04

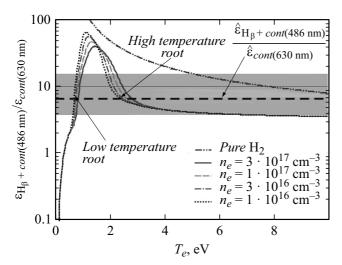
Измерение пространственных распределений температуры электронов в облаках полистироловых пеллетов, испаряющихся в плазме гелиотрона LHD

© И.А. Шаров¹, В.Ю. Сергеев¹, И.В. Мирошников², Б.В. Кутеев³, N. Tamura⁴, S. Sudo⁵

- ¹ Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия
- ² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург,
- ³ НИЦ Курчатовский институт, Москва, Россия
- ⁴ National Institute for Fusion Science, Toki City, GIFU Prefecture, Japan
- ⁵ Chubu University, Kasugai, Aichi, Japan

E-mail: I.Sharov@spbstu.ru

Поступило в Редакцию 10 января 2018 г.


Описаны два метода измерения пространственного распределения температуры электронов в облаке вблизи полистиролового пеллета, испаряющегося в плазме гелиотрона LHD. Первый метод основан на измерении отношения локальных значений коэффициентов испускания на длинах волн 486 ± 5 nm (линия H_{β}) и 630 ± 5 nm (континуум). Второй (новый) метод основан на измерениях распределений излучения линии H_{β} в направлении вдоль магнитного поля. Оба метода используют предположение о частичном локальном термодинамическом равновесии в облаке и демонстрируют близкие результаты. Впервые показано, что температура электронов облака возрастает от $\sim 0.8\,\mathrm{eV}$ в непосредственной близости от поверхности пеллета до $6.0-7.0\,\mathrm{eV}$ на расстоянии $6-8\,\mathrm{mm}$ от пеллета в направлении вдоль магнитного поля, что согласуется с наблюдаемым экспериментально продольным распределением излучения H_{β} в облаке.

DOI: 10.21883/PJTF.2018.09.46064.17203

Экспериментальные данные о параметрах плазменного облака необходимы для верификации и уточнения моделей испарения пеллетов, а также для широкого спектра их диагностических приложений [1]. Значения температуры T_e и концентрации n_e электронов в плазменном

облаке испаряющегося в высокотемпературной плазме пеллета оценивались в ряде экспериментальных и теоретических работ (см. обзор [1]). Для водородных и дейтериевых пеллетов усредненные по облаку величины температуры и концентрации лежат в диапазоне $1-5\,\mathrm{eV}$ и $10^{17}-10^{18}\,\mathrm{cm}^{-3}$ в зависимости от скорости испарения. Для примесных пеллетов (C, Li, полистирол — $(C_8H_8)_n$) сообщались значения $T_e\approx 3-10\,\mathrm{eV}$ и $n_e\approx 10^{16}-10^{17}\,\mathrm{cm}^{-3}$. В задачу настоящей работы входило экспериментальное измерение пространственных распределений температуры электронов в облаках вблизи полистироловых пеллетов, испаряющихся в высокотемпературной плазме гелиотрона LHD.

Распространенный метод определения T_e в облаке основан на измерении отношения суммарного коэффициента испускания линии Н_В и непрерывного спектра $\varepsilon_{line+cont}$ в окрестности линии и коэффициента испускания в непрерывном спектре ε_{cont} вдали от нее. Данные о пространственных распределениях соответствующих коэффициентов испускания $\hat{\varepsilon}_{line+cont}(i',j')/\hat{\varepsilon}_{cont}(i',j')$, где i',j' — индексы координат вдоль оси симметрии светящегося облака $z=i'\Delta z$ и перпендикулярно этой оси $r = j'\Delta r$ соответственно, были получены в работе [2] при помощи изображающего полихроматора. Шаг сетки $\Delta z = \Delta r \approx 0.6\,\mathrm{mm}$ определялся параметрами оптической системы. Массив $\hat{\varepsilon}_{line+cont}(i',j')$ содержит локальные значения суммарного коэффициента испускания линии $H_{\mathcal{B}}$ и непрерывного спектра в ее окрестности и вычислен посредством обработки изображения облака, полученного через интерференционный фильтр с центральной длиной волны 486.5 nm и полосой пропускания с шириной на полувысоте FWHM $\approx 10\,\mathrm{nm}$ (см. подробнее [2]). Массив $\hat{\varepsilon}_{cont}(i',j')$ содержит значения коэффициента испускания в непрерывном спектре, он был получен путем обработки изображения облака через фильтр $630.5\,\mathrm{nm}$ с FWHM $\approx 5\,\mathrm{nm}$. Для случая однокомпонентной плазмы из водорода/дейтерия формула для расчета зависимости отношения коэффициентов испускания линии Н_В и непрерывного спектра на той же длине волны приведена в [3]. Она была существенно модернизирована для плазмы пеллетного облака, состоящей из смеси водорода и углерода в соотношении 1:1. Было учтено, что измерение излучения в непрерывном спектре осуществлялось на значительном удалении по шкале длин волн от используемой линии. Кроме того, в выражении коэффициента испускания в непрерывном спектре был учтен вклад каждого ионизационного состояния углерода, а также вклад радиационного прилипания к атомам водорода и углерода с

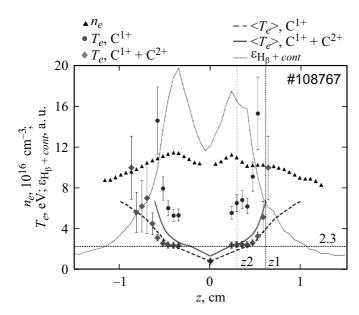


Рис. 1. Температурная зависимость отношения суммарного коэффициента испускания линии H_{β} и непрерывного спектра на длине волны 486 nm к коэффициенту испускания в непрерывном спектре на длине волны 630 nm с учетом вкладов ионов углерода C^{1+} и C^{2+} при различных значениях электронной концентрации пеллетного облака. Серым цветом выделена область экспериментальных значений отношения.

использованием данных из [4] и [5] соответственно. Важность излучения при радиационном прилипании отмечалась в [6] для случая облаков водородных пеллетов.

В настоящей работе ионизационное состояние облака оценивалось с использованием уравнений термодинамического равновесия плазмы Caxa—Больцмана (TP), квазинейтральности и предположения о постоянстве химического состава. Рассчитанная в таких предположениях температурная зависимость отношения коэффициентов испускания $\varepsilon_{line+cont}(T_e,n_e)/\varepsilon_{cont}(T_e,n_e)$ приведена на рис. 1. При расчетах учитывались только ионизационные состояния углерода до C^{2+} включительно, поскольку характерная длина ионизации иона углерода C^{2+} существенно превышает продольные размеры наблюдаемого пеллетного облака.

Для нахождения распределения температуры в каждой точке облака решается уравнение $\varepsilon_{line+cont}(T_e, n_e)/\varepsilon_{cont}(T_e, n_e) = \hat{\varepsilon}_{line+cont}(i', j')/\hat{\varepsilon}_{cont}(i', j')$.

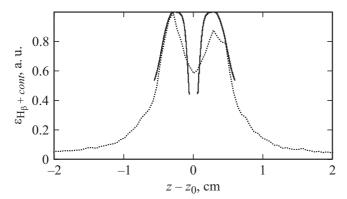
Рис. 2. Измеренные значения T_e на оси пеллетного облака вдоль магнитного поля. Ромбами и кружками показаны значения, полученные по отношению испускания линии H_{β} и непрерывного спектра при учете ионизации углерода до C^{2+} и C^{1+} соответственно. Сплошная и штриховая кривые получены по методу оценки градиента коэффициента испускания линии H_{β} при учете ионизации углерода до C^{2+} и C^{1+} соответственно. Треугольниками показаны значения концентрации электронов, измеренные по методу из работы [2]. Пунктирная кривая показывает распределение коэффициента испускания линии H_{β} . Вертикальными прямыми отмечены положения z1 и z2 при расчете с учетом ионизации углерода до C^{2+} .

Как видно из рис. 1, это уравнение имеет два корня. В центральной точке выбирался корень, соответствующий меньшей температуре, поскольку температура поверхности пеллета при его деполимеризации $\sim 0.06\,\mathrm{eV}$ [7]. В далеких от пеллета точках выбирался корень, соответствующий большей температуре. При том что максимальные расчетные значения составили $\varepsilon_{line+cont}/\varepsilon_{cont} \approx 40-70$ (рис. 1), экспериментальные значения не превышали $\hat{\varepsilon}_{line+cont}/\hat{\varepsilon}_{cont} \approx 10-15$ (область

значений, выделенная серым на рис. 1). Это связано, по-видимому, с тем, что равновесное распределение по возбужденным состояниям не успевает установиться при низких температурах облака вблизи пеллета. По мере удаления от пеллета температура облака растет, скорости процессов перехода с уровня на уровень в водороде, а также скорость ионизации экспоненциально возрастают, что обеспечивает установление равновесной заселенности уровней водорода. Описанный выше метод позволяет определять двумерное распределение температуры облака. На рис. 2 сплошной кривой показано полученное таким образом продольное распределение температуры на оси облака в разряде LHD #108767 со следующими параметрами фоновой плазмы в момент измерения: температура электронов $T_{epl}=1.37\,\mathrm{keV}$, концентрация электронов $n_{epl} = 1.95 \cdot 10^{13} \,\mathrm{cm}^{-3}$, напряженность магнитного поля $B = 2.75 \,\mathrm{T}$, суммарная мощность дополнительного нагрева пучками нейтральных атомов $P_{\mathrm{NBI}} = 10\,\mathrm{MW}$ при скорости испарения полистиролового пеллета $dN_{\text{C}_8\text{H}_8}/dt = 2.8 \cdot 10^{21} \text{ s}^{-1}$.

Для оценки продольных распределений температуры облака $\langle T_e \rangle$ (средних по поперечному сечению облака размером $2r_{cld}\approx 6\pm 1$ mm) был разработан новый метод. В нем предполагается, что на некотором расстоянии z1 (которое является свободным варьируемым параметром) значение температуры $\langle T_e \rangle (z1)$ берется равным 6.5 eV. Относительная погрешность метода при больших значениях температуры превышает 50%, и применение метода нецелесообразно.

Для определения продольного профиля $\langle T_e \rangle(z)$ используется выражение


$$d\langle T_e \rangle / dz = (d \ln n_{H^{*4}} / dT_e)^{-1} (d \ln \varepsilon_{H_B} / dz)$$
 (1)

с граничным значением $\langle T_e \rangle (z1)$. Здесь $(d \ln \varepsilon_{\rm H_\beta}/dz)^{-1}$ представляет собой экспериментально измеренную характерную длину спада излучения линии ${\rm H_\beta}$; $n_{{\rm H^{*4}}}$ — концентрация атомов водорода в возбужденном состоянии с главным квантовым числом n=4, а функция $(d \ln n_{{\rm H^{*4}}}/dT_e)^{-1}$ вычисляется из уравнений локального ТР. Применимость такой процедуры ограничивается выполнением "критерия локальности" ТР. Равновесие можно считать локальным при выполнении условия $(ud \ln \langle T_e \rangle/dz)^{-1} \gg \tau$, где τ — время обеднения основного состояния водорода за счет процессов возбуждения и ионизации, а $u\approx 7\cdot 10^5\,{\rm cm/s}$ — продольная скорость разлета испарившегося вещества, оцениваемая с помощью уравнения неразрывности с исполь-

зованием экспериментальных значений скорости испарения, поперечного размера и плотности электронов облака. Для разряда LHD #108767 критерий выполняется при $z\geqslant z2\approx 2.5$ mm, что соответствует $\langle T_e\rangle(z2)\approx 2.3$ eV (рис. 2). В ближней к пеллету области [0,z2] распределение температуры в облаке приближенно описывается линейным участком со значениями температуры $[B\langle T_e\rangle(0),\langle T_e\rangle(z2)]$ на его концах. Значение температуры $\langle T_e\rangle(0)$, как и положение точки z1, является варьируемым параметром метода.

Для определения значений варьируемых параметров $\langle T_e \rangle(0)$ и z1осуществлялось моделирование пространственного распределения заселенности возбужденных состояний водорода. В расчете решалась система уравнений неразрывности [8] для концентраций водорода в основном и возбужденных состояниях n = 1-7, а также для концентрации ионов. Учитывались процессы ударной ионизации и возбуждения, а также обратные им. Согласно проведенным оценкам [3], излучательные процессы не оказывают существенного влияния на заселенность уровней и ионизационный баланс в облаке, и поэтому они не учитывались в модели. Распределение концентрации электронов полагалось известным из эксперимента [2], а распределение температуры определялось для каждого из значений варьируемых параметров $\langle T_e \rangle(0)$ и z 1. В результате моделирования были получены распределения каждого возбужденного состояния, в том числе для концентрации $n_{H^{*4}}(z)$ верхнего состояния перехода, соответствующего наблюдаемой линии Н_в. Это позволило вычислить распределение коэффициента испускания $\tilde{\epsilon}_{line+cont}(z)$, сравнить его с распределением, измеренным экспериментально, и вычислить невязку при каждом значении варьируемых параметров. На рис. 3 приведены расчетные и измеренные значения коэффициента испускания, а на рис. 2 сплошной кривой показано распределение температуры, полученное для минимальной невязки с $\langle T_e \rangle(0) = 1.3 \,\mathrm{eV}$ и z 1 = 0.6 cm.

Как следует из изложенного выше, в обоих методах измерения T_e учитывались ионы углерода до C^{2+} включительно. Для выяснения влияния ионного состава на полученные результаты были выполнены расчеты с использованием уравнения Саха—Больцмана в предположении присутствия в облаке только иона C^{1+} . На рис. 2 результаты такого вычисления температуры показаны кружками для первого использованного метода и штриховой кривой для второго. Видно, что учет ионов углерода до C^{1+} или до C^{2+} существенно и по-разному влияет на полу-

Рис. 3. Распределение суммарного коэффициента испускания линии H_{β} и непрерывного спектра на оси пеллетного облака вдоль магнитного поля в разряде #108767. Пунктирная кривая — данные экспериментальных измерений, сплошная — расчет по упрощенной модели для минимальной невязки при значениях варьируемых параметров $\langle T_e \rangle(0) = 1.3 \, \text{eV}$ и $z \, 1 = 0.6 \, \text{cm}$.

чаемые по двум методам значения температуры. При этом оба метода дают близкие результаты при учете углерода до ${\rm C}^{2+}$ включительно, что подтверждает реалистичность такого предположения.

В работе предложены два метода измерения T_e в плазменном облаке вблизи полистиролового пеллета, испаряющегося в установке LHD. Значения T_e составили $\sim 0.8 \pm 0.1\,\mathrm{eV}$ вблизи пеллета (в среднем по каналу разлета). Наблюдается существенный рост температуры в направлении фоновой плазмы до значений $6.0-7.0\,\mathrm{eV}$ на расстоянии $6-8\,\mathrm{mm}$ от пеллета в направлении вдоль магнитного поля. Относительная погрешность измерений возрастает с ростом температуры исследуемой плазмы и составляет $\sim 10\%$ в центральной части и $\geqslant 50\%$ при $T_e \geqslant 6.5\,\mathrm{eV}$. Результаты моделирования пространственного распределения излучения в окрестности линии H_β в рамках сделанных предположений хорошо согласуются с данными экспериментальных измерений.

Авторы выражают благодарность В.А. Рожанскому за полезные обсуждения, а также группе экспериментаторов гелиотрона LHD.

Список литературы

- [1] Pegourie B. // Plasma Phys. Control. Fusion. 2007. V. 49. P. R87-R160.
- [2] Sharov I.A., Sergeev V.Yu., Miroshnikov I.V., Tamura N., Kuteev B.V., Sudo S. // Rev. Sci. Instrum. 2015. V. 86. P. 043505.
- [3] Griem H.R. Plasma Spectroscopy. N.Y.: McGraw-Hill, 1964. 580 p.
- [4] Wishart A.W. // Mon. Not. R. Astron. Soc. 1979. V. 187. P. 59-60.
- [5] Seman M.L., Branscomb L.M. // Phys. Rev. 1962. V. 125. N 5. P. 1602-1608.
- [6] Goto M., Sakamoto R., Morita S. // Plasma Phys. Control. Fusion. 2007. V. 49.
- [7] Reactive modifiers for polymers / Ed. S. Al-Malaika. Springer Sci. & Business Media, 2012. 400 p.
- [8] Post. D., Putvinskaya N., Perkins F.W., Nevins W. // J. Nucl. Mater. 1995. V. 220-222. P. 1014–1018.