Моделирование уровней размерного квантования Si-нанокристаллов в матрице SiO₂: подбор параметров эмпирического метода сильной связи

© А.В. Белолипецкий, М.О. Нестоклон, И.Н. Яссиевич

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: a belolipetskiy@mail.ru

(Получена 12 марта 2018 г. Принята к печати 19 марта 2018 г.)

Изучен вопрос оптимального выбора параметров эмпирического метода сильной связи для моделирования уровней размерного квантования кремниевых нанокристаллов, внедренных в аморфную матрицу SiO_2 . Для учета туннелирования из нанокристаллов в SiO_2 аморфная матрица рассматривалась как виртуальный кристалл с зонной структурой, подобной зонной структуре β -кристобалита SiO_2 , согласованный по величине постоянной решетки с объемным кремнием. В широком энергетическом интервале вычислены распределения электронной плотности в \mathbf{k} -пространстве для электронов и дырок, размерно-квантованных в кремниевом нанокристалле в SiO_2 , что позволяет наглядно увидеть возможность существования эффективных прямых оптических переходов для "горячих" электронов на верхних уровнях размерного квантования.

DOI: 10.21883/FTP.2018.10.46454.8859

1. Введение

Кремниевые нанокристаллы (Si-HK) уже нашли успешное применение в оптоэлектронике [1,2], фотонике [3], фотовольтаике [4–7] и медицине [8]. Это стимулировало бурное развитие технологии, экспериментальных и теоретических работ по изучению кремниевых нанокристаллов, внедренных в матрицу SiO₂. Используемые для моделирования электронных состояний в нанокристаллах теоретические методы можно разделить на расчеты из первых принципов и методы, использующие эмпирические параметры. Развитие компьютерной техники существенно расширило возможности вычислений из первых принципов, что позволило к настоящему времени провести вычисления электронных состояний для Si-HK в SiO₂ размером до 2 нм [9,10].

Популярным атомистическим методом, позволяющим моделировать нанокристаллы большого размера, является эмпирический метод сильной связи. Подробному изложению метода сильной связи в варианте с учетом орбиталей s, p, d, s^* [11], который позволяет ограничиться взаимодействием только с ближайшими соседями, и результатам, полученным на его основе для нанокристаллов кремния, посвящен недавно опубликованный обзор [12]. Основное внимание в этом обзоре уделено моделированнию кремниевых нанокристаллов, поверхность которых покрыта водородом.

Моделирование Si-HK в SiO $_2$ в рамках метода сильной связи представляет сложность из-за того, что SiO $_2$ — аморфный материал. Однако, благодаря большому энергетическому барьеру на границе Si-HK с SiO $_2$ для обоих типов носителей заряда волновые функции быстро затухают в матрице. Роль беспорядка при этом мала и основную роль играют величина энергетического барьера на границе нанокристалл-матрица и структура ближайших к энергетической щели энергетических зон

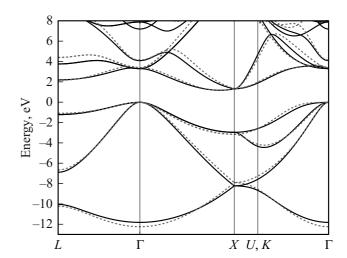
матрицы, окружающей Si-HK. В работе [13] для расчета электронных состояний в кремниевых нанокристаллах с матрицей SiO $_2$ было предложено использовать в качестве матрицы, окружающей Si-HK, виртуальный кристалл. В качестве виртуального кристалла был построен кристалл с решеткой цинковой обманки и зонной структурой как у α -кварца. Так как упругие деформации в реальной системе Si-HK-SiO $_2$ отсутствуют, можно строить виртуальный кристалл, согласованным по постоянной решетки с кремнием.

В данной работе изучен вопрос оптимального выбора параметров кремния для моделирования уровней размерного квантования в Si-HK, структуры зон виртуального кристалла и энергетического положения кремния в энергетической щели виртуального кристалла. На основе полученных параметров проведены расчет нижних уровней размерного квантования и сопостовление с ранее полученными в рамках $\mathbf{k} \cdot \mathbf{p}$ -модели и эмпирического метода псевдопотенциала результатами. Получено распределение электронной плотности в \mathbf{k} -пространстве для электронов и дырок, размерно квантованных в Si-HK в SiO₂.

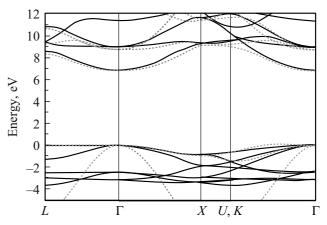
2. Выбор параметров сильной связи

Для эмпирического метода сильной связи с учетом орбиталей s, p, d, s^* в литературе есть три "стандатных" набора параметров сильной связи для моделирования зонной структуры кремния [11,14,15]. Предложенные варианты параметров дают адекватное описание зонной структуры, однако немного разные значения для эффективных масс электронов в зоне проводимости и параметров Латтинжера $\gamma_1, \gamma_2, \gamma_3$, отвечающих за структуру валентных зон в окрестности Γ -точки, где расположена вершина валентной зоны кремния. В работе [15] проведено сопоставление значений, рассчитанных

с использованаем трех наборов параметров сильной связи, с экспериментыльными данными для эффективных масс электронов в зоне проводимости и параметров Латтинжера для валентной зоны. Наилучшее согласие достигается для параметров сильной связи, предложенных в работе [15].


В данной работе вычисления будут проводиться именно на основе параметров [15]. Этот набор параметров приведен в таблице 1 обзора [12] и в таблице данной работы. Для демонстрации приведено сопоставление зонной структуры кремния, рассчитанное с параметрами из статьи [15] и из статьи [11] (см. рис. 1). Стоит отметить, что при использовании параметров из работы [11] получаются существенно завышенные значения для энергии размерного квантования для состояний в валентной зоне.

3. Построение виртуального кристалла для описания матрицы SiO₂


Виртуальный кристалл, который использовался для учета эффекта туннелирования носителей заряда из Si-HK в окружающую его аморфную матрицу SiO2, моделировался в работе [13] как кристалл с решеткой цинковой обманки, согласованной по постоянной решетки с кремнием и зонной структурой как у α -кварца. Параметры сильной связи для виртуального кристалла приведены в таблице 1 обзора [12]. Запрещенная зона этого непрямозонного виртуального кристалла —

Параметры	Si	SiO ₂
а	5.4300	5.4300
E_s	-2.5525	-6.0227
E_s*	23.4461	18.9394
E_p	4.4859	2.6548
E_d	14.0105	14.3016
$ss\sigma$	-1.8660	-2.4997
$s^*s^*\sigma$	-4.5133	-3.1351
$ss^*\sigma$	-1.3911	-1.7484
$s p \sigma$	2.9107	3.9755
$s^*p\sigma$	3.0682	3.0802
$sd\sigma$	-2.2399	-1.3493
$s^*d\sigma$	-0.7771	-4.5316
$pp\sigma$	4.0848	4.6188
$pp\pi$	-1.4921	-1.0616
$pd\sigma$	-1.6666	-2.8200
$pd\pi$	2.3994	1.4004
$dd\sigma$	-1.8295	-4.7861
$dd\pi$	3.0818	-0.1101
$dd\delta$	-1.5668	-1.7869
Δ/3	0.0185	0.0000

Примечание. * Параметры Si взяты из работы [15], параметры SiO_2 подобраны так, чтобы успешно воспроизводить зонную структуру β -кристобалита.

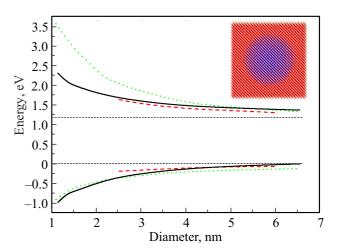
Рис. 1. Зонная структура объемного кремния: сплошные линии соответствуют моделированию с параметрами работы [15], точки — с параметрами работы [11].

Рис. 2. Зонная структура виртуального кристалла (точки) и зонная структура β -кристобалита (линии) в окресности запрещенной зоны в соответствии с работой [17].

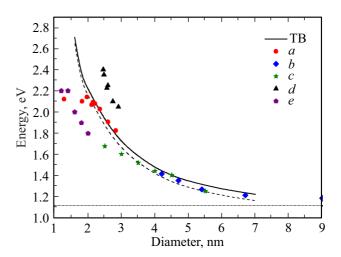
8.7 эВ, что близко к экспериментальному значению запрещенной зоны в аморфном SiO₂ [6].

Среди полиморфных модификаций кристаллов SiO₂ есть модификация с кубической решеткой — β -кристобалит. Этот материал имеет решетку, похожую на решетку кремния. Расстояния между ближайшими атомами кремния больше, чем в объемном кремнии, а между ними находятся атомы кислорода. Результаты моделирования зонной структуры различных модификаций кристаллов SiO2 из первых принципов приведены в работе [17]. Для рассмотрения эффектов туннелирования электронов и дырок из Si-HK в матрицу SiO2 естественно построить виртуальный кристалл с зонной структурой, близкой к той, что существует в β -кристобалите у краев энергетической щели. Отсутствие деформаций Si-HK в SiO₂ позволило нам сохранить, следуя данным из работы [13], согласование виртуального кристалла по постоянной решетки с кремнием. В таблице приведены параметры сильной связи для такого виртуального кристалла, а на рис. 2 — его зонный спектр. На этом же рисунке показан энергетический спектр краевых зон β -кристобалита в соответствии с работой [17].

Отметим существенную особенность зонного спектра β -кристобалита и построенного виртуального кристалла. Это прямозонный материал: минимум зоны проводимости и максимум валентной зоны лежат в Γ -точке, при этом энергетическое расстояние между ними равно 6.79 эВ. Объемный кремний — непрямозонный полупроводник, с минимумом зоны проводимости вблизи края зоны Бриллюэна, на расстоянии $0.15 \cdot (2\pi/a) \ (a$ — постоянная решетки кремния) от точки X. Для корректного учета туннелирования электронов в матрицу SiO_2 критически важно точное значение энергетического расстояния до края зоны матрицы. Расстояние от вершины валентной зоны в точке Γ до точки X для β -кристобалита и виртуального кристалла составляет 8.8 эВ.


В заключение этого параграфа отметим, что ранее моделирование из первых принципов методом DFT-LDA кремниевых нанокристаллов с диаметрами $1.2-2\,\mathrm{HM}$ в аморфной матрице SiO_2 было выполнено в работе [9]. Для энергии запрещенной щели были получены значения $6.6-6.7\,\mathrm{9B}$ относительно ионов кислорода, близкие к ширине запрещенной зоны β -кристобалита в Γ -точке. Для энергетической щели относительно ионов кремния в работе [9] получены значения $7.7-8\,\mathrm{9B}$.

4. Вычисление уровней размерного квантования


Для удобства расчета при моделировании Si-HK в матрице SiO_2 на содержащую нанокристалл и окружающую его матрицу SiO_2 кубическую ячейку накладываются периодические граничные условия. В данной работе мы будем рассматривать только одиночные нанокристаллы, поэтому ячейка SiO_2 выбирается таком образом, чтобы туннельная связь между соседними нанокристаллами отсутствовала. Структура одной ячейки показана на вставке к рис. 3.

При учете эффектов туннелирования определяющую роль играет положение зон в кремнии и в виртуальном кристалле, а именно расстояние от вершины валентной зоны виртуального кристалла до вершины валентной зоны кремния. Значение разницы энергий между вершинами валентных зон кремния и матрицы SiO₂ для плоской границы изучалось в целом ряде работ, как экспериментально, так и теоретически (см. статью [18] и ссылки в ней). Разброс экспериментальных значений находится в интервале 4.3—4.5 эВ. В наших расчетах мы примем это значение равным 4.5 эВ.

Расчет уровней размерного квантования для электронов и дырок выполняется методом сильной связи с учетом орбиталей s, p, d, s^* , предложенным в работе [11]. Результат вычисления зависимости энергий первого уровня размерного квантования для электронов и дырок от диаметра нанокристалла представлен на

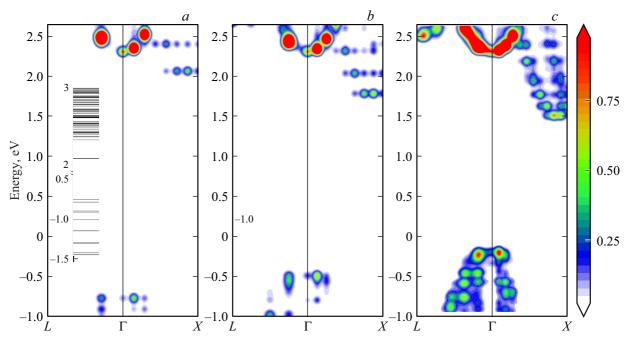


Рис. 3. Зависимости энергии первого уровня размерного квантования для электронов и дырок от диаметра нанокристалла. Сплошные линии — результат проведенного расчета методом сильной связи с параметрами, представленными в таблице, пунктир — расчет методом эффективной массы [18], точки — расчет методом псевдопотенциала [20]. Тонким пунктиром отмечена запрещенная зона объемного кремния. На вставке к этому рисунку приведена структура для моделирования кремниевого нанокристалла в матрице SiO_2 : в центре расположены атомы Si и химические связи между ними, а вокруг находятся атомы матрицы и химические связи между ними.

Рис. 4. Зависимость ширины запрещенной зоны Si-нанокристалла в матрице SiO_2 от размера нанокристалла с учетом поправки на кулоновские взаимодействия локализованных электрона и дырки (сплошная линия). Точками представлены энергии пиков фотолюминесценции из работ: a - [21], b - [22], c - [23], d - Si-нанокристаллы покрытые водородом [24]. Для сопоставления с экспериментами пунктирной линией показано смещение на энергию $60\,\mathrm{m}$ В. Также приведены результаты вычислений методом DFT-LDA (e) [9]. Пунктиром с точкой отмечена ширина запрещенной зоны объемного кремния при комнатной температуре.

рис. 3. На том же рисунке для сравнения показаны аналогичные зависимости, полученные методами псевдопотенциала [19] и эффективной массы [20]. Как видно,

Рис. 5. Распределение электронной плотности в **k**-пространстве для нанокристалла с размерами, нм: a-1.3, b-2, c-3.5. На вставке показан спектр энергий для нанокристалла размером 1.3 нм.

все три метода дают практически одинаковые результаты для нанокристаллов с диаметром больше 4.5 нм, когда туннелирование в матрицу перестает играть существенную роль. Вычисления методом эффективной массы в работе [20] проводились для нанокристаллов с диаметром больше 2.5 нм, так как для меньших нанокристаллов такой подход неприемлем. Наличие Г-долины в матрице, дно которой лежит на энергетическом расстоянии 1.13 эВ выше дна зоны проводимости объемного кремния, приводит к существенному уменьшению энергии размерного квантования для нанокристаллов меньше 2.5 нм. Для дырок такой эффект отсутствует.

На рис. 4 представлена зависимость энергетической щели экситона, локализованного в Si-HK, от диаметра нанокристалла (сплошная черная линия). Эффект кулоновского взаимодействия между электроном и дыркой учитывался согласно формуле $V_{\rm C} = -1.54e^2/(\kappa_{\rm Si}R_{\rm nc})$ (здесь $\kappa_{\rm Si}$ — диэлектрическая константа кремния, $R_{\rm nc}$ радиус нанокристалла), следуя работе [20]. Для сравнения на этом же рисунке приведены экспериментальные данные положения пиков фотолюминесценции при комнатной температуре [21-23]. Эффект излучения в кремниевых нанокристаллах сопровождается испусканием фонона, как правило, оптического фонона с энергией порядка 60 мэВ. Для сопоставления с экспериментами по фотолюминесценции на рис. 4 показана пунктирная линия, смещенная вниз на 60 мэВ по сравнению со сплошной линией. Также на этом рисунке приведена зависимость положения энергетической щели от диаметра нанокристалла, вычисленная из первых приципов в работе [9]. Для сравнения мы привели экспериментальные данные положения пиков люминесценции нанокристаллов кремния, покрытых водородом [24].

На рис. 5 представлены результаты расчетов распределения плотности электронных состояний в ${\bf k}$ -пространстве для электронов и дырок, локализованных в Si-нанокристаллах, внедренных в матрицу SiO₂, с размерами 1.3, 2.0 и 3.5 нм.

5. Обсуждение результатов

В рассматриваемой в данной работе модели на фоне уровней размерного квантования в Si-HK существуют состояния в зоне проводимости виртуального кристалла, лежащие по энергии выше чем $2.3\,\mathrm{эB}$ от потолка валентной зоны объемного кремния. Наличие таких состояний позволяет "горячим" электронам, локализованным в нанокристалле по направлению Δ в \mathbf{k} -пространстве, переходить сплошной спектр матрицы в окресности Γ -точки (см. рис. 5).

Представленные результаты вычислений наглядно демонстрируют существование эффективных прямых оптических переходов для "горячих" электронов на верхних уровнях размерного квантования. Фотолюминесценция "горячих" экситонов в кремниевых нанокристаллах, внедренных в матрицу SiO_2 , наблюдалась в работе [23].

6. Заключение

В работе показано, что эмпирический метод сильной связи с учетом орбителй s, p, d, s^* позволяет провести моделирования для Si-нанокристаллов, внедренных в матрицу SiO_2 , и получить хорошее согласие с экспериментальными результатами по исследованию спектров

фотолюминесценции. Для учета эффектов туннелирования из нанокристаллов в SiO_2 аморфная матрица рассматривалась как виртуальный кристалл с зонной структурой, подобной зонной структуре β -кристобалита SiO_2 , согласованный по величине постоянной решетки с объемным кремнием.

Вычислены распределения электронной плотности в ${\bf k}$ -пространстве для электронов и дырок, размерно-квантованных в Si-HK в SiO $_2$, в широком энергетическом интервале, что позволяет наглядно увидеть возможность существования эффективных прямых оптических переходов для "горячих" электронов на верхних уровнях размерного квантования.

Работа выполнена при частичной поддержке грантов РФФИ #16-02-00337, 18-52-54002 и программы № 31 президиума РАН.

Список литературы

- L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo. Nature, 408, 440 (2000).
- [2] O. Boyraz, B. Jalali. Opt. Express, 12 (21), 5269 (2004).
- [3] F. Priolo, T. Gregorkiewicz, T. Galli et al. Nature Nanotechnology, 9, 19 (2014).
- [4] D. Timmerman, I. Izeddin, P. Stallinga, I.N. Yassievich, T. Gregorkiewicz. Nature Photonics, **2**, 105 (2008).
- [5] E. de Jong, S. Saeed, W. Sinke, T. Gregorkiewicz. Sol. Energy Mater. Solar Cells, 135, 67 (2015).
- [6] S. Saeed, E.M.L.D. de Jong, K. Dohnalova, T. Gregorkiewicz. Nature Commun., 5, 4665 (2014).
- [7] M. Schnabel, C. Weiss, P. Löper, P.R. Wilshaw, S. Janz. Phys. Status Solidi A, 212 (8), 1649 (2015).
- [8] J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor. Nature Mater., 8, 331 (2009).
- [9] K. Seino, F. Bechstedt, P. Kroll. Phys. Rev. B, 82, 085320 (2010).
- [10] I. Marri, M. Govoni, S. Ossicini. Sol. Energy Mater. Solar Cells, 145, pt 2, 162 (2016).
- [11] J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani. Phys. Rev. B, 57 (11), 6493 (1998).
- [12] А.В. Герт, М.О. Нестоклон, А.А. Прокофьев, И.Н. Яссиевич. ФТП, **51** (10), 1325 (2017).
- [13] M.O. Nestoklon, A.N. Poddubny, P. Voisin, K. Dohnalova. J. Phys. Chem. C, 120 (33), 18901 (2016).
- [14] T.B. Boykin, G. Klimeck, F. Oyafuso. Phys. Rev. B, 69, 115201 (2004).
- [15] Y.M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, X. Blase. Phys. Rev. B, 79, 245201 (2009).
- [16] S.M. Sze. Physics of Semiconductor Devices (Wiley, N.Y., 1981).
- [17] Y. Xu, W.Y. Ching. Phys. Rev. B, 44 (20), 11048 (1991).
- [18] M. Ribeiro, L.R.C. Fonseca, L.G. Ferreira. Phys. Rev. B, 79, 241312(R) (2009).
- [19] C. Delerue, M. Lannoo, G. Allan. Phys. Rev. Lett., 84, 2457 (2000).
- [20] A.S. Moskalenko, J. Berakdar, A.A. Prokofiev, I.N. Yassievich. Phys. Rev. B, 76, 085427 (2007).
- [21] M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue. Phys. Rev. Lett., 82 (1), 197 (1999).

- [22] S. Takeoka, M. Fujii, S. Hayashi. Phys. Rev. B, 62 (24), 16820 (2000).
- [23] W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewicz. Nature Nanotechnology, 5 (28), 878 (2010).
- [24] S. Furukawa, T. Miyasatoo. Phys. Rev. B, 38 (8), 5726 (1988).

Редактор А.Н. Смирнов

Modeling size quantization levels in Si nanocrystals in the matrix of SiO₂: fitting parameters of the empirical tight binding technique

A.V. Belolipetskiy, M.O. Nestoklon, I.N. Yassievich loffe Institute, 194021 St. Petersburg, Russia

Abstract The optimal choice of parameters of the empirical tight binding technique for modeling the size quantization levels in silicon nanocrystals, embedded in an amorphous SiO_2 matrix, had been studied. The amorphous matrix has been considered as a virtual crystal with a band structure similar to the band structure of β -cristobalite of SiO_2 and the virtual crystal has been lattice-matched with bulk silicon, for consideration of effects of tunneling of carriers from nanocrystals to SiO_2 . The local density of states in **k**-space for electrons and holes, confined in silicon nanocrystals in SiO_2 , has been calculated in a wide energy interval. It allows to see clealy the possibility of the existence of effective direct optical transitions for "hot" electrons at the upper levels of size quantization.