Электрофизические исследования нанопористых углеродных материалов, приготовленных из порошков карбида кремния

© А.И. Вейнгер, Б.Д. Шанина**, А.М. Данишевский, В.В. Попов, С.К. Гордеев*, А.В. Гречинская*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия E-mail: Alex.D@pop.ioffe.rssi.ru

* Центральный научно-исследовательский институт материалов,

191014 Санкт-Петербург, Россия

** Институт физики полупроводников Национальной академии наук Украины, Киев, Украина

(Поступила в Редакцию 4 апреля 2002 г. В окончательной редакции 2 декабря 2002 г.)

Приводятся результаты измерений электрофизических свойств образцов нанопористого углерода (НПУ) (проводимости и эффекта Холла), а также результаты изучения тех же образцов методом электронного спинового резонанса (ЭСР). Показано, что основную роль в переносе заряда в таких материалах играют свободные дырки, что делает возможной трактовку сигнала ЭСР как сигнала от свободных дырок. В результате анализа формы резонансных линий, а также их зависимости от температуры и технологии изготовления образцов установлено, что сигналы ЭСР состоят из двух наложенных друг на друга резонансных линий, связанных со свободными или в разной степени локализованными носителями заряда, магнитная восприимчивость которых подчиняется законам Паули или Кюри—Вейсса соответственно. Изучены температурные характеристики параметров ЭСР сигналов и из сопоставления экспериментальных зависимостей с теоретическими вычислены определяющие их параметры. Из анализа поведения данных параметров в зависимости от температуры сделан вывод, что исследованные образцы НПУ являются гетерофазными пористыми системами, свойства которых в значительной степени определяются их структурными характеристиками.

Работа выполнена при поддержке Intas (грант N 00-761) и Российской программы "Фуллерены и атомные кластеры".

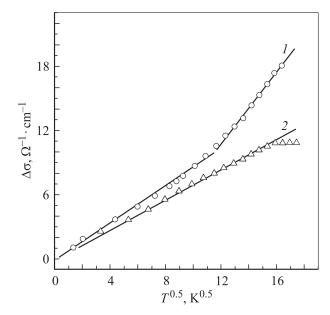
Углеродные нанокластерные структуры в последнее время все более привлекают внимание исследователей благодаря широкому разнообразию и возможной вариации их свойств. Активированные нанопористые углеродные системы (активные угли) давно используются в качестве различного рода адсорбентов, фильтров и т.п. Однако в последнее время возник по существу новый класс такого рода материалов, обладающих высокой нанопористостью. Указанные материалы имеют очень большую удельную поверхность ($\sim 1300\,\mathrm{m}^2/\mathrm{g}$) и кроме традиционных применений могут быть использованы в качестве электродов электролитических конденсаторов двойного слоя и перезаряжаемых литиевых батарей. Один из возможных методов их получения химическое удаление неуглеродных карбидообразующих атомов из различных кристаллических (поликристаллических) карбидных материалов с образованием нанопористого (кластерного) углерода [1–3]. Позднее были разработаны методы приготовления объемных твердотельных элементов нанопористого углерода (НПУ), обладающих общей пористостью свыше 70% и нанопористостью почти до 50% [4-7]. В них размеры углеродных нанокластеров — мостиков между порами близки к размерам нанопор. Из данных рентгеновских исследований [8-10], а также рамановской спектроскопии [11] известно, что основным элементом структуры углеродного каркаса в данных материалах являются малые графеновые листки, как правило, произвольно расположенные в пространстве между порами и образующие, таким образом, квазиаморфную сетку. Установлено также [8–10], что наиболее вероятный размер малых наночастиц варьируется в пределах 0.8–2.0 nm в зависимости от типа исходного карбида. Однако в небольшом количестве имеются и более крупные нанокластеры с более регулярной структурой.

Электрофизические свойства НПУ материалов, которые играют основную роль в их практическом использовании, определяются распределением и концентрацией носителей тока, центров захвата, а также характером протекания тока в системе нанокластеров, у границ которых, по-видимому, имеются потенциальные барьеры. Кроме того, вследствие очень большой и распределенной поверхности материала, а также наличия на ней адсорбатов можно предположить, что существенную роль в протекании тока играет захват носителей поверхностными ловушками. В связи с этим исследование электрофизических свойств НПУ представляет несомненный научный и практический интерес.

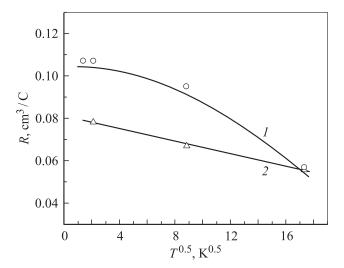
В данной работе приводятся результаты измерений проводимости и эффекта Холла в НПУ, а также результаты изучения тех же образцов методом электронного спинового резонанса (ЭСР).

Существование ЭСР в графитной форме углерода известно достаточно давно [12–14]. При этом установлено,

что в монокристаллическом графите сигнал ЭСР определяется в основном свойствами свободных носителей заряда, которые существуют в графите вплоть до самых низких температур, поскольку этот материал является полуметаллом. Значение д-фактора и его анизотропия в графите зависят от положения уровня Ферми. В последнее время в связи с обнаружением новых соединений углерода (фуллерены, нанотрубки, нанохорны и т.п.), в которых основным типом связей остаются графитовые связи sp^2 , обострился интерес к магнитным свойствам таких структур (см., например, [15,16]). Оказалось, что ЭСР в таких структурах по-прежнему определяется графитовыми связями, но наблюдается ряд особенностей в поведении д-фактора, ширины и амплитуды линий ЭСР, связанных с изменением концентрации носителей заряда и их взаимодействия при изменении температуры.


1. Приготовление образцов

Обсуждаемые в данной работе нанокластерные углеродные материалы приготовлялись из поликристаллических карбидных порошков SiC. Объемные образцы приготовлялись из порошков с размером частиц $40 \,\mu\text{m}$ (70 wt.%) и $2-5 \,\mu\text{m}$ (30 wt.%), порошок формовался в диск диаметром 20 mm на временном связующем, затем в макропорах проводился синтез пироуглерода для связывания частиц карбида в единый материал, после чего осуществлялось высокотемпературное (~ 900°C) хлорирование с удалением неуглеродных атомов, в результате чего формировалась высокопористая углеродная система. Далее образцы продувались в потоке аргона для удаления хлора. Полученные таким способом образцы НПУ обозначались буквой B, в них оставалась некоторая доля (9-10) wt.% непористого, но модифицированного при хлорировании пироуглерода. Хотя пористость таких образцов, как правило, превышала 65%, объем нанопор в материале типа B не превышал 35% общего объема образца.


Часть образцов до хлорирования подвергалась дополнительной операции силицирования с тем, чтобы связать включения пироуглерода с образованием кластеров SiC, а затем уже удалить кремний в реакции с хлором (как из исходных зерен SiC, так и из вновь образованных) и получить углерод с более высокой нанопористостью (46—47 vol.%). Полученные этим путем образцы НПУ обозначены буквой A. Следует отметить, что при изготовлении образцов типа A осаждение пироуглерода на предварительной стадии было более полным (18—20 wt.%), чем для образцов типа B; объем макропор в конечном НПУ материале для образцов типа A был существенно меньшим по сравнению с образцами типа B.

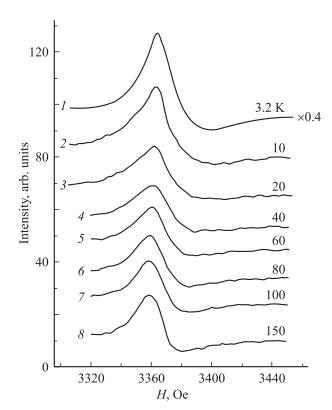
2. Исследования проводимости и эффекта Холла

На рис. 1 показаны температурные зависимости электропроводности в координатах $\Delta\sigma(T^{0.5})$ ($\Delta\sigma=\sigma(T)-\sigma(0)$), а на рис. 2 — коэффициента Холла R от $T^{0.5}$ для двух образцов НПУ типов A и B, использованных также и в исследованиях ЭСР. Характер зависимости R(T) у образцов одинаковый: наблюдается слабый рост коэффициента Холла с понижением температуры. Знак R соответствует дырочному механизму проводимости. Знак термоэдс также соответствует дырочному механизму и в этом смысле совпадает со

Рис. 1. Температурные зависимости проводимости образцов НПУ, исследованных методом ЭСР: I — C(SiC)A; $\sigma(0 \text{ K}) = 25 \, \Omega^{-1} \cdot \text{cm}^{-1}$, 2 — C(SiC)B; $\sigma(0 \text{ K}) = 31 \, \Omega^{-1} \cdot \text{cm}^{-1}$.

Рис. 2. Температурные зависимости константы Холла в образцах, исследованных методом ЭСР: 1 - C(SiC)A; 2 - C(SiC)B.

знаком коэффициента Холла. Зависимости холловского напряжения от магнитного поля для большинства образцов имеют линейный характер $H = 30 \, \text{kOe}$. Таким образом, можно предположить, что проводимость имеет в основном однозонный характер. Концентрация дырок n_h в однозонном случае для разных исследованных образцов описанного типа лежит в пределах $n_h = 1/eR \sim 5 \cdot 10^{19} - 10^{21} \, \mathrm{cm}^{-3}$ [17]. Соответствующая холловская подвижность $\mu (T = 77 \, \text{K})$, рассчитанная по формуле $\mu = R/\rho$ $(\rho - yдельное сопротивление), составляет величину$ порядка $1-3 \text{ cm}^2/\text{V} \cdot \text{s}$. С повышением температуры эта величина приблизительно линейно уменьшается.


Как известно, в чистом монокристаллическом графите перекрытие зон приводит к электронно-дырочной анизотропной проводимости с высокой подвижностью носителей. В микрокристаллическом графите имеет место сдвиг уровня Ферми в *р*-зону. Рост концентрации дырок при уменьшении размеров кристаллитов обычно связывают с увеличением числа поверхностных состояний на границах, играющих роль центров захвата электронов [18]. Таким образом, высокая концентрация дырок в нанопористом углероде может быть связана с развитой свободной поверхностью и соответственно с большой концентрацией акцепторных состояний. Малая подвижность дырок, по-видимому, обусловлена искажением зонной структуры у границ нанокластеров и ограничением длины свободного пробега их размерами.

Наличие линейного участка на кривых $\Delta \sigma$ от $T^{0.5}$ при низких температурах показывает, что температурная зависимость проводимости определяется квантовыми поправками, связанными с электрон-электронным рассеянием [19]. Падение подвижности с температурой указывает на квазиметаллический характер проводимости. Влияние этого падения на температурный ход проводимости при достаточно высоких температурах нивелируется температурной активацией носителей из флуктуаций потенциала.

3. Исследование ЭСР в образцах нанопористого углерода

3.1. Эксперимент. Сигналы ЭСР изучались на образцах размером $4.5 \times 2 \times 1$ mm. Анализировались температурные изменения параметров ЭСР: амплитуды, ширины и формы резонансных линий. Сделан ряд заключений о характере взаимодействия и магнитных свойствах носителей заряда в исследованных образцах.

Для записи спектров ЭСР использовался ЭСР-спектрометр E-112 фирмы "Varian" с криостатом ESR-9 фирмы "Охford Instruments", что позволяло записывать спектры в температурном диапазоне 3.2—300 К. Спектры ЭСР измерялись после охлаждения образцов в процессе подъема температуры в фиксированных температурных точках. Для образца типа А после подъема до 300 К температура вновь была понижена до 25 К и проведен

Рис. 3. Сигналы ЭСР образца НПУ типа A_1 при различных значениях температуры.

повторный цикл измерений. Образцы все время находились в атмосфере газообразного гелия.

Вид спектров ЭСР образца типа A для различных температур в интервале $3-150\,\mathrm{K}$ представлен на рис. 3. Видно, что при всех температурах сигналы имеют характерную для свободных носителей тока асимметричную форму $[20,\!21]$. Это естественно, поскольку образцы имеют удельное сопротивление $\rho \approx (2-4) \cdot 10^{-2} \, \Omega \cdot \mathrm{cm}$, т.е. глубину скин-слоя $\delta \approx 5 \cdot 10^{-2} \, \mathrm{mm}$, что значительно меньше размеров образца. Сопротивление образцов уменьшалось не более чем в 1.5 раза при увеличении температуры от гелиевой до комнатной.

Заметим также, что сигналы на рис. 3 представляют собой суперпозицию как минимум двух линий с различными резонансными полями и ширинами. Поскольку температурная зависимость глубины скин-слоя пропорциональна $\rho^{1/2}$, нетрудно учесть ее изменение при анализе формы спектра.

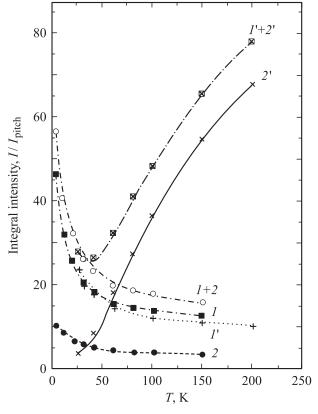
Записанные спектры были разделены на отдельные компоненты с "истинной" формой спинового резонанса (СР). Такое разделение выполнялось путем подгонки к экспериментальному спектру теоретической функции формы сигнала $F(x) = \sum_j a_j f(x_j)$, где $x_j = g(H - H_{\mathrm{res},j})T_{2j}, f(x_j)$ — теоретическая форма сигнала СР, которая дана, например, в [19], a_j — весовой фактор j-го сигнала. Процедура подгонки выполнялась с помощью FORTRAN-программы для расчета резонансного сигнала и программы ReakFit для

Таблица 1. Параметры ЭСР сигналов в образцах A_1 , A_2 и B

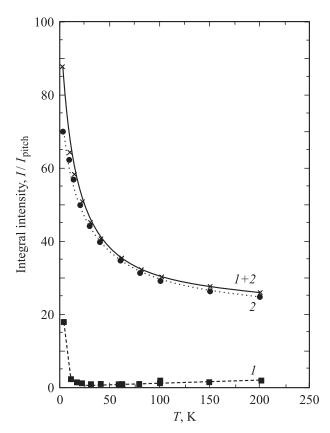
Образец	g_1	ΔH_1 , G	82	ΔH_2 , G
A_2	2.0085 - 2.0078	30-20	2.0180-2.0240 2.0268-2.0078 2.0024-2.0048	38 - 150

подбора параметров сигналов, составляющих спектр. В результате подгонки найдены амплитуды, резонансные поля, ширины компонент спектра и величины T_{2j}^{-1} для j-й спиновой подсистемы. Следует отметить, что всегда $T_2 = h(g\beta\Delta H)^{-1}$, далее будем опускать все константы в этом соотношении и записывать как $T_2^{-1} = \Delta H$.

Для оценки концентрации выполнялось интегрирование кривых поглощения, соответствующих найденным компонентам спектра, и сравнение с поглощением эталонного образца "Varian", приведенного к тем же условиям эксперимента (мощности СВЧ поля, коэффициенту усиления и т.д.).


3.2. Общая характеристика сигналов. Все образцы показывают сигналы ЭСР, состоящие из двух резонансных сигналов, у которых сильно изменяются как величины д-факторов, так и ширины линий. Исходный образец A обозначим как A_1 , а тот же образец, нагретый до 300 и затем охлажденный до 25 К, обозначим как A_2 . Сигналы ЭСР в A_1 и A_2 отличаются величиной *д*-фактора и его температурным ходом (табл. 1). Данный факт может быть связан с тем, что на чрезвычайно развитой поверхности нанопористого углерода всегда адсорбирован кислород (парамагнитный центр) и изменения, произошедшие в образце A_2 , вероятно, связаны с диффузией атомов кислорода и вызыванной ею перестройкой межатомных связей. Сильное влияние кислорода на параметры сигналов ЭПР и их температурные зависимости для системы пористого углерода с "нанохорнами" изучалось в работе [16].

3.3. Интегральные интенсивности. Экспериментальные сигналы ЭСР описывались с помощью подгонки теоретически рассчитанных сигналов ЭСР носителей заряда с различными величинами отношения глубины скин-слоя к длине диффузии через скин-слой $R_1 = d/d_D$ (получены теоретические сигналы для R_1 от 0.1 до 50). Первая оценка R_1 делалась из отношения амплитуд производной сигнала поглощения в точках максимума и минимума (параметр асимметрии формы линии), затем эта оценка варьировалась, поскольку сигнал является комбинацией двух линий. После разделения сигнала на компоненты и их теоретического описания находились интегральные интенсивности, которые представлены на рис. 4 (для A_1 и A_2) и 5 (для B). Интегральные интенсивности суммарных сигналов за редким исключением представляют собой смесь двух вкладов - от подсистемы с парамагнитной восприимчивостью Кюри-Вейсса χ''_{C-W} и от подсистемы с восприимчивостью Паули $\chi_{\rm P}''$, не зависящей от температуры. В образце A_2 и в значительно меньшей степени в образце B присутствует также вклад от носителей тока, появляющихся в процессе ионизации мелких центров. Итак, общий вид интегральной интенсивности I(T) можно записать в виде(I(T)) выражена в относительных единицах интегральной интенсивности реперного образца (pitch) с концентрацией парамагнитных центров $2.58 \cdot 10^{15} \, \mathrm{cm}^{-3}$, измеренной в тех же экспериментальных условиях)


$$I(T) = I_P + C/(T + \theta_p) + I_{\text{ion}} \exp(-E_i/kT), \quad (1)$$

где I_P — вклад от подсистемы вырожденных носителей тока; C — константа Кюри в относительных единицах; θ_p — парамагнитная температура в законе Кюри—Вейсса, характеризующая знак и величину обменного взаимодействия между локализованными спинами; E_i — энергия ионизации. Табл. 2 дает величины констант, входящих в (1), для интегральных интенсивностей суммарного сигнала и его компонентов.

С использованием полученных интегральных интенсивностей найдены концентрации (табл. 3): локализованных центров, ответственных за восприимчивость Кюри—Вейсса N_{loc} , вырожденных носителей тока, вносящих вклад в восприимчивость Паули n_c , а также мелких

Рис. 4. Температурные зависимости интегральных интенсивностей суммарного сигнала ЭСР и составляющих его компонент, для образцов A_1 и A_2 : I, 2 — данные для I и 2 линии в первоначальном (A_1) измерении; I', 2' — данные для I и 2 линии в повторном (A_2) измерении; I+2 — зависимость суммарного сигнала A_1 ; I'+2' — зависимость суммарного сигнала A_2 . Линии на рисунке — результат расчета.

Рис. 5. Температурные зависимости интегральных интенсивностей суммарного сигнала ЭСР и составляющих его компонент для образца B: I — для первой составляющей сигнала; 2 — для второй; I+2 — суммарная зависимость. Линии на рисунке — результат расчета.

ловушек для носителй тока $N_{\rm ion}$, вносящих вклад в ионизационную добавку к интегральной интенсивности.

Табл. 2 показывает, что локализованные центры в исходных образцах A_1 и B взаимодействуют друг с другом антиферромагнитно ($\theta_p > 0$), и только центры с резонансной линией I в образце B взаимодействуют ферромагнитно, хотя их концентрация мала, а взаимодействие невелико. Поскольку концентрация локализованных центров мала, обменное взаимодействие между ними является косвенным обменным взаимодействием через дырки. I

3.4. g-факторы. Рис. 6, a и 7, a показывают температурную зависимость g-факторов двух линий, составляющих сигнал ЭСР для образцов A_1 , A_2 и B. Прежде

чем обсуждать температурное поведение *g*-факторов, заметим, что из анализа интегральных интенсивностей разделенных линий ЭПР следует тесная связь подсистем локализованных и свободных спинов. При этом сигналы всегда имеют форму линии спинового резонанса свободных носителей. Эти факты свидетельствуют о сильном обменном взаимодействии носителей тока с локализованными состояниями и наличии "фононного горла", при котором кросс-релаксация между подсистемами значительно быстрее спин-решеточной релаксации либо релаксации через спин-орбитальную связь. В условиях "фононного горла" магнитные моменты обеих подсистем прецессируют вместе, так что амплитуда резонансного сигнала содержит вклады от восприимчивостей χ'' обеих подсистем (см., например, [22]). Если при этом локализованные спины и носители тока имеют различные д-факторы, резонансное поле и его температурная зависимость для результирующей резонансной линии описывается формулой, предложенной впервые в [23]

$$H^{\text{res}} = (\chi_P'' H_{c.\text{res}} + \chi_{C-W}'' H_{1.\text{res}}) / (\chi_P'' + \chi_{C-W}'').$$
 (2)

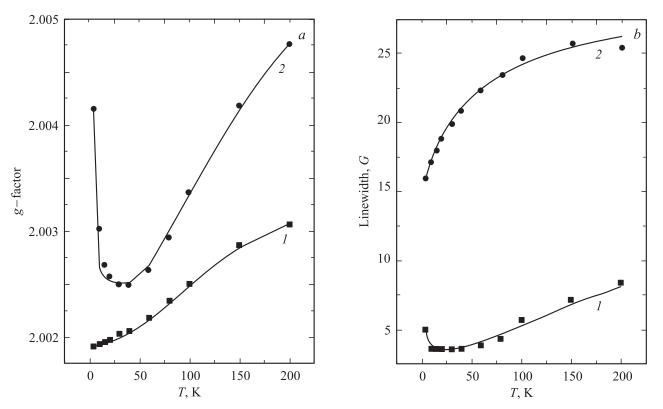
Из формулы (2) нетрудно написать выражение для g-факторов

$$g = (1 + \chi_{\text{C-W}}''/\chi_{\text{P}}'') \left[g_c^{-1} + g_{\text{loc}}^{-1} (\chi_{\text{C-W}}''/\chi_{\text{P}}'') \right]^{-1}.$$
 (3)

Заметим, что температурная зависимость g-фактора в формуле (3) определяется не только температурным фактором в законе Кюри—Вейсса, но и изменением концентрации свободных носителей за счет ионизации, которая имеет место в образцах B и A_2 . Условия фононного горла играют роль в определении g(T) для


Таблица 2. Относительные величины вкладов в интегральные интенсивности сигналов ЭСР от паулиевской, кюри-вейссовской и ионизационной подсистем

Обра- зец	Сигнал ЭПР	I_P , arb. units	C,K	θ_p, K	$I_{\rm ion}$, arb. units	E_i, K
A_1	1	10.15	383.7	7.5	_	_
	2	1.98	210	23.82	_	_
	суммарный	12.1	632	11	_	-
A_2	1	8.42	383.7	0	_	_
	2	0.31	61.9	0	127	127.7
	суммарный	8.7	445.6	0	127	127.7
B	1	0.03	14.38	-2.39	4.7	197
	2	18.8	1282	22	_	_
	суммарный	18.8	967.3	11.43	4.7	197


Таблица 3. Концентрация спинов в образцах

Образец	A_1	A_2	В
$N_{\rm loc}$, cm ⁻³ n_c , cm ⁻³	$5.2 \cdot 10^{15} \\ 1.3 \cdot 10^{19}$	$3.8 \cdot 10^{15} \\ 10^{19}$	$8 \cdot 10^{15} \\ 2.1 \cdot 10^{19}$
$N_{\rm ion}$, cm ⁻³	0	$0.95 \cdot 10^{20}$	$0.27 \cdot 10^{19}$

¹ Следует отметить, что, если в широко исследованных полупроводниках ЭСР обычно не наблюдается для дырочной компоненты свободных носителей вследствие малого времени спин-решеточной релаксации, для графита, у которого минимальный межзонный зазор расположен не в точке высокой симметрии в центре зоны Брил-пюэна, вырождение зон отсутствует и времена спиновой релаксации электронов и дырок могут быть одного порядка. Поскольку знаки эффекта Холла и термоэдс показывают, что в данных материалах эффекты переноса связаны с дырочной компонентой, можно полагать, что наблюдаемые характеристики ЭСР также в основном связаны со свободными либо слабо связанными дырками.

Рис. 6. Температурные зависимости g-фактора и ширины линий ЭСР для образцов A_1 и A_2 . (a) 1,2 — данные для линий — составляющих сигнала в первоначальном (A_1) измерении; I', I' — во втором (A_2) измерении; I' — данные для линий I, I', I' — для линий I, I', I' — для линий I, I', I' — данные для линий I, I', I' — для линий I, I', I' — данные для линий I, I' — данные для линий I, I' — данные для линий I, I' — данные для линий I — данные данные данные данные данные для линий I — данные данн

Рис. 7. Температурные зависимости *g*-фактора и ширины линий ЭСР для образца *B*; обозначения кривых те же, что и на рис. 6.

Таблица 4. Величины *g*-факторов для парамагнитных подсистем, вносящих резонансное поглощение

Образец	A_1		A_2		В	
линия	1	2	1	2	1	2
g_c $g_{ m loc}$	2.0141 2.0088		2.0080		2.0037 2.0018	

обеих резонансных линий 1 и 2 в образцах A_1 и B, а также для линии 2 в случае образца A_2 . Для линии 1 в образце A_2 "фононное горло" отсутствует и g-фактор определяется только g-фактором свободных носителей тока с учетом малой поправки на обменное взаимодействие с локальными спинами [22]

$$g_{1A_2} = g_c/(1 + \alpha \chi_{\text{C-W}}''), \quad \alpha = -4.2 \cdot 10^{-4},$$
 (4)

где α — безразмерная константа обменного взаимодействия, причем для $\alpha<0$ взаимодействие носит ферромагнитный характер. Из подгонки формул (3), (4) к экспериментальным кривым рис. 6, a и 7, a найдены $g_{\rm loc}$ и g_c для локальных центров и для носителей тока. Эти величины представлены в табл. 4.

Отношение $\chi_{C-W}^{"}/\chi_{P}^{"}$ в формуле (3) равно

$$\chi_{\text{C-W}}''/\chi_{\text{P}}'' = (C/T)[I_{\text{P}} + I_{i} \exp(-E_{i}/T)]^{-1}$$
 (5)

и, казалось бы, для каждой линии ЭСР-сигнала константы в (5) должны совпадать с соответствующими константами в табл. 2. Однако, как показала подгонка теоретических зависимостей к экспериментальным в A_1 и A_2 , для линий I действительны константы линий I, а для линий 2 необходимо подставлять параметры суммарных интенсивностей. В образце B роль локализованной системы играет в обоих случаях система с C=1282 и $\theta_p=22\,\mathrm{K}$ из табл. 2, а роль обменно-взаимодействующих носителей тока играют носители, термоактивированные из хвостов плотности состояний (с энергией активации $E_i=197\,\mathrm{K}$).

3.5. Ширина сигнала. В условиях "фононного горла" ширина сигнала ЭСР определяется формулой, аналогичной (2)[22],

$$\Delta H_{\text{eff}} = (\chi_{P}^{"} \Delta H_{c} + \chi_{C-W}^{"} \Delta H_{\text{loc}}) / (\chi_{P}^{"*} + \chi_{C-W}^{"*}), \qquad (6)$$

здесь ΔH_c — ширина линии ЭПР носителей тока, $\Delta H_{\rm loc}$ — ширина линии ЭПР локальных центров; ${\chi''}_{\rm P}^*$, ${\chi''}_{\rm C-W}^*$ — значения соответствующих восприимчивостей с учетом обменного взаимодействия между двумя подсистемами

$${\chi''}_P^* = \chi_P''(1 + \alpha \chi_{C\text{-W}}''), \quad {\chi''}_{C\text{-W}}^* = \chi_{C\text{-W}}''(1 + \alpha \chi_P''). \quad (7)$$

При малой концентрации локальных центров $T_{2c}^{-1} = \Delta H_c \gg \Delta H_{\mathrm{loc}}.$ В этом случае ширина сигнала определяется главным образом обратным временем

жизни спина носителя тока, т.е. в неупорядоченной среде — скоростью рассеяния носителя на дефектах, и с учетом (7) ширину сигнала можно описать выражением

$$\Delta H_{\text{eff}} = \Delta H_c / (1 + \alpha \chi_{\text{C-W}}^{"}) + \Delta H_c'(T). \tag{8}$$

Второе слагаемое здесь связано с изменением свойств подсистем, например, с появлением носителей в образце A_2 при более высоких температурах. С учетом этого ширины линий для образцов A_2 (линия 2) и B на рис. 6,b и 7,b описаны следующими теоретическими выражениями.

Образец A_2 ,

линия
$$2$$
: $\Delta H_{A22} = (152 + 32 C_{A22} T^{-1} \delta \chi_i^{\prime\prime}) / / (1 + C T^{-1} \delta \chi_i^{\prime\prime\prime-1}),$

где C_{A22} и $\delta\chi_i'' = I_{\rm ion} \exp(-E_i/T)$ взяты из табл. 2 для линии 2 образца A_2 . Образец B ,

линия
$$I$$
 : $\Delta H_{B1}=1.6/\left(1+lpha_{B1}C_{B1}/(T-2.3)
ight)$ $+2+12\exp(-197/T),~~lpha_{B1}=-0.75,$

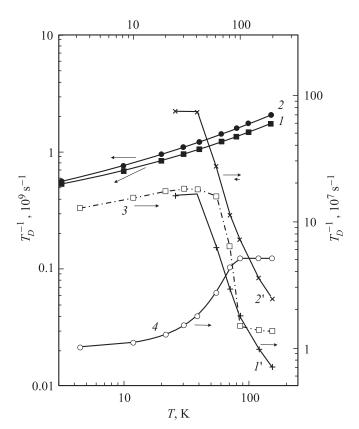
линия 2:
$$\Delta H_{B2}=5+24/\left(1+lpha_{B2}C_{B2}/(T+22)
ight),$$
 $lpha_{B2}=0.58.$

Можно видеть, что линия 2 в образце A_2 уширяется согласно формуле (6) в условиях "фононного горла". Напротив, в образце B локальные центры в ширину линии вклада не вносят, но обменное взаимодействие между носителями и локальными центрами определяет температурную зависимость и уменьшает ширину линии, если взаимодействие ферромагнитное (линия 1), или увеличивает ее, если взаимодействие антиферромагнитное (линия 2). В области T > 80 К линия 1 дополнительно уширяется экспоненциально флуктуациями концентрации носителей тока при активации последних из хвостов плотности состояний.

Иная картина наблюдается для температурной зависимости ширины линий I и 2 в образце A_1 и линии I в A_2 (последняя осталась практически неизменной после процедуры нагрева—охлаждения). Ширина здесь определяется главным образом рассеянием носителей тока. С ростом температуры скорость рассеяния при низких температурах слегка растет, поскольку растет тепловая скорость носителей тока, но затем происходит сужение линии, возможно, за счет движения дырки с переменной длиной прыжка между соседними областями, разделенными потенциальным барьером. Для этих трех линий эксперимент описывается следующей функцией:

$$\Delta H = \left(\Delta H_c^{(0)} + s\sqrt{T}\right) \times \left[1 + (w/\Delta H_c^{(0)})^2 \exp\left(-2(T_0/T)^{1/4}\right)\right]^{-1}.$$
 (9)

Здесь w — вероятность прыжка между ближайшими акцепторными состояниями, T_0 — энергия активации


прыжка, s — коэффициент при тепловом ускорении рассеяния носителей, $\Delta H_c^{(0)}$ — исходная скорость спиновой релаксации носителей тока. Численные результаты подгонки даны в табл. 5.

3.6. Ассиметрия линий. Еще одним параметром, несущим полезную информацию о проводящих образцах, является мера асимметрии резонансной линии. Как известно [20], асимметрия линии ЭСР при ее "дайсоновской" форме определяется отношением времени диффузии T_D свободного электрона через скин-слой к времени спин-решеточной релаксации T_2 . Это искажение выражается через отношение амплитуды слабополевого положительного крыла производной линии поглощения а к амплитуде сильнополевого отрицательного крыла b. Тогда $T_D/T_2 \gg 1$, a/b = 2.7. Это справедливо для металлов, когда уровень Ферми находится высоко в зоне проводимости. Однако, как обнаружено при исследовании слабо вырожденного Ge [24], свободные спины, находящиеся вблизи дна зоны проводимости, взаимодействуют с флуктуациями потенциала дна зоны проводимости, что создает дополнительное переменное электрическое поле. Характерная частота его обратна времени, которое требуется носителю, чтобы пройти расстояние порядка корреляционной длины флуктуаций потенциала. В связи с этим в соотношение между T_D и T_2 вместо времени прохождения носителя через скин-слой входит время прохождения носителем указанной корреляционной длины. С ростом температуры она может увеличиваться, если флуктуации потенциала достаточно малы. Тогда при высокой температуре носитель перестает их замечать. Но в нанопористой системе может получиться и так, что флуктуации потенциала будут гораздо больше kT. Например, это могут быть границы пор. В таком случае частота внутреннего поля, воздействующего на движущийся носитель, будет расти с ростом температуры за счет увеличения тепловой скорости носителя.

Поскольку из подгонки сигналов определяются как величина $R_1 = T_D/T_2$, так и величины T_2^{-1} , нетрудно получить температурную зависимость T_D . Рис. 8 показывает температурное изменение скорости диффузии носителя тока. Видно, что в исходном образце A_1 скорость диффузии при высоких температурах на 2 порядка выше, чем в A_2 и образце B, и она очень плавно возрастает с температурой. Это вполне возможно, если флуктуации потенциала гораздо больше kT, поскольку понятно, что с ростом температуры скорость носителя увеличивается.

Таблица 5. Параметры, определяющие $\Delta H(T)$ для линий I, 2 в образце A_1 и линии I в образце A_2

Образец	Линия	$\Delta H_c^{(0)}$, G	$s, G \cdot K^{-1/2}$	$w, 10^9 \mathrm{s}^{-1}$	T_0, K
A_1	1	9.14	3.28	2.10	3309
A_1	2	8.46	4.11	1.83	3309
A_2	1	33	0	2.63	1430

Рис. 8. Температурные зависимости скорости диффузии носителей тока для образцов: I, 2 — данные для линий I и 2 (A_1); I', I' — для линий I и I' и I

В образце B для системы, описываемой линией I и в образце A_2 наблюдается резкое уменьшение T_D^{-1} в области T>80 K, связанное с появлением "дополнительных" носителей (табл. 2). Уменьшение скорости диффузии в образце B (для линии I), видимо, связано с большой неоднородностью структуры образца, а в образце A_2 — с ролью атомов кислорода, освобожденных в процессе термоциклирования.

При более высоких температурах в образце B и отчасти в A_2 уменьшение T_D^{-1} существенно замедляется. Это можно объяснить, если считать, что амплитуды флуктуаций потенциала имеют некоторое распределение, и с ростом температуры носители постепенно перестают с некоторыми из них взаимодействовать. Носители при этом взаимодействуют с все более крупными флуктуациями. Тогда эффективные размеры пространственной неоднородности увеличиваются с ростом температуры, и носителю необходимо большее время для прохождения такой флуктуации.

4. Обсуждение

В образце A в процессе первого измерения (A_1) обе компоненты сигнала представляют собой сигналы спинового резонанса свободных носителей тока, которые

сильно связаны обменным взаимодействием с локальными центрами. Вклад паулиевской восприимчивости уже при $40\,\mathrm{K}$ сравним с вкладом восприимчивости Кюри—Вейсса. Это свидетельствует о более высокой концентрации свободных носителей по сравнению с концентрацией локализованных центров. Ширины обоих сигналов имеют одинаковую температурную зависимость и близкие величины. В области температур $T < 40\,\mathrm{K}$ эти ширины растут с температурой, т.е. времена релаксации носителей тока уменьшаются за счет увеличения тепловой скорости, которая растет с температурой как $T^{0.5}$. При $T > 40\,\mathrm{K}$ линии сужаются из-за уменьшения сечения взаимодействия свободных спинов с центрами релаксации.

Из анализа температурной зависимости интегральной интенсивности следует, что локальные центры, вносящие вклад в линии *I* и *2*, относятся к различным областям образца. Для центров одного типа парамагнитная температура равна 7.5 К, а для центров другого 23.8 К. Это означает, что косвенное обменное взаимодействие между центрами первого типа значительно слабее, чем между центрами второго типа. По-видимому, последние находятся в более пористой среде, т.е. отделены друг от друга более широкими потенциальными барьерами.

Второе измерение для образца А показало значительные изменения в структуре образца, но не во всем образце, поскольку д-фактор, ширина линии и интегральная интенсивность линии 1 ведут себя так же, как для линий 1 и 2 в образце A_1 . Вторая же линия обнаруживает колоссальное изменение всех параметров с ростом температуры. Анализ показал, что это связано с увеличением плотности состояний в хвостах вблизи уровня Ферми и температурной ионизацией с характерной энергией 11 meV. При этом концентрация носителей тока возрастает на порядок при $T = 300 \, \mathrm{K}$. Второе примечательное изменение связано с тем, что парамагнитная температура $\theta_p = 0$, т.е. исчезает косвенный обмен между локализованными парамагнитными центрами. Как уже отмечено выше, можно предположить, что в этих процессах играет роль диффузия атомов кислорода, обусловленная изменением парциального давления кислорода при изменении температуры. Анализ характеристик сигналов ЭСР в образце В свидетельствуют о большой неоднородности образца. В температурную зависимость интегральной интенсивности линии 1 вносят вклады взаимодействующие между собой свободные и локализованные спины с очень большой долей локализованных состояний и их сильным антиферромагнитным взаимодействием (линия 2). В то же время есть локальные центры (линия 1), взаимодействующие ферромагнитно с $\theta_{n}=2.39\,\mathrm{K}$. Доля таких центров мала — на 2 порядка меньше, чем концентрация центров типа 2. Такое поведение парамагнитной восприимчивости, как и поведение времени спин-решеточной релаксации, указывает на гетерогенность спиновой системы.

В образце A сигнала непосредственно от свободных вырожденных носителей не наблюдается вследствие сильного обменного смешивания свободных и связанных носителей. Наблюдаемые линии ЭСР возникают от таких смешанных систем. Это показывает, что различие в концентрациях носителей заряда в различных частях гетерогенной системы значительно меньше, чем в образце B.

Сравнивая температурные зависимости $\chi''(T)$ этих двух образцов, можно сделать вывод, что при использовании технологии A образцы получаются более объемно-однородными в отношении концентрации свободных носителей заряда, чем при использовании технологии B.

Как следует из данных высокоразрешающей электронной микроскопии [25], в образцах НПУ значительная часть углеродного каркаса построена из малых графеновых листков. Кроме того, имеются и более крупные образования, большинство которых представляет собой углеродные "онионы" ("луковичные" формы углерода) или "квазионионы". В образцах типа B с включениями пироуглерода их оказалось заметно больше. Возможно, довольно рыхлый и не очень упорядоченный пироуглерод в образцах типа В трансформируется в процессе высокотемпературного хлорирования, в результате чего частично образуются онионные, а частично произвольно изогнутые квазиграфитовые структуры. Размер этих структур 30-50 nm, что гораздо больше размеров графеновых листков (1-2 nm). Исходя из этого, обнаруженные из анализа данных ЭСР две системы спинов можно с большой вероятностью связывать именно с упомянутыми двумя типами элементов структурной сетки в образцах НПУ. Поскольку структура онионов и квазиграфитовых включений более совершенна, можно думать, что концентрация свободных носителей заряда в них меньше, чем в сетке неупорядоченных графеновых листков. Это подтвержается данными работы [26], где изучался транспорт носителей заряда в системе практически чистых онионов. Проводимость образцов, изученных в [26], даже при высоких температурах была заметно меньшей, чем в образцах НПУ. С понижением температуры она уменьшалась экспоненциально. Учитывая, что подвижность носителей по оболочкам в пределах одного ониона или квазиграфитового кластера должна быть гораздо больше, чем $1-3 \, \text{cm}^2/\text{V} \cdot \text{s}$ (эта величина получается из данных проводимости и константы Холла в образцах НПУ), можно полагать, что концентрация подвижных носителей заряда в онионах на порядки меньше, чем та, которая оценивается по эффекту Холла в этих образцах.

В таком случае наблюдаемые сигналы ЭСР с меньшим g-фактором, возможно, следует связывать с онионной частью НПУ, а сигналы с g > 2.01 — с сеткой неупорядоченных графеновых листков.

Таким образом, анализ экспериментальных зависимостей параметров линий ЭСР образцов НПУ, изготовленных по технологиям A и B, позволяет сделать ряд

выводов о магнитных свойствах свободных носителей заряда и микроструктуре самих образцов.

- 1. Структура НПУ является гетерофазной. Экспериментально наблюдаются по крайней мере две фазы, различающиеся поведением спинов свободных дырок, а также концентрациями локализованных центров (по-видимому, оборванных связей).
- 2. Фазы отличаются температурными зависимостями парамагнитной восприимчивости и времени спин-решеточной релаксации, а также величиной обменного вза-имодействия между локализованными парамагнитными центрами. При этом свойства фаз зависят от технологии приготовления НПУ.
- $2.1.\$ При низких температурах в образце типа B на фоне большого вклада локализованных парамагнитных центров проявляется фаза с меньшей концентрацией как свободных спинов с χ'' , изменяющейся с температурой согласно закону Паули, так и локальных центров, взаимодействующих между собой ферромагнитно. Скорость спин-решеточной релаксации в этой фазе слабо зависит от температуры. Сделан предположительный вывод о связи указанной фазы с обнаруженными в [25] онионными и изогнутыми квазиграфитовыми фрагментами в структуре образцов типа B. В образце типа A обнаруженные две фазы отличаются друг от друга существенно слабее. Это позволяет заключить, что два типа структурных элементов углеродного каркаса в данном случае мало различаются между собой как в отношеннии размеров, так и типа упорядочения.
- 2.2. При достаточно высоких температурах как для образца типа B, так и для образца типа A температурное поведение χ'' подчиняется закону Паули, так как восприимчивость локализованных центров уменьшается с температурой достаточно быстро согласно закону Кюри—Вейсса. Спин-решеточная релаксация для образцов A и B определяется обменным взаимодействием с центрами релаксации.

Фаза, являющаяся источником высокотемпературного вклада в сигналы ЭСР, может быть связана с квазиаморфной сеткой произвольно расположенных в пространстве между порами графеновых листков. В образцах B и A_2 , который получается из A_1 путем нагрева и охлаждения, при $T>80\,\mathrm{K}$ появляются дополнительные носители, термоактивированные из хвостов плотности состояний, с энергиями ионизации $11\,\mathrm{meV}$ в образце A_2 и $16.9\,\mathrm{meV}$ в образце B.

2.3. Обнаружено существенно различное поведение *g*-фактора с температурой в образцах с различной технологией приготовления. Главная причина различия состоит в величине обменного взаимодействия между свободными и связанными носителями заряда. В образце *A* это взаимодействие значительно сильнее, из чего можно сделать вывод о преобладании двумерных фрагментов в углеродном каркасе данных образцов НПУ.

3. В целом из данных ЭСР можно заключить, что при использовании технологии A в структуре каркаса НПУ больше однородных в отношении концентрации носителей заряда элементов, чем в образцах типа B.

Список литературы

- [1] Патент США N 3066099 (1962); Патент ФРГ N 1185163 (1966).
- [2] Н.Ф. Федоров, Г.К. Ивахнюк, В.В. Тетенов, Г.В. Матюхин. ЖПХ **54**, 7, 1464 (1981); Н.Ф. Федоров, Г.К. Ивахнюк, Д.Н. Гаврилов. ЖПХ **55**, 1, 46 (1981); Н.Ф. Федоров, Г.К. Ивахнюк, Д.Н. Гаврилов. ЖПХ **55**, 1, 272 (1981).
- [3] Н.Ф. Федоров, Г.К. Ивахнюк, Д.Н. Гаврилов и др. Углеродные адсорбенты из неорганических соединений углерода. Углеродные адсорбенты и их применение в промышленности. М. (1983). С. 20.
- [4] С.К. Гордеев, А.В. Вартанова. ЖПХ. 63, 6, 1178 (1991).
- [5] С.К. Гордеев, А.В. Вартанова. ЖПХ. 66, 8, 1375 (1994).
- [6] С.К. Гордеев, А.В. Вартанова. ЖПХ. 66, 7, 1080 (1994).
- [7] С.К. Гордеев, А.В. Вартанова, С.Г. Жуков, И.Н. Грань, В.В. Соколов, Т.И. Мазаева, Р.Г. Аварбэ. Патент № 2026735, Мкл6 В 01 J 20/20. Бюл. № 2 (1995); Р.Г. Аварбэ, С.К. Гордеев, А.В. Вартанова и др. Патент Российской Федерации № 2084036, Мкл6 Н0169/00. Бюл. № 19 (1997).
- [8] Р.Н. Кютт, Э.А. Сморгонская, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. ФТТ 41, 891 (1999).
- [9] Р.Н. Кютт, Э.А. Сморгонская, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. ФТТ 41, 1484 (1999).
- [10] Э.А. Сморгонская, Р.Н. Кютт, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. ФТТ 42, 1141 (2000).
- [11] А.М. Данишевский, Э.А. Сморгонская, С.К. Гордеев, А.В. Гречинская. ФТТ 43, 132 (2001).
- [12] J.G. Castle. Phys. Rev. 92, 1063 (1953).
- [13] G.R. Henning, B. Smaller, E.L. Yasaitis. Phys. Rev. 95, 1088 (1954).
- [14] G. Wagoner. Phys. Rev. 118, 647 (1960).
- [15] A.S. Kosotonov, D.V. Shilo. Carbon 36, 1649 (1998).
- [16] S. Garaj, L. Thien-Nga, R. Gaal et al. Phys. Rev. B 62, 17115 (2000).
- [17] В.В. Попов, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. ФТТ **44**, 758 (2002).
- [18] M.S. Dresselhaus. Phys. Rev. B 15, 3181 (1977).
- [19] Т.А. Полянская, Ю.В. Шмарцев. ФТП 23, 3 (1989).
- [20] F.G. Dyson. Phys. Rev. 98, 349 (1955).
- [21] C.P. Poole. Electron Spin Resonance. John Wiley & Sons, N.Y.—London—Sydney (1967).
- [22] J.H. Pifer, R.T. Longo. Phys. Rev. B 4, 3797 (1971).
- [23] S. Schultz, M.R. Shanaberger, P.M. Platzman. Phys. Rev. Lett. 19, 749 (1967).
- [24] А.И. Вейнгер, А.Г. Забродский, Т.В. Тиснек. ФТП **34**, 46 (2000).
- [25] E.A. Smorgonskaya, A.M. Danishevskii, R.N. Kyutt, G.N. Mosina, C. Jardin, R. Meaudre, O. Marty, S.K. Gordeev, A.V. Grechinskaya. J. Non-Crystalline Sol. 299-302, pt. 2, 810 (2002).
- [26] V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, A.I. Romanenko, A.V. Okotrub. Chemical Phys. Lett. 336, 397 (2001).