические свойства (фононные спектры, теплоемкости и др.) кристаллических решеток, состоящих из атомов одного сорта, хорошо известны, формирование из них наноструктур с периодически расположенными кластерами одного компонента в матрице другого компонента может приводить к значительным изменениям спектра колебаний атомов из-за наличия большого количества периодических границ. В свою очередь, эти особенности колебательного спектра приведут к изменениям различных физических свойств, в первую очередь, термодинамических.

В настоящей работе мы исследовали фононные спектры в наноструктурах с периодически расположенными

кластерами ГЦК Ті/Zr в алюминиевой ГЦК матрице и их влияние на термодинамические свойства моделируемых систем. Нами проведены расчеты структурных, упругих и динамических свойств, модельных нанокомпозитов, образованных упорядоченно расположенными кластерами кубической формы, а также кластерами в виде брусочков с квадратным сечением ("нановолокна"). Моделирование проводилось для различных структур, отличающихся друг от друга концентрацией, упорядочением и взаимным расположением кластеров переходных элементов в алюминии, а также и размерностью (3D, 2D). Кроме того, проведено исследование чистых Al, Ti, Zr и структур типа $L1_2$ (Al₃M и M_3 Al, где M = Ti, Zr). Для всех перечисленных систем вычислены модули упругости, спектральные плотности состояний и на их основе рассчитаны теплоемкости. Проведено сравнение полученных результатов с имеющимися в литературе расчетами из первых принципов и данными экспериментов.

2. Методы расчета

Исследование стабильности наноструктур и их физических характеристик проводилось методом молекулярной динамики с помощью стандартного пакета программ XMD [2]. При расчетах структурных свойств 3D-кристаллов применялись циклические граничные условия, давление считалось постоянным и нулевым, а температура — постоянной и заданной (NPT ансамбль). В случае моделирования свойств пленок (2D) — вдоль осей x, y использовались циклические граничные условия, а по оси z — свободные. Во всех расчетах задавался постоянный временной шаг равный 1 fs. Для описания межатомного взаимодействия в системах Ti-A1 были

1* 835

выбраны многочастичные потенциалы [3] (ЕАМ1), а для систем Zr-A1 — потенциалы, предложенные в [4] (ЕАМ2). В обоих случаях потенциалы построены по схеме "погруженного атома" [5]. В работе [3] показано, что потенциалы ЕАМ1 позволяют с хорошей степенью точности получить значения параметров решеток, когезионных энергий, упругих постоянных, температуры плавления и других физических характеристик, как для чистых алюминия и титана, так и для различных сплавов из этих элементов. Потенциалы ЕАМ2 для систем Zr-Al подгонялись таким образом, чтобы обеспечить совпадение со структурными и упругими свойствами различных конфигураций, полученных из первопринципной молекулярной динамики, включая кристаллические структуры и интерметаллиды в твердой и жидкой фазах. В настоящей работе расчеты упругих модулей проводились для нерелаксированных кристаллитов при $T=0\,\mathrm{K}$ по значению второй производной в минимуме полной энергии при варьировании параметра решетки а. Объемный модуль сжатия B и модуль сдвига C' вычислялись по формулам

$$B = \frac{a_0^2}{9V} \frac{d^2 E}{da^2},\tag{1}$$

$$C' = \frac{a_0^2}{4V} \frac{d^2E}{da^2}.$$
 (2)

где a — параметр решетки, a_0 — равновесное значение параметра решетки, V — объем, приходящийся на один атом, E — полная энергия, приходящаяся на один атом, как функция параметра решетки a. Расчеты C_{44} выполнены также по формуле (2), но для ориентации (110) ГЦК-решетки. По соотношениям между объемными и упругими модулями для кубических кристаллов (3) и (4) вычислялись модули C_{11} и C_{12} :

$$B = \frac{C_{11} + 2C_{12}}{3},\tag{3}$$

$$C' = \frac{C_{11} - C_{12}}{2}. (4)$$

Для расчета плотности колебательных состояний (ПКС) использовался метод быстрого преобразования Фурье автокорреляционных функций скоростей NVT-ансамбля, усредненных на временном интервале $\sim 30\,\mathrm{ps}$ после выдержки кристаллита в режиме свободной эволюции в течение 1 ns. Как известно, размер и форма твердого тела существенно влияют на тепловые свойства изза дискретности уровней энергии колебаний атомов. В настоящей работе основное внимание уделяется исследованию низкочастотных особенностей колебательных спектров моделируемых материалов и их влияния на низкотемпературную теплоемкость. Расчеты ПКС проводились при $T=10\,\mathrm{K}$. По известной плотности колебательных состояний $G(\nu)$ молярная теплоемкость

кристалла вычисляется следующим образом [6]:

$$C(T) = 3R \int \frac{X^2 \exp(X)}{(\exp(X) - 1)^2} G(v) dv,$$
 (5)

где $X = h\nu/kT$, T — температура, ν — частота, h — постоянная Планка, k — постоянная Больцмана, R — универсальная газовая постоянная.

3. Результаты и обсуждение

3.1. Упругие модули. Поскольку расчеты связаны с моделированием частиц титана и циркония в ГЦК-фазе, которая в объемном состоянии в этих металлах не реализуется, а обнаружена только в тонких пленках, мультислоях или нанокристаллах размером не более 5-7 nm [7-11], нами были рассчитаны упругие модули для чистых ГЦК Ті и Zr как для объемного случая (3D), так и для тонких пленок (2D). Результаты вычислений приведены в табл. 1. Для сравнения в эту же таблицу добавлены результаты первопринципных расчетов, сделанных различными методами, и экспериментальные данные для пленок титана, циркония и алюминия с ГЦК-структурой. Заметим, что результаты расчетов равновесных параметров решетки и упругих модулей для нанопленок существенно зависят от толщины пленки, как это было показано нами ранее на примере пленок циркония [12]. В этом случае вычисления были проведены с потенциалом, предложенным в работе [13], обозначенным в таблице ЕАМЗ. Здесь приведены результаты расчетов упругих модулей для пленок Al, Zr и Тi толщиной 18 элементарных ячеек ГЦК-решетки. Как видно из табл. 1, полученные нами с использованием ЕАМ1 потенциалов упругие модули чистого алюминия находятся в хорошем согласии как с экспериментальными данными, так и с результатами первопринципных расчетов. Для ГЦК Ті и Zr все модули упругости являются положительными, что свидетельствует об их стабильности. Также можно сделать вывод о неплохом соответствии параметра ГЦК-решетки Ті в расчетах и в эксперименте [7], где Ті со структурой ГЦК осаждался на пленке Al(001). Расхождение результатов рассчитанных параметров решетки с параметрами, полученными экспериментально в работах [9,10], возможно, связано с наличием внедренных атомов углерода или кислорода.

Рассчитанные нами упругие модули интерметаллидов со структурой типа $L1_2$ приведены в табл. 2. Здесь также для сравнения показаны результаты первопринципных расчетов и экспериментальных данных для системы Zr-Al. Все соединения, как отмечается в работах по первопринципным расчетам, "виртуально стабильны", т.е. все модули имеют положительные значения. Как видно из табл. 2, наибольшие расхождения с результатами первопринципных вычислений наблюдаются при расчетах модулей C_{44} и C', причем для всех систем

Таблица 1. Упругие свойства Al, Ti, Zr с ГЦК-структурой: равновесный параметр решетки a_0 , объемный модуль B, модуль сдвига C' и упругие модули C

Элемент	Метод	Размерность	a ₀ , Å	B, GPa	C', GPa	C_{11} , GPa	C_{12} , GPa	C_{44} , GPa	Источник
Al	EAM1	3D	4.05	79	28.25	116.8	60.1	31.7	[3]
	EAM1	2D	4.04	80.2	28.67	118.42	61.09	33.76	*
	ab initio	3D	4.05	76.3	23	107	61	28	[14]
	EXP	3D	4.05	78.6	26.55	114	61.9	31.6	[15]
	EAM2	3D	4.515	94.3	11	108.97	86.97	62.5	*
	EAM2	2D	4.510	92.67	11.34	107.79	85.11	63.53	*
	CASTEP	3D	4.52	90.18	15.495	110.84	79.85	48.24	[16]
	GGA	3D	4.4935	94.9	-	_	_	_	[17]
Zr	DFT	3D	4.52	91	21	119	77	53	[18]
	EAM3	3D	4.544	87.7	16.53	109.74	76.68	64.33	[12]*
	EAM3	2D	4.542	89.1	16.25	110.78	78.26	63.82	[12]*
	EXP	2D	4.61	_	_	_	_	_	[19]
	EXP	2D	4.63	_	-	_	_	_	[20]
	EAM1	3D	4.15	105.9	29.2	144.9	86.6	58	*
	EAM1	2D	4.14	104	28.1	141.4	85.3	64.83	*
	DFT	3D	4.11	107	22	136.4	92.3	61	[18]
	GGA	3D	4.0963	105.7	_	_	_	_	[17]
	DFT	3D	4.11	106.92	15.4	127.4	96.68	59.33	[16]
Ti	GGA	3D	4.11	106.7	22	136	92	61	[21]
	ab initio	3D	_	107.3	15.5	128	97	47	[22]
	EXP	2D	4.15	_	-	_	_	_	[7]
	EXP	nano-particle	4.326	_	_	_	_	_	[9]
	EXP	2D	4.302	_	_	_	_	_	[10]
	EXP	2D	4.1638	_	_	_	_	_	[23]

Примечание. В последнем столбце звездочкой отмечены результаты наших расчетов. Использованы обозначения: DFT — density functional theory, GGA — local density approximation using the generalized gradient approximation, CASTEP — cambridge serial total energy package, EXP — experimental data.

в наших расчетах значения этих модулей примерно в 1.5-2 раза меньше.

3.2. Релаксация и параметры решетки нанокомпозитов Ті/Zr—Al. Наноструктуры, рассмотренные в работе, представляют собой матрицу из ГЦК алюминия с периодическими включениями ГЦК-кластеров титана/циркония. В каждом сформированном кристаллите проходил процесс релаксации в течение 1 ns при $T=10\,\mathrm{K}$ и постоянном нулевом давлении, после чего проводились необходимые расчеты. На рис. 1 показаны примеры базовых кристаллитов для структур, которые далее в тексте обозначены римскими цифрами. Конфигурация I представляет собой упорядоченные

кубические кластеры из атомов титана/циркония, расположенные в алюминиевой матрице. Каждый кластер отделен от соседнего двумя слоями атомов алюминия. Конфигурация II — это чередующиеся кубические кластеры Ti/Zr и Al одинакового размера. Конфигурация III представляет собой бесконечные (из-за циклических граничных условий) вдоль оси x "брусочки" с квадратным сечением из атомов Ti/Zr , разделенные одним слоем алюминия. Варианты, представленные на рис. 1,a,b имеют одинаковый период "сверхрешетки", $\mathrm{T.e.}$ повторяющийся элемент имеет размер, равный трем параметрам $\mathrm{\Gamma} \mathrm{I} \mathrm{K}$ -решетки. Это значит, что в обоих этих вариантах период сверхрешетки A=3a. Кроме того,

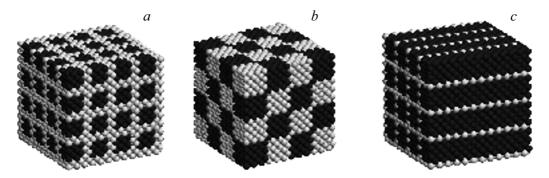

Сплав	Метод	a ₀ , Å	B, GPa	C', GPa	C ₁₁ , GPa	C_{12} , GPa	C44, GPa	Источник
Ti ₃ Al	EAM1	4.09	118.2	34.16	165.8	97.4	51.2	*
	GGA	_	110.75	64.50	165.78	83.23	87.90	[24]
	GGA	4.04	110.3	_	_	_	_	[17]
	EAM2	4.34	93.5	19.6	119.7	78.43	46.5	*
	GGA	_	101.85	52.90	147.90	79.05	70.55	[24]
	DFT	4.381	102.476	53.40	148.653	79.387	70.834	[25]
Zr ₃ Al	GGA	4.3536	101.4	-	_	_	_	[17]
213711	DFT	4.375	98.706	25.87	132.155	81.981	70.586	[26]
	EXP	4.29	-	-	_	_	_	[27]
	EXP	4.374	-	-	_	_	_	[28]
	EXP	4.392	101.4					[29]
	EAM1	4.05	124.6	41.86	180.42	96.7	72.01	*
Al ₃ Ti	GGA	-	106.25	68.62	188.28	65.23	73.80	[24]
	GGA	3.9779	103.6	-	_	_	_	[17]
	EAM	4.38	90	20.4	117.2	76.4	44.94	*
	GGA	_	103.45	63.53	178.62	65.87	68.80	[24]
Al_3Zr	GGA	4.09	103.1	_	_	_	_	[17]
1 22,222	VASP	4.11	99	_	_	_	_	[30]
	EXP	4.093	_	_	_	-	_	[31]

Таблица 2. Упругие свойства интерметаллидов Al_3M и M_3Al ($M=\mathrm{Ti},\mathrm{Zr}$) с кубической структурой типа $L1_2$: равновесный параметр решетки a_0 , объемный модуль B, модуль сдвига C' и упругие модули C

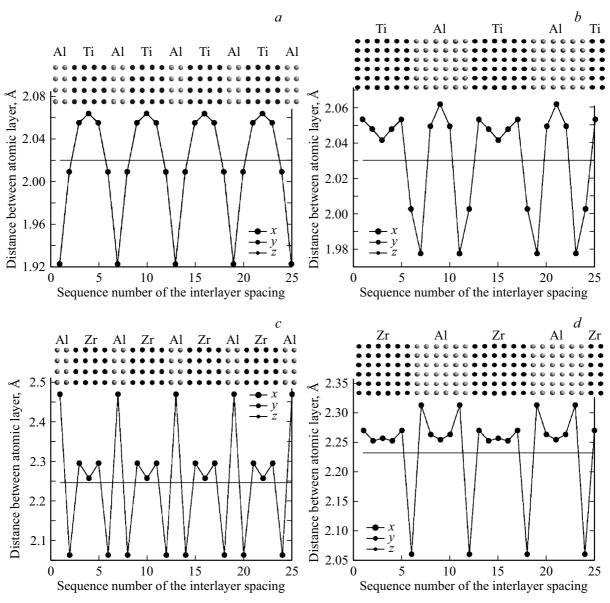
Примечание. В последнем столбце звездочкой отмечены результаты наших расчетов.

далее будут рассматриваться еще несколько конфигураций. Система IV представляет собой структуру I, в которой атомы Ti/Zr заменены атомами Al и наоборот. В результате получается система кластеров алюминия в матрице Ti/Zr. Соответственно в ней содержится 70% атомов титана или циркония и 30 — алюминия ($(Ti/Zr)_{70}Al_{30}$). Будут рассматриваться также структуры,

обозначенные "mix" — это "смешанные" случайным образом атомы Ti/Zr и Al, но также имеющие повторяющийся элемент с параметром сверхрешетки A=3a. Эти "mix" системы отличаются друг от друга только процентным содержанием переходного элемента: mix-83, -74, -42. И, наконец, структура γ -TiAl (γ -ZrAl), содержащая по 50% того и другого элемента, которые

Рис. 1. Нанокомпозиты Ti/Zr—Al. Атомы Ti/Zr — темные, атомы алюминия — светлые. Конфигурации: $I - (Ti/Zr)_{30}Al_{70}$ (a), II — $(Ti/Zr)_{50}Al_{50}$ (b), III — $(Ti/Zr)_{69}Al_{31}$ (c).

Структура (состав)		a ₀ , Å	B, GPa	C', GPa	C_{11} , GPa	C_{12} , GPa	C44, GPa
Ti-Al	I (30)	4.04	120	34.2	165.6	97.2	67.85
	II (50)	4.06	119.2	28.4	157	100.3	_
	III (69)	4.07	118.5	32	161.1	97.2	_
	IV (70)	4.08	110.7	26.8	146.44	92.83	_
	mix (42)	4.045	129	34.3	172.8	104.1	_
	mix (74)	4.08	114	25.95	148.6	96.7	_
	mix (83)	4.1	97	25.4	130.86	80.07	_
	γ-TiAl (50)	3.998	144.5	46.5	206.5	113.5	88.6
Zr–Al	I (30)	4.49	96.8	24.8	129.9	80.26	64.07
	II (50)	4.465	102.3	26.4	137.5	84.7	_
	III (69)	4.425	98.3	16.5	120.3	87.3	_
	IV (70)	4.47	95.5	21.66	124.38	81.06	_
	mix (42)	4.42	108.3	36.18	156.54	84.18	-
	mix (74)	4.425	108.7	31.32	150.46	87.82	_
	mix (83)	4.445	107.9	25.24	141.56	91.07	_
	γ-ZrAl (50)	4.275	95.2	18.94	120.46	82.57	47.15

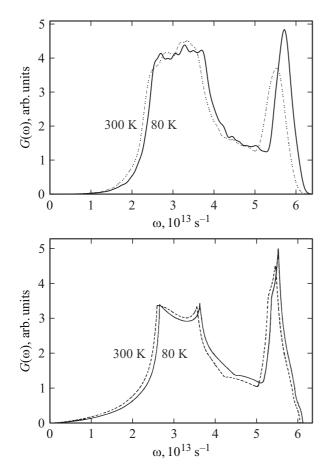

Таблица 3. Упругие свойства нанокомпозитов Ti/Zr-Al. В скобках указано процентное содержание Ti или Zr. Равновесный параметр решетки a_0 , объемный модуль B, модуль сдвига C' и упругие модули C

располагаются чередующимися слоями: слой Ті или Zr, слой Al и т.д. Для определения динамической стабильности всех рассмотренных конфигураций также были вычислены упругие модули по описанной методике. Эти данные приведены в табл. 3. Здесь в первой колонке приводится обозначение конфигурации, в скобках указано процентное содержание Ті или Zr, далее приведен равновесный параметр решетки a_0 , и упругие модули. Все расчеты проведены для нерелаксированных систем при $T=0\,\mathrm{K}$, в том числе для γ -TiAl (γ -ZrAl) и III, хотя после релаксации эти две структуры становятся тетрагональными (ГЦТ). Как видно из таблицы, все конфигурации имеют положительные упругие модули, что характеризует их как стабильные структуры и позволяет проводить моделирование их физических характеристик.

Из табл. 1 следует, что равновесные параметры ГЦК-решетки для титана, циркония и алюминия существенно отличаются и, следовательно, в интерфейсных областях наноструктурированных систем Ti—Al, Zr—Al будут возникать искажения решетки. Из экспериментальных данных, приведенных в работе [8] для титановых и алюминиевых мультислоев, полученных в ГЦК-фазе, следует, что при увеличении числа слоев титана расстояния между атомами алюминия уменьшаются, т.е. параметр решетки также уменьшается до 4.04—4.01 Å в различных вариантах. Конкретное значение параметра решетки зависит от соотношения алюминиевых и титановых

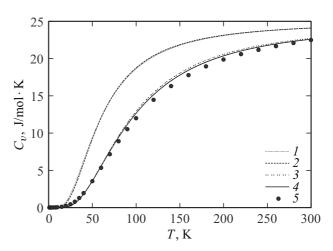
слоев, от этого соотношения зависит даже, какая фаза получается в слое титана: ГПУ или ГЦК. Метод молекулярной динамики позволяет проследить за релаксацией атомов в различных конфигурациях нанокомпозитов и определить, каким образом изменяются межатомные и межплоскостные расстояния. Например, в системе ${\rm Ti}_{30}{\rm Al}_{70}$, представленной на рис. 1,a, сформированной с параметром решетки $4.04\,{\rm \AA}$, после релаксации атомов в течение $1\,{\rm ns}$ при $T=10\,{\rm K}$ наблюдаются изменения расстояний между атомными слоями (см. рис. 2,a).

На рис. 2 по оси абсцисс отложен номер интервала между соседними слоями атомов в направлениях x, y, z, а по оси ординат — значения расстояний между атомными слоями в этих направлениях, усредненные на интервале времени 10 ps (все три кривые на рисунках совпадают). Для наглядности в верхней части каждого рисунка показано расположение атомов в кристаллите, а расчетные точки находятся между соответствующими слоями атомов. Горизонтальной линией обозначено равновесное расстояние между слоями атомов, которое соответствует минимуму энергии при T = 0 K. Из рис. 2, aвидно, что в данной конфигурации происходит увеличение расстояний между атомами титана, а атомы алюминия наоборот сближаются. Однако, если рассматривать другую конфигурацию, например, $Ti_{50}Al_{50}$ (см. рис. 1, b), для которой равновесное значение параметра решетки $a_0 = 4.06 \,\text{Å}$ (т. е. межплоскостные расстояния вдоль всех


Рис. 2. Расстояния между слоями атомов после релаксации при $T=10\,\mathrm{K}$ в Ti-Al системах: I — (a), II — (b) и Zr-Al: I — (c), II — (d). В силу кубической симметрии кривые вдоль осей x,y,z совпадают. Горизонтальная прямая — равновесное расстояние.

трех осей должны быть равны $2.03 \, \text{Å}$), то после релаксации и усреднения координат расстояния между плоскостями ведут себя так, как показано на рис. 2, b. В этом случае в центре кластеров алюминия также происходит увеличение расстояний между слоями, и лишь на границах между титаном и алюминием, а также между первым и вторым слоями атомов алюминиевого кластера происходит достаточно сильное сжатие. В циркониевых нанокомпозитах после релаксации расстояния между атомами алюминия наоборот увеличивается и становится больше, чем между атомами циркония в обоих рассмотренных случаях, представленных на рис. 2, c, d.

Таким образом, из этих результатов можно сделать вывод, что наибольшие искажения решетки происходят в области границ между кластерами титана/циркония и


алюминия. Причем величина и направление смещений атомов в интерфейсной области зависят от конкретной конфигурации и соотношения числа атомных слоев каждого элемента. Чем меньше кластер (чем меньше в нем атомных слоев), тем сильнее отклонения атомов в приграничных областях от равновесного положения узлов ГЦК-решетки. Наличие таких периодических искажений в наноструктурированных композитах оказывает существенное влияние на колебательный спектр атомов, хотя во всех вариантах атомы находятся в положениях, соответствующих ГЦК-решетке, кроме γ -(Ti/Zr)Al и конфигурации III, где решетка трансформируется в ГЦТ.

3.3. Колебательные спектры Ті, Zr, Al. На рис. 3 приведены результаты тестовых расчетов плотности колебательных состояний алюминия с потен-

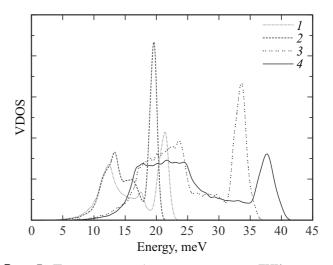
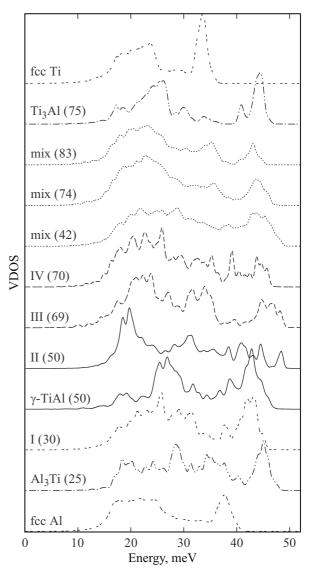


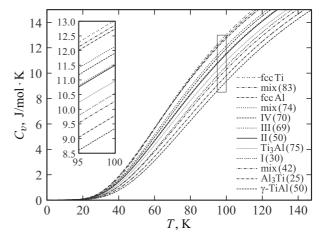
Рис. 3. ПКС алюминия. На верхней панели — расчет из ММД при T=80 и $300\,\mathrm{K}$ с потенциалом EAM1, на нижней — полученные экстраполяцией экспериментальных данных по неупругому рассеянию нейтронов при тех же температурах [32].

циалом ЕАМ1 для А1 в сравнении с экстраполированными данными эксперимента по неупругому рассеянию нейтронов [32], выполненного при двух значениях температуры: 80 и 300 К. Для расчета ПКС А1 использовался базовый кристаллит размером $24 \times 24 \times 24$ единичных Γ ЦК ячейки вдоль осей x, y, z (55296 атомов) с циклическими граничными условиями. Оба расчета сделаны при постоянном объеме, параметр ГЦК-решетки для А1 при температуре $T = 80 \,\mathrm{K}$ равен 4.05 Å, а при $T = 300 \,\mathrm{K}$ — 4.065 Å. Значения параметров решетки алюминия при различных температурах были получены при моделировании нагрева кристаллита в условиях постоянного давления. Как видно из сравнения рассчитанных и экспериментальных кривых, выбранный потенциал позволяет описать экспериментально наблюдаемые особенности фононного спектра алюминия, в том числе, и его смягчение с ростом температуры. С использованием полученного спектра колебаний Al в соответствии с (5) были проведены тестовые расчеты молярной теплоемкости в зависимости от температуры. Полученная сплошная кривая зависимости C(T) показана на рис. 4 в сравнении с экспериментальными данными [33]. Как видно из рисунка, наблюдается хорошее согласие расчетных и экспериментальных результатов для А1. Небольшое расхождение наблюдается в области температур 120-200 К. На этом же рисунке приведены вычисленные таким же образом температурные зависимости теплоемкости для чистых ГЦК титана и циркония с двумя разными потенциалами: ЕАМ2 из работы [4] и ЕАМ3 из работы [13]. Кривая теплоемкости ГЦК Ті, как видно из графика, проходит немного выше кривой теплоемкости Al, а зависимость C(T) для циркония существенно от них отличается. Такое поведение теплоемкостей становится понятным из сравнения низкочастотных областей фононных спектров ГЦК Ті, Zr и Аl. Графики этих ПКС приведены на рис. 5. Как видно из рисунка, ПКС для ГЦК Zr, полученные с потенциалами EAM2 и EAM3

Рис. 4. Зависимость теплоемкости от температуры: $1 - \Gamma$ ЦК Zr с потенциалом EAM2, $2 - \Gamma$ ЦК Zr с потенциалом EAM3, $3 - \Gamma$ ЦК Ti, $4 - \Gamma$ ЦК Al, $5 - \Im$ экспериментальные данные для Al [33].


Рис. 5. Плотности колебательных состояний ГЦК-решеток: 1 — Zr с потенциалом EAM2, 2 — Zr с потенциалом EAM3, 3 — Ti, 4 — Al.

находятся в хорошем соответствии. Равновесное значение параметра ГЦК-решетки Zr с потенциалом EAM3 равно 4.544 Å. Все спектры, как видно из сравнения графиков, имеют одинаковые особенности, присущие ГЦК-структуре. Весь спектр атомных колебаний Zr находится в зоне до 23 meV. Оба графика ПКС для Zr в низкоэнергетической области полностью совпадают, как и кривые температурной зависимости теплоемкости. Спектры Ті и Al лежат в области до $\sim 40\,\mathrm{meV}$ и их поведение в низкоэнергетической области заметно отличается от спектра Zr, что и отражается на более резком подъеме кривой теплоемкости циркония в области низких температур. Теплоемкости Ті и А1 имеют близкие значения, что связано с одинаковым поведением ПКС в низкоэнергетической области этих элементов. При комнатных температурах все графики молярной теплоемкости стремятся к предельному значению 3R, которое определяется законом Дюлонга-Пти. Таким же образом вычислялись температурные зависимости теплоемкости для различных наноструктурированных конфигураций Ti-Al и Zr-Al, описание которых было приведено в предыдущем разделе.


3.4. Колебательные спектры и теплоем-кость нанокомпозитов. На рис. 6 представлены графики ПКС для структур Ті—Al, в скобках указано процентное содержание титана. Верхний и нижний графики для чистых титана и алюминия приведены для сравнения. Отметим, что ПКС для структур, обозначенных "mix", с 83-, 74- и 42-процентным содержанием титана по форме схожи между собой и соответствуют спектру с характерными признаками, присущими структуре с ГЦК решеткой, тогда как спектры всех остальных структур имеют существенные различия.

Так, в спектре Ti_3AI имеется запрещенная зона в области 37-41 meV. В системе γ -TiAI — основная часть колебаний находится в высокоэнергетической области, в конфигурации II, состоящей из одинаковых кубиков титана и алюминия и имеющей такое же процентное содержание титана, как и в γ -TiAI значительная часть колебаний сосредоточена в низкоэнергетической области. Граничные частоты ПКС композитов Ti-AI лежат в области более высоких энергий, чем в чистых Ti и AI.

С использованием этих спектров были вычислены температурные зависимости теплоемкостей, графики которых приведены на рис. 7. Как видно из рисунка, теплоемкости наноструктурированных систем Ti-Al меньше, чем теплоемкости чистых металлов, за исключением структуры mix-83. В общей картине полученных результатов можно отметить, что с уменьшением процентного содержания титана уменьшается и теплоемкость, но есть и некоторые отклонения из этой закономерности. Например, кривая теплоемкости структуры Ti_3Al проходит значительно ниже, чем смешанной структуры mix-74, хотя процентное содержание титана в этих структурах почти одинаковое. Также заметно отличается поведение теплоемкостей структур с пятидесятипроцентным содержанием титана: II и γ -TiAl (самая нижняя кривая). На-

Рис. 6. Плотности колебательных состояний различных структур Ti—Al. B скобках указано процентное содержание Ti.

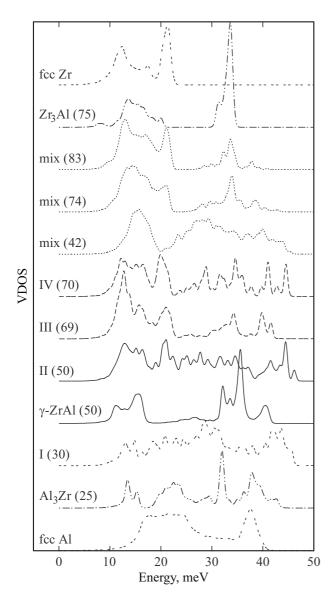
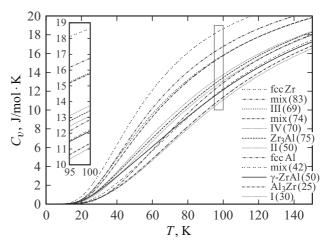


Рис. 7. Теплоемкости структур Ti—Al в зависимости от температуры. Обозначения кривых в поле рисунка приведены в порядке уменьшения теплоемкости при температуре 100 K (см. вставку). Область, увеличенная на вставке, обозначена на рисунке прямоугольником.


личие упорядоченных титановых кластеров кубической формы приводит к тому, что в них появляются локализованные колебания с низкими частотами, с чем и связано увеличение теплоемкости при низких температурах.

Для тех же самых структур, рассчитаны ПКС в конфигурациях, в которых вместо атомов титана находится цирконий. Масса Zr почти в два раза больше, чем Тi, они принадлежат к одной группе, и в чистом виде их физические характеристики во многом схожи (имеют одни и те же фазы, фазовые переходы и т.п.), но изза разницы масс граничная частота ПКС Zr лежит в области 23 meV, а у Ti — в области 37 meV. С этой точки зрения представляет интерес сравнение характеристик этих металлов в нанокомпозитах, т. к. Zr почти в 3.5 раза тяжелее Al, а Ti — только в 1.8 раза.

На рис. 8 представлены ПКС в системах Zr—Al. Верхний и нижний графики относятся к чистым цирконию

Рис. 8. Плотности колебательных состояний различных структур Zr—Al. B скобках указано процентное содержание Zr.

Рис. 9. Теплоемкости структур Zr—Al в зависимости от температуры. Обозначения кривых в поле рисунка приведены в порядке уменьшения теплоемкости при температуре 100 K (см. вставку). Область, увеличенная на вставке, обозначена на рисунке прямоугольником.

и алюминию, на всех остальных указано процентное содержание Zr в каждой конфигурации. В отличии от систем Ti-Al в колебательных спектрах почти всех рассмотренных структур Zr-A1 имеется запрещенная зона. Самая широкая — в Zr₃Al — от 21 до 30 meV. В смешанных системах наблюдается зависимость: чем меньше процентное содержание циркония, тем уже запрещенная зона. Так, например, в mix-Zr83 ширина запрещенной зоны лежит в диапазоне от 23 до 27 meV, в mix-Zr74 — 23-25 meV, а в mix-Zr42 — около 20 meV. Также запрещенные зоны имеются в системах: IV — около 22 meV, в III — 23-24 meV, в γ -ZrAl — 18-20 meV, а также в системе Al₃Zr наблюдается запрещенная зона в области энергий около 17 meV. Надо заметить, что во всех этих вариантах запрещенная зона разделяет парциальные плотности колебаний "тяжелых" атомов Zr и "легких" атомов Al. И только в конфигурациях I и II парциальные плотности колебаний атомов циркония и алюминия перекрываются, и наблюдается спектр без запрещенных зон. Уменьшение ширины запрещенной зоны при увеличении концентрации А1 связано с уширением спектра колебаний алюминиевой подрешетки. Перекрытие парциальных ПКС Zr и Al в конфигурациях I и II, повидимому, связано с колективными колебаниями атомов Al и Zr на границах периодически расположенных кластеров.

Полученные температурные зависимости теплоемкости для систем Zr—Al приведены на рис. 9, обозначения в поле рисунка приведены в порядке уменьшения теплоемкости вблизи температуры 100 К. Здесь так же как и для нанокомпозитов Ti—Al, наблюдается закономерность: теплоемкости структур с большим содержанием циркония имеют большее значение. Но есть также и исключения, теплоемкости структур III и IV, имеющие 69

и 70 процентов циркония в своем составе, существенно различаются, а значения C(T) для систем III и mix-Zr74 практически совпадают. Это связано с особенностями поведения спектров ПКС этих структур в низкоэнергетической области, в районе $10\,\mathrm{meV}$ их спектры почти совпадают, причем у структуры III значение плотности колебательных состояний чуть выше, что и отражается на значении теплоемкости.

Сравнивая поведение теплоемкостей структур γ -ZrAl и II (обе с 50 процентами Zr), нужно отметить, что обе кривые C(T) пересекаются в области значения температуры 40 K, после 70 K теплоемкость структуры γ -ZrAl расположена ниже кривой теплоемкости чистого алюминия, а после $100\,\mathrm{K}$ — даже ниже теплоемкости системы mix-Zr42. Анализ полученных результатов показывает, что при одинаковой концентрации элементов в нанокомпозите можно получить материалы с разной теплоемкостью, изменяя структуры нанокомпозита.

4. Заключение

С помощью метода молекулярной динамики проведены расчеты равновесных параметров решетки, упругих постоянных, спектров плотности колебательных состояний и теплоемкостей ряда композиционных (Ti/Zr-Al) наноструктурированных периодических структур. Полученные результаты показывают эффективность метода молекулярной динамики для расчета динамических и тепловых свойств фононных решеток с параметром порядка до 3 nm.

Показано, что алюминий, имеющий ГЦК структуру, может служить основой для стабилизации метастабильной ГЦК-фазы титана и циркония. Наибольшие искажения решеток происходит в области границ между кластерами титана/циркония и алюминия. Причем величина и направление смещений атомов в интерфейсной области зависит от конкретной конфигурации, типа атомов (Ti/Zr) и соотношения числа атомных слоев каждого элемента.

В системах Zr-Al, где разность масс атомов компонентов (Zr и Al) значительна, для большинства из них в ПКС наблюдается запрещенная зона, которая разделяет колебания атомов разного сорта: низкоэнергетические колебания — Zr, высокоэнергетические — Al.

В рассмотренных нанокомпозитах Ti—Al с периодически расположенными кластерами одного компонента в материце другого компонента, колебательные спектры атомов существенно изменяются из-за наличия периодических искажений решетки, в то время как в структурах со смешанными случайным образом атомами Ti и Al увеличение концентрации титана не приводит к кардинальным изменениям формы спектра ПКС и он в большой степени соответствует по характерным признакам спектру ГЦК-решетки. Периодические искажения в наноструктурированных композитах оказывают

существенное влияние на колебательный спектр и теплоемкость. Формируя определенным образом упорядоченный нанокомпозит Ti—Al, удается получить материал, являющийся более мягким, чем γ -TiAl, и более удобным для механической обработки, но в то же время имеющий на $\sim 25\%$ большую теплоемкость.

Результаты работы могут быть использованы при разработке технологий получения новых композиционных материалов на основе алюминия, титана и циркония с заданными свойствами.

Список литературы

- [1] M. Maldovan. Phys. Rev. Lett. 110, 025902 (2013).
- [2] J. Rifkin. XMD Molecular Dynamics Program. Univ. of Connecticut, Center for Materials Simulation, Storrs, CT (2002). http://xmd.SourceForge.net/
- [3] R.R. Zope, Y. Mishin. Phys. Rev. B 68, 024102 (2003).
- [4] H. Sheng. https://sites.google.com/site/eampotentials/Home/ZrAl.
- [5] M.S. Daw, M.I. Baskes, S.M. Foiles. Phys. Rev. B 33, 7983 (1986).
- [6] J.M. Ziman. Principles of the Theory of Solids. Cambridge University Press (1964). 360 p.
- [7] S.K. Kim, F. Jona, P.M. Marcus. J. Phys.: Condens. Matter. 8, 25 (1996).
- [8] R. Banerjee, S.A. Dregia, H.L. Fraser. Acta Mater. 47, 4225, 15 (1999).
- [9] I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, H.J. Fecht. J. Appl. Phys. 93, 1520 (2003).
- [10] D.H. Hong, T.W. Lee, S.H. Lim, W.Y. Kim, S.K. Hwang. Scr. Mater. 69, 405 (2013).
- [11] I. Manna, P.P. Chattopadhyay, F. Banhart, H.J. Fecht. Appl. Phys. Lett. 81, 4136 (2002).
- [12] E.B. Dolgusheva, V.Y. Trubitsin. Comp. Mater. Sci. **84**, 23 (2014).
- [13] M.I. Mendelev, G.J. Ackland. Phil. Mag. Lett. 87, 349 (2007).
- [14] W. Li, T. Wang. J. Phys. Condens. Matter. 10, 9889 (1998).
- [15] G. Simons, H. Wang. Single Crystal Elastic Constants and Calculated Aggregate Properties. MIT, Cambridge. MA (1977).
- [16] A.H. Bautista, J.H. Garcia Camacho, M.V. Salazar, E. A. Chigo, A. Cervantes Macias. Rev. Mexicana Fis. 57, 2, 140 (2011).
- [17] G. Ghosh, M. Asta. Acta Mater. 53, 3225 (2005).
- [18] A. Aguayo, G. Murrieta, R. de Coss. Phys. Rev. B 65, 092106 (2002).
- [19] X.Z. Ji, F. Jona, P.M. Marcus. Phys. Rev. B 68, 075421 (2003).
- [20] G.E. Hill, J. Marklund, J. Martinson, B.J. Hopkins. Surf. Sci. 24, 435 (1971).
- [21] R. Chang, L.J. Graham. J. Appl. Phys. 37, 3778 (1966).
- [22] Q. Chen, B. Sundman. Acta Mater. 49, 947 (2001).
- [23] J. Chakraborty, K. Kumar, R. Ranjan, S. Ghosh Chowdhury, S.R. Singh. Acta Mater. 59, 2615 (2011).
- [24] T. Tian, X.F. Wang, W. Li. Solid State Commun. 156, 69 (2013).

- [25] Y. He, W. Zhi, C. Rong. Archives Metallurg. Mater. 58, 1023 (2013).
- [26] N. Arikan. J. Phys. Chem. Solids. 74, 794 (2013).
- [27] J.S.C. Jang, Y.W. Chen, L.J. Chang, H.Z. Cheng, C.C. Huang, C.Y. Tsau. Mater. Chem. Phys. 89, 122 (2005).
- [28] R. Tewari, G.K. Dey, S. Banerjee, N.Prabhu. Metall. Mater. Trans. A **37**, 49 (2006).
- [29] W.J. Meng, J.J. Faber, P.R. Okamoto, L.E. Rehn, B.J. Kestel, R.L. Hitterman. J. Appl. Phys. 67, 1312 (1990).
- [30] C. Colinet, A. Pasturel. J. Alloys Comp. 319, 154 (2001).
- [31] P.B. Desch, R.B. Schwarz, P. Nash. Scr. Mater. 34 37 (1996).
- [32] G. Gilat, R.M. Nicklow. Phys. Rev. 143, 487 (1966).
- [33] D.H. Parkinson. Rep. Prog. Phys. 21, 226 (1958).