04,09,11

Электронная структура, оптические свойства и поведение под давлением в соединениях CdB₄O₇ и HgB₄O₇

© А.С. Шинкоренко, В.И. Зиненко, М.С. Павловский

Институт физики им. Л.В. Киренского СО РАН (ФИЦ КНЦ СО РАН),

Красноярск, Россия E-mail: shas@iph.krasn.ru

(Поступила в Редакцию 15 марта 2018 г.)

В рамках теории функционала плотности с использованием пакета VASP из первых принципов выполнены расчеты структурных, электронных и оптических свойств соединений тетраборатов HgB_4O_7 и CdB_4O_7 в трех структурных модификациях с симметрией Pbca, Cmcm и $Pmn2_1$. Расчеты электронной зонной структуры показали, что исследуемые соединения во всех рассматриваемых модификациях являются диэлектриками с шириной запрещенной зоны $2-4\,\mathrm{eV}$. Расчеты структурных свойств исследуемых тетраборатов под давлением показали, что фазовый переход между структурами Pbca и $Pmn2_1$ в тетраборате кадмия и тетраборате ртути происходит при давлениях $4.8\,\mathrm{GPa}$ и $4.7\,\mathrm{GPa}$ соответственно.

Работа выполнена при финансовой поддержке гранта РФФИ 16-32-00373 мол_а и с использованием оборудования Центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мега-класса" НИЦ "Курчатовский институт", http://ckp.nrcki.ru/.

DOI: 10.21883/FTT.2018.09.46381.069

1. Введение

Соединения боратов с химической формулой $M^{+2}B_4O_7$ обладают рядом интересных особенностей, таких как люминесценция, нелинейные оптические и электрические свойства [1]. Эти свойства могут иметь прикладное значение. В дополнение к этому они интересны с кристалохимической точки зрения. Данные соединения реализуются в нескольких основных структурных формах, содержащих BO_3 — треугольники и/или BO_4 — тетраэдры. Как показывают эксперименты [2–10], в зависимости от радиуса иона M^{+2} и внешних условий соединения $M^{+2}B_4O_7$ могут существовать в двух из трех основных структурных типов, за некоторыми исключениями [11].

Первый структурный тип принадлежит пространственной группе симметрии Рьса. Основу структуры этого типа составляет борокислородный каркас, состоящий из соединенных между собой вершинами тетраэдров ВО₄ и треугольников ВО₃ (в соотношении один к одному). В полостях такого каркаса располагаются атомы M^{+2} . Этот структурный тип, как правило, реализуется в соединениях, в которых ионный радиус металла имеет величину в интервале 0.9Å-1Å. Для соединений с ионным радиусом металла меньшем 1 Å при высоких температурах и давлениях реализуется второй структурный тип с группой симметрии Стст. В отличие от структуры с пространственной группой Рвса, в этой структуре присутствуют только борокислородные тетраэдры — ВО4. И, наконец, третий структурный тип имеет полярную группу $Pmn2_1$, также состоит только из тетраэдров -ВО₄ и этот структурный тип при нормальном давлении реализуется в соединениях с

радиусом иона металла большем 1.3 Å. Для соединений с радиусом иона металла в интервале 1.1 Å < 1.3 Å этот структурный тип реализуется при высоких давлениях. Ионы кадмия и ртути имеют радиус иона \sim 1.15 Å и можно ожидать, что в тетраборатах с этими ионами могут реализоваться все три структурных типа.

Для тетрабората ртути известны как фаза нормального [12], так и фаза высокого давления [9]. Для соединения тетрабората кадмия экспериментально известна лишь фаза нормального давления [13]. В [14] авторы в рамках первопринципного расчета исследовали фазовую диаграмму ${\rm CdB_4O_7}$ при гидростатическом давлении. Согласно их расчетам, в тетраборате кадмия под давлением 5 GPa происходит фазовый переход из Pbca в Cmcm. Исследований по определению электронных и оптических свойств данных соединений в литературе не найдено.

В данной статье представлены результаты первопринципных вычислений структурных, электронных и оптических свойств тетраборатов кадмия и ртути в фазах со структурами Pbca, Cmcm, $Pmn2_1$ и исследуется их фазовая диаграмма под давлением.

2. Метод расчета

Расчеты проводились с использованием Projector Augmented Wave (PAW) [15,16] в DFT, реализованного в коде "The Vienna Ab initio Simulation Package" (VASP) [17,18]. Использовалось обобщенное градиентное приближение GGA с параметризацией Perdew-Burke-Ernzerhof [19]. Были выбраны электронные конфигурации для потенциалов атомов: Cd: $4d^{10}5s^2$, Hg: $5d^{10}6s^2$, B: $2s^22p^1$, О: $2s^22p^4$. Число плоских волн ограничивалось энергией 600 eV. Размер сетки k-точек на

основе схемы Monkhorst-Pack [20] составлял $4\times5\times3$ (для типа структуры Pbca), $4\times6\times8$ (для структурного типа Cmcm) и $4\times9\times9$ (для типа структуры $Pmn2_1$). Для вычисления DOS сетка k-точек увеличивалась в два раза в каждом направлении. Геометрия структур была оптимизирована до тех пор, пока остаточные силы не станут меньше $1\,\mathrm{meV/\mathring{A}}$.

Расчеты электронной структуры и оптических свойств проводились на релаксированных параметрах решетки и координатах.

3. Электронная структура

В табл. 1-3 приведены вычисленные параметры ячейки и относительные координаты атомов для трех структурных модификаций соединений CdB_4O_7 и HgB_4O_7 . Там же приведены имеющиеся в литературе экспе-

Таблица 1. Вычисленные и экспериментальные (в скоб-ках) координаты атомов и параметры решетки соединений CdB_4O_7 [13] и HgB_4O_7 [12] в структуре Pbca (Z=8)

Pbca	а	b	С
CdB ₄ O ₇	8.41 (8.21) Å	8.90 (8.70) Å	14.34 (14.18) Å
HgB ₄ O ₇	8.548 (8.399) Å	8.955 (8.806) Å	14.371 (14.137) Å
$\begin{matrix} M^{Cd} \\ M^{Hg} \end{matrix}$	0.1262 (0.1210)	0.1105 (0.1105)	0.6138 (0.6125)
	0.1393 (0.1394)	0.1157 (0.1122)	0.1174 (0.1169)
$\begin{array}{c} B_1^{Cd} \\ B_1^{Hg} \end{array}$	0.4453 (0.4473)	0.2830 (0.2864)	0.5647 (0.5679)
	0.4516 (0.4542)	0.2876 (0.2810)	0.0623 (0.0616)
$\begin{array}{c} B_2^{Cd} \\ B_2^{Hg} \end{array}$	0.0156(0.0140)	0.3218 (0.3385)	0.7658 (0.7654)
	0.5076 (0.5109)	0.3343 (0.3294)	0.2336 (0.2348)
$\begin{array}{c} B_3^{Cd} \\ B_3^{Hg} \end{array}$	0.0091 (0.0061)	0.0684 (0.0640)	0.8376 (0.8376)
	0.5188 (0.5165)	0.0699 (0.0632)	0.1618 (0.1609)
$\begin{array}{c} B_4^{Cd} \\ B_4^{Hg} \end{array}$	0.2048 (0.2019)	0.1476 (0.1374)	0.9549 (0.9575)
	0.7152 (0.7176)	0.1557 (0.1487)	0.0490 (0.0489)
O_1^{Cd} O_1^{Hg}	0.0479 (0.0543)	0.4225 (0.4103)	0.6920 (0.6875)
	0.0337 (0.0426)	0.4246 (0.4173)	0.1924 (0.1895)
O_2^{Cd} O_2^{Hg}	0.3890 (0.3853)	0.1387 (0.1325)	0.5994 (0.5980)
	0.4030 (0.4003)	0.1346 (0.1332)	0.0951 (0.0933)
O_3^{Cd} O_3^{Hg}	0.3489 (0.3544)	0.3691 (0.3759)	0.4996 (0.5021)
	0.3574 (0.3627)	0.3584 (0.3646)	-0.0059 (0.0064)
$\mathrm{O_4^{Cd}} \ \mathrm{O_4^{Hg}}$	0.4693 (0.4733)	0.3856 (0.3837)	0.6477 (0.6469)
	0.4611 (0.4651)	0.3845 (0.3834)	0.1467 (0.1474)
${ m O}_5^{Cd} \ { m O}_5^{Hg}$	0.0322 (0.0335)	0.1773 (0.1642)	0.7567 (0.7545)
	0.5300 (0.5288)	0.1810 (0.1730)	0.2440 (0.2448)
${f O}_6^{Cd} \ {f O}_6^{Hg}$	0.1016 (0.1094)	0.2611 (0.2561)	0.9831 (0.9799)
	0.6120 (0.6153)	0.2679 (0.2650)	0.0210 (0.0208)
$\mathbf{O}_7^{\mathrm{Cd}}$ $\mathbf{O}_7^{\mathrm{Hg}}$	0.1634 (0.1595)	0.0546 (0.0428)	0.8853 (0.8841)
	0.6725 (0.6733)	0.0526 (0.0617)	0.1189 (0.1180)

Таблица 2. Вычисленные координаты атомов и параметры решетки соединений CdB_4O_7 и HgB_4O_7 в структуре Cmcm (Z=4)

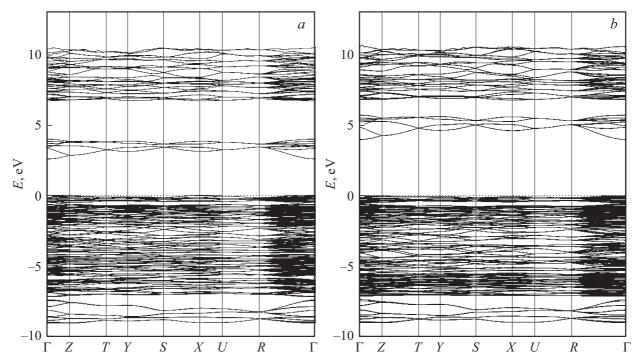

Стст	а	b	c
CdB ₄ O ₇	11.062 Å	6.838 Å	5.325 Å
HgB ₄ O ₇	11.118 Å	6.896 Å	5.383 Å
M ^{Cd}	0.0000	0.2163	0.2500
M ^{Hg}	0.0000	0.2162	0.2500
$\begin{array}{c} B_1^{Cd} \\ B_1^{Hg} \end{array}$	0.7105	0.0000	0.0000
	0.7123	0.0000	0.0000
$\begin{array}{c} B_2^{Cd} \\ B_2^{Hg} \end{array}$	0.6213	0.2886	0.2500
	0.6222	0.2861	0.2500
$egin{array}{l} O_1^{Cd} \ O_1^{Hg} \end{array}$	0.0000	0.8851	0.2500
	0.0000	0.8776	0.2500
$egin{array}{c} O_2^{Cd} \ O_2^{Hg} \end{array}$	0.2872	0.4698	0.2500
	0.2882	0.4674	0.2500
O_3^{Cd} O_3^{Hg}	0.1380 0.1407	0.3267 0.3285	-0.0285 -0.0317

Таблица 3. Вычисленные и экспериментальные [11] координаты атомов и параметры решетки соединений CdB_4O_7 и HgB_4O_7 в структуре $Pmn2_1$ (Z=2)

$Pmn2_1$	а	b	c		
CdB ₄ O ₇	10.769 Å	4.420 Å	4.226 Å		
HgB ₄ O ₇	10.825 (10.656) Å	4.445 (4.381) Å	4. 239 (4.187) Å		
$\begin{matrix} M^{Cd} \\ M^{Hg} \end{matrix}$	0.0000	0.1648	0.1033		
	0.0000 (0.0000)	0.1800 (0.1802)	0.1033 (0.1033)		
$\begin{array}{c} B_1^{Cd} \\ B_1^{Hg} \end{array}$	0.8794	0.6721	0.6359		
	0.8794 (0.8796)	0.6768 (0.6738)	0.5869 (0.5900)		
$B_2^{Cd} \\ B_2^{Hg}$	0.7510	0.8259	0.1596		
	0.7513 (0.7513)	0.8301 (0.8258)	0.0696 (0.0704)		
O_1^{Cd} O_1^{Hg}	0.7777	0.8644	0.8027		
	0.7791 (0.7762)	0.8700 (0.8637)	0.4197 (0.4272)		
O_2^{Cd} O_2^{Hg}	0.8600	0.3530	0.7127		
	0.8583 (0.8615)	0.3586 (0.3518)	0.5153 (0.5155)		
O_3^{Cd} O_3^{Hg}	0.8661	0.7316	0.2985		
	0.8653 (0.8667)	0.7361 (0.7275)	0.9235 (0.9322)		
$\mathrm{O_4^{Cd}} \ \mathrm{O_4^{Hg}}$	0.000	0.7716	0.7456		
	0.0000 (0.0000)	0.7701 (0.7770)	0.4787 (0.4809)		

риментальные данные. Из приведенных таблиц видно хорошее согласие с экспериментальными данными как параметров ячейки, так и координат атомов.

Вычисленная электронная зонная структура соединений CdB_4O_7 и HgB_4O_7 в структуре с группой симметрии Pbca показана на рис. 1. Качественных отличий в

Рис. 1. Вычисленная электронная зонная структура соединений HgB_4O_7 (a) и CdB_4O_7 (b) в структуре Pbca.

электронной структуре этих соединений не обнаружено. Полная (TDOS) и частичная (PDOS) плотности состояний для рассматриваемых соединений в трех структурах приведены на рис. 2. Все TDOS и PDOS нормированы на формульную единицу. Ширина запрещенной зоны ΔE в разных структурах исследуемых соединений приведена в табл. 4.

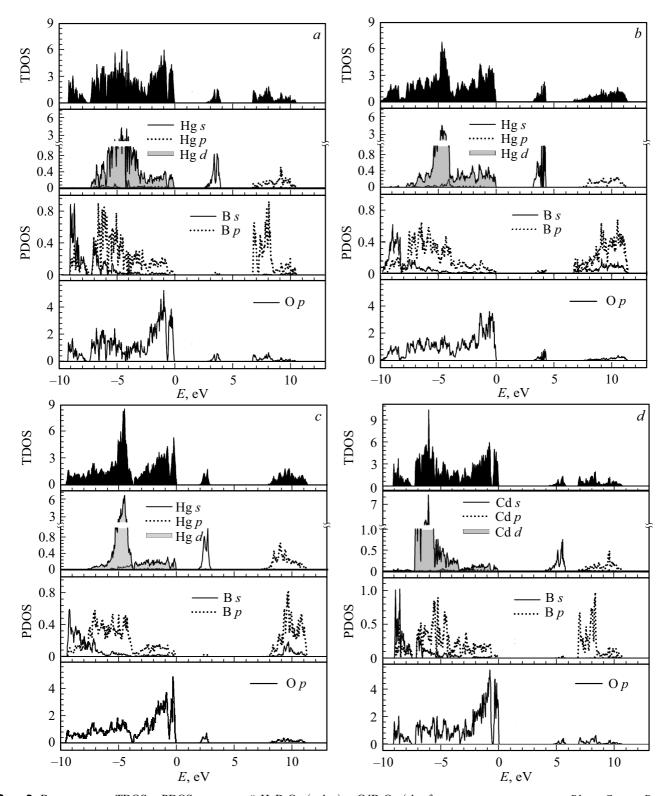
Вычисленные электронные TDOS и PDOS для различных структурных типов кристаллов CdB_4O_7 и HgB_4O_7 качественно не отличаются. Видно, что структура валентной зоны почти одинакова во всех модификациях рассматриваемых соединений. Она состоит из d-состояний атомов M^{2+} (середина зоны, высокий пик), s-и p-состояний атомов B (центр и дно зоны) и p-состояний атомов D (центр и верхняя часть зоны).

Наибольшие различия наблюдаются в зоне проводимости для всех типов структур. Во всех рассматриваемых случаях нижняя узкая часть зоны проводимости отделена от основной части (величина данного интервала энергий ΔE_1 приведена в табл. 4). Эта нижняя часть

Таблица 4. Вычисленные значения ширины запрещенной зоны ΔE и ΔE_1 соединений CdB_4O_7 и HgB_4O_7 в различных структурах

		CdB ₄ O ₇	r	HgB ₄ O ₇			
	Pbca	Cmcm	Pmn2 ₁	Pbca	Cmcm	$Pmn2_1$	
ΔE , eV	3.9	4.6	3.1	2.57	3.0	1.9	
ΔE_1 , eV	1.0	0.9	2.9	2.7	2.2	4.1	

зоны проводимости состоит из s-состояний электронов атомов M^{2+} и p-состояний электронов атомов O. В зависимости от структуры и состава дно зоны проводимости изменяет свое положение относительно верхней части валентной зоны, что в свою очередь меняет ширину запрещенной зоны. Наибольшая ширина запрещенной зоны наблюдается в структуре с группой симметрии Cmcm. Наименьшая ширина зоны в структуре $Pmn2_1$. Верхняя часть зоны проводимости для всех типов структур и соединений состоит из p-состояний электронов каждого атома.


В тетраборате ртути во всех структурах ширина запрещенной зоны меньше, чем в тетраборате кадмия, так как возбужденные s-состояния электронов ионов Hg находятся на более низком энергетическом уровне, чем возбужденные состояния s-электронов ионов Cd [21]. Верхняя часть зоны проводимости в обоих соединениях расположена примерно на одном уровне энергии.

4. Оптические свойства

Для всех типов структур для CdB_4O_7 и HgB_4O_7 были вычислены диэлектрическая функция [22], и коэффициент поглощения α от частоты [23]:

$$\alpha(\omega) = \frac{2\omega}{c} \sqrt{\frac{|\varepsilon(\omega)| - \varepsilon'(\omega)}{2}},$$

где $\varepsilon(\omega)$ — комплексная диэлектрическая функция, $\varepsilon'(\omega)$ — вещественная часть диэлектрической функции. Вычисленные зависимости коэффициента поглощения

Рис. 2. Вычисленные TDOS и PDOS соединений HgB_4O_7 (a,b,c) и CdB_4O_7 (d,e,f) в различных структурах Pbca, Cmcm, $Pmn2_1$ соответственно.

показаны на рис. 3. Существенной анизотропии в оптических свойствах обнаружено не было, поэтому на рисунках приведено среднее значение коэффициента поглощения. Из этих зависимостей можно определить край

поглощения материала соответственно для трех структур кристалла CdB_4O_7 : $Pbca\sim300$ nm, $Cmcm\sim250$ nm, $Pmn2_1\sim350$ nm и кристалла HgB_4O_7 : $Pbca\sim440$ nm, $Cmcm\sim370$ nm, $Pmn2_1\sim600$ nm. Полученные значения

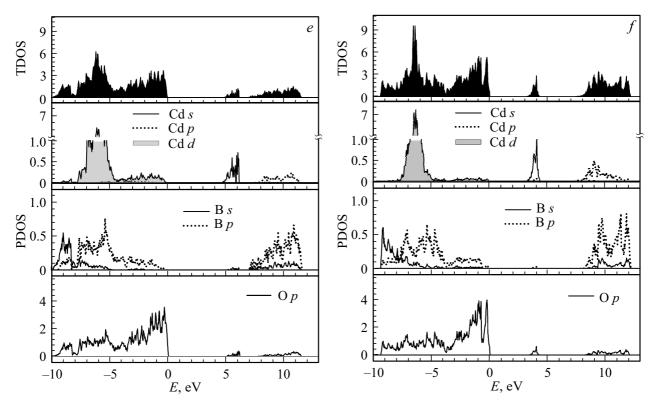
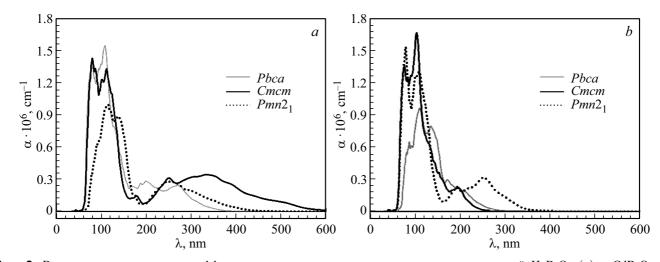
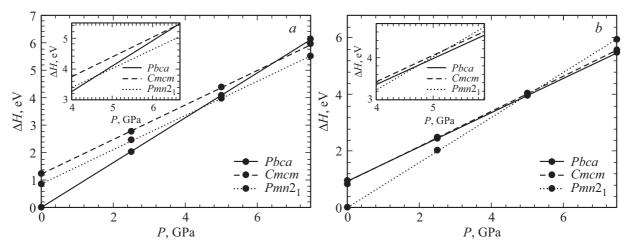



Рис. 2 (продолжение).


Рис. 3. Вычисленная зависимость коэффициента поглощения α от длины волны для соединений HgB₄O₇ (a) и CdB₄O₇ (b) в различных структурах.

края поглощения соответствуют особенностям вычисленных зонных структур, описанным выше.

5. Упругие свойства и поведение под гидростатическим давлением

Экспериментально установлено, что приложение гидростатического давления влияет на образование в структурах борокислородных тетраэдров $-BO_4$ при росте

кристаллов тераборатов двухвалентных металлов. В соединениях с малым ионным радиусом двухвалентного иона, как правило, конкурируют структуры с пространственными группами Pbca в Cmcm. Например, соединение ZnB_4O_7 при нормальном давлении кристаллизуется в пространственной группе Pbca, а при высоких давлениях ZnB_4O_7 кристаллизуется в пространственной группе Cmcm [8]. В соединениях с большим ионным радиусом конкурируют структуры с пространственными группами Pbca и $Pmn2_1$. Например, SnB_4O_7 при

Рис. 4. Зависимость разницы энтальпии соединений HgB_4O_7 (a) и CdB_4O_7 (b) в трех структурах от давления. Точкой отсчета является энергия.

высоком давлении кристаллизуется в пространственной группе Ртп21. Структура фазы при нормальном давлении SnB₄O₇ не установлена [9]. Граничный радиус иона, где могут конкурировать все три рассматриваемые здесь структурных типа, составляет приблизительно $\sim 1.15\,{\rm \AA}$. Таким ионным радиусом обладают атомы Cd $(R_{\rm Cd} = 1.15\,{\rm \AA})$ и Hg $(R_{\rm Hg} = 1.14\,{\rm \AA})$. Энергетическая выгодность фаз с пространственными группами Ртп21 и Стст (где, как уже отмечалось, присутствуют только ВО₄ тетраэдры) при высоких давлениях по сравнению с фазой с пространственной группой Рьса (где в равной пропорции присутствуют ВО₄ тетраэдры и ВО₃ треугольники) связана, по-видимому, с различием химических связей в этих фазах и, соответственно, с различием упругих свойств. В табл. 5 представлены вычисленные в данной работе значения упругих постоянных CdB₄O₇ и HgB_4O_7 в фазах с пространственными группами $Pmn2_1$, Стст и Рьса.

Как видно из табл. 5, упругие свойства рассматриваемых соединений в структурах $Pmn2_1$ и Cmcm, содержащих только борокислородные тетраэдры, существенно отличаются от упругих свойств этих соединений

Таблица 5. Вычисленные значения упругих постоянных C_{ii} [GPa] соединений CdB₄O₇ и HgB₄O₇ в различных структурах

		C_{11}	C_{22}	C_{33}	C_{12}	C_{13}	C_{23}	C_{44}	C 55	C_{66}
CdB_4O_7	Pbca	87	85	89	17	34	39	20	32	50
	Cmcm	370	318	338	147	128	114	85	131	115
	Pmn2 ₁	261	272	334	30	30	28	64	90	78
HgB ₄ O ₇	Pbca	93	91	66	16	24	38	15	30	47
	Cmcm	352	302	321	148	136	110	84	121	96
	$Pmn2_1$	267	279	335	42	40	42	38	93	56

со структурой Pbca, состоящей из борокислородных треугольников и тетраэдров в равной пропорции.

Чтобы оценить давление, при котором происходят фазовые переходы в кристаллах CdB₄O₇ и HgB₄O₇, для каждой из фаз Рьса, Стст и Ртп21 проводилась релаксация параметров ячейки и координат ионов при определенных значениях гидростатического давления. При каждом давлении сравнивались значения энтальпии H = E + PV (где E — полная энергия кристалла, P давление, V — объем ячейки), приходящейся на одну формульную единицу. Результаты расчета приведены на рис. 4. Из рисунка видно, что фазовый переход из Pbca в Ртп2₁ в тетраборате кадмия происходит при давлении 4.8 GPa. Тот же фазовый переход в тетраборате ртути происходит при давлении 4.7 GPa. Полученное значение давления, при котором происходит фазовый переход в тетраборате ртути, качественно согласуется с экспериментальными данными работы [9], где кристалл HgB₄O₇ в фазе $Pmn2_1$ был выращен при давлении 7.5 GPa. В настоящих расчетах фазовый переход из Рвса в Стст не наблюдается. Стоит отметить, что разница в энергии между фазами Стст и Ртп2₁ в соединении CdB₄O₇ во всем интервале используемых при расчете значений давления очень мала ($\Delta E_{\rm tot} = 0.05\,{\rm eV}$ / per formula).

6. Заключение

В рамках теории функционала плотности с использованием пакета VASP выполнены расчеты структурных, электронных и оптических свойств тетраборатов ртути и кадмия в трех структурных модификациях с симметрией *Pbca*, *Стет* и *Pmn2*₁. Расчет показал, что в обоих соединениях во всех рассмотренных структурах величина энергетической щели между валентной зоной и зоной проводимости составляет порядка 2—4 eV. Особенностью электронной структуры данных соединений является то, что нижняя часть зоны проводимости представляет собой узкую зону из *s*-состояний электронов

атомов металла и p-состояний электронов атомов кислорода и эта нижняя часть отделена от основной части зоны проводимости на величину порядка нескольких электрон-вольт.

В результате расчета получено, что упругие свойства исследуемых соединений в структурах Ртп21 и Стст, состоящих из борокислородных тетраэдров, существенно отличаются от упругих свойств этих соединений со структурой Рвса, состоящей из борокислородных треугольников и тетраэдров в равной пропорции. Проведено исследование свойств тетраборатов кадмия и ртути под давлением в различных фазах. Расчеты свойств HgB₄O₇ и CdB₄O₇ под давлением показали, что фазовый переход между структурами Pbca и Pmn2₁ в тетраборате кадмия и тетраборате ртути происходит при давлении 4.8 GPa и 4.7 GPa соответственно. Установлено, что переход между структурами Стст и Ртп21 в рассматриваемом в рамках настоящего расчета интервале давлений (до 50 GPa) не наблюдается. Однако энергии фаз со структурами Рbca и Рmn2₁ в CdB₄O₇ близки $(\Delta E_{\rm tot} = 0.05\,{\rm eV}$ / per formula) во всем интервале используемых в расчете величин давления.

Список литературы

- [1] P. Becker. Adv. Mater. 10, 13, 979 (1998).
- [2] M. Martinez-Rippol, S. Martinez-Carrera, S. Garcia-Blanco. Acta Cryst. B 27, 672 (1971).
- [3] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [4] M. Prokic. Nucl. Instrum. Meth. 175, 1, 83 (1980).
- [5] J. Krogh-Moe. Acta Chem. Scand. 18, 2055 (1964).
- [6] K. Machida, H. Hata, K. Okuno, G. Adachi, J. Shiokawa. J. Inorg. Nucl. Chem. 41, 1425 (1979).
- [7] H. Huppertz. Z. Naturforsch. 58b, 257 (2003).
- [8] H. Huppertz, G. Heymann. Solid State Sci. 5, 2, 281 (2003).
- [9] J.S. Knyrim, F.M. Schappacher, R. Pottgen, J.S. auf der Günne,D. Johrendt, H. Huppertz. Chem. Mater. 19, 2, 254 (2007).
- [10] H. Emmea, M. Weilb, H. Huppertz. Z. Naturforsch. 60b, 815 (2005).
- [11] J. S. Knyrim, S. Romer, W. Schnick, H. Huppertz. Solid State Sci. 11, 2, 336 (2009).
- [12] M. Weil. Acta Cryst. E 59, 40 (2003).
- [13] M.Ihara, J. Krogh-Moe. Acta Cryst. **20**, 132 (1966).
- [14] B. Winkler, A.G. Castellanos Guzman, L. Wiehl, L. Bayarjargal, V. Milman. Solid State Sci. 14, 8, 1080 (2012).
- [15] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [16] P.E. Blochl. Phys. Rev. B 50, 17953 (1994).
- [17] G. Kresse, J. Hafner. Phys. Rev. B 47, 558 (1993).
- [18] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [19] J.P. Perdew. In: Electronic Structures of Solids' 91 / Eds P. Ziesche, H. Eschrig. Akademie Verlag, Berlin (1991). P. 11.
- [20] H.J. Monkhorst. J.D. Pack. Phys. Rev. B 13, 5188 (1976).
- [21] J.A. McLeod, R.J. Green, N.A. Skorikov, L.D. Finkelstein, M. Abu-Samak, E.Z. Kurmaev, A. Moewes. Proc. SPIE 7940, 79400R-1 (2011).
- [22] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt. Phys. Rev. B 73, 045112 (2006).
- [23] F. Han. A Modern Course in The Quantum Theory of Solids. World Scientific Publishing Co. Pte. Ltd, Singapore (2012). 720 p.

Редактор Т.Н. Василевская