Биполярная остаточная фотопроводимость в гетероструктурах HgTe/CdHgTe (013) с двойными квантовыми ямами

© К.Е. Спирин¹, Д.М. Гапонова¹, К.В. Маремьянин¹, В.В. Румянцев¹, В.И. Гавриленко¹, Н.Н. Михайлов², С.А. Дворецкий²

E-mail: spirink@ipmras.ru

(Получена 25 апреля 2018 г. Принята к печати 7 мая 2018 г.)

Исследовались эффекты остаточной фотопроводимости в гетероструктурах HgTe/CdHgTe(013) с двойными квантовыми ямами при $T=4.2\,\mathrm{K}$. Показано, что остаточная фотопроводимость в данной системе имеет биполярный характер, т.е. присутствует как положительная, так и отрицательная остаточная фотопроводимость в зависимости от длины волны подсветки.

DOI: 10.21883/FTP.2018.12.46761.41

1. Введение

Неослабевающий интерес исследователей к гетероструктурам на основе HgTe/CdHgTe связан с рядом замечательных свойств, которыми обладает данная система. Всплеск такого интереса обусловлен появлением работ [1-3], в которых, в частности, было теоретически показано и экспериментально продемонстрировано существование фазы двумерного (2D) топологического изолятора (ТИ) в квантовых ямах (КЯ) HgTe/CdHgTe с инвертированной зонной структурой. При исследовании зонной структуры КЯ важно иметь возможность изменять концентрацию носителей заряда и уровень Ферми в процессе эксперимента. При магнитотранспортных измерениях это обычно достигается изготовлением образцов в виде холловских мостиков с затвором. Для магнитооптических измерений требуется изготовление полупрозрачных затворов большой площади, что является, зачастую, технологически сложной задачей (см. [4]). Другим методом изменения концентрации носителей в КЯ во время низкотемпературного эксперимента является использование эффекта остаточной фотопроводимости $(О\Phi\Pi)$ (см., например, [5]). Ранее мы неоднократно использовали эффект положительной остаточной фотопроводимости в гетероструктурах HgTe/CdHgTe c одиночной квантовой ямой (КЯ) (см., например, [6]). В настоящей работе сообщается о первых наблюдениях эффекта биполярной ОФП в гетероструктурах HgTe/CdHgTe с двойными КЯ. Выполнены спектральные исследования, продемонстрировавшие возможность последовательного изменения концентрации как в сторону увеличения, так и в сторону уменьшения и даже смены типа проводимости.

2. Исследуемые образцы и методика эксперимента

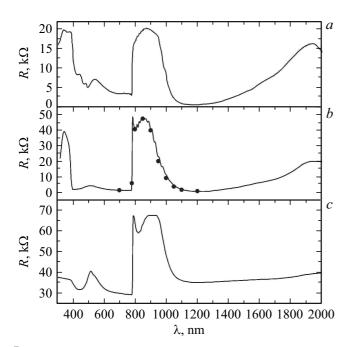
Исследуемые в настоящей работе образцы с двойными КЯ были выращены методом молекуярно-лучевой эпитаксии на подложке GaAs (013) на метаморфном буфере CdTe. Параметры слоев для всех исследуемых образцов представлены в таблице. Структуры специально не легировались, при охлаждении в них наблюдалась темновая концентрация дырок $\sim 7-12\cdot 10^{10}~{\rm cm}^{-2}$, обусловленная, очевидно, ионизацией нейтральных акцепторов (предположительно вакансий ртути) в прилегающих к КЯ барьерных слоях [7].

При исследовании остаточной фотопроводимости образцы размещались в гелиевом криостате, все измерения проводились при температуре 4.2 К. При исследовании спектров ОФП к образцу квадратной формы, размерами 5 × 5 мм делались два полосковых омических контакта по краям. Через образец пропускался постоянный ток 1 мкА. С помощью гибкого многожильного световода образец освещался монохроматическим излучением с выхода решеточного монохроматора МДР-23 [5], источником излучения являлась кварцевая лампа накаливания. Измерялось изменение сопротивления образца в зависимости от длины волны падающего излучения. Вследствие конструктивных особенностей монохроматора непрерывную запись спектра при развертке длины волны излучения можно было осуществлять только от меньших длин волн к большим. Поэтому для регистрации ОФП при проходе от больших длин волн к меньшим использовался поточечный метод измерений. При измерении транспортных характеристик к образцу делалось четыре омических контакта, измерения проводились в геометрии Ван дер Пау.

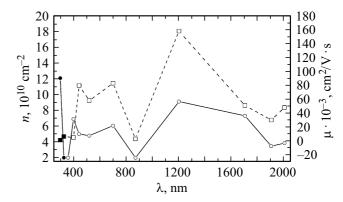
3. Результаты и обсуждение

На рис. 1 представлены спектры остаточной $\Phi\Pi$ трех исследуемых образцов. Символы на рис. 1, b соответствуют второму методу регистрации $O\Phi\Pi$ при движении от больших длин волн к меньшим. Хорошее согласие двух методов измерений свидетельствует о том, что в каждый конкретный момент времени сопротивление

 $^{^1}$ Институт физики микроструктур Российской академии наук, ГСП-105, 603950 Нижний Новгород, Россия


² Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

Слой	Состав слоя $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$			Толщина слоя (нм)		
	№ 150217	№ 151225	№ 160122	№ 150217	№ 151225	№ 160122
Покрывающий слой CdTe	x = 1			40		
Барьерный слой $Cd_xHg_{1-x}Te$ Квантовая яма $HdTe$	x = 0.64	x = 0.58 $x = 0$	x = 0.43	4.5	30 7.5	l 8
Барьерный слой Cd_xHg_{1-x} Te	x = 0.64	x = 0.58	x = 0.43		30	
Квантовая яма HdTe		x = 0	•	4.5	7.5	8
Метаморфный буфер CdTe	x = 1			5-6 мкм		
Метаморфный буфер ZnTe	ZnTe			30 нм		
Подложка	GaAs (013)			400 мкм		


Конструкция и структурные параметры трех исследуемых образцов HgTe/CdHgTe

образца определяется только длиной волны падающего излучения (кроме самого коротковолнового участка спектра, см. далее), не зависит от предыдущих состояний образца и остается неизменным после выключения подсветки.

Максимум сопротивления, наблюдаемый в спектрах ОФП исследуемых образцов при $\lambda \approx 350$ нм, соответствует процессу изменения типа проводимости образца. В этой области спектра интенсивность излучения кварцевой лампы накаливания мала и наблюдаемое изменение сопротивления соответствует зависимости не от длины волны, а от времени. Изначально, после охлаждения в КЯ имеется некоторая остаточная концентрация носителей p-типа (см. рис. 2). После освещения образца квантами с высокой энергией в покрывающем слое CdTe происходит генерация электронно-дырочных пар за счет

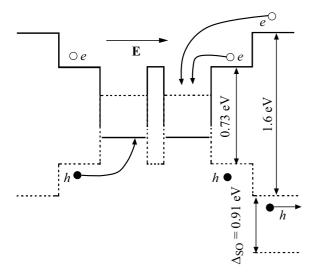

Рис. 1. Спектры остаточной проводимости для исследуемых образцов HgTe/CdHgTe: a — № 160122, b — № 151225, c — № 150207. Символы на спектре b соответствуют второму методу измерения ОФП.

Рис. 2. Значения концентрации (ось слева, круглые символы) и подвижности (ось справа, квадратные символы) для образца $N_{\rm 2}$ 160122 в зависимости от длины волны падающего излучения. Заполненные символы соответствуют дырочному типу проводимости образца, пустые — электронному типу.

межзонных переходов. Под действием встроенного электрического поля, направленного от подложки в сторону поверхности структуры, происходит пространственное разделение носителей заряда и увлечение электронов к квантовой яме, что приводит к смене типа проводимости в КЯ на электронный (рис. 2). Следует отметить, что о наличии в структурах HgTe/CdHgTe с двойной КЯ сильного встроенного электрического поля сообщалось в работах [8,9]. Например, в работе [9] приводятся результаты эксперимента, показывающего, что приложение к затвору на поверхности структуры положительного напряжения $\approx 3 \, \mathrm{B}$ приводит к выравниванию встроенного поля. Таким образом, можно сделать вывод о направлении вектора Е от подложки к поверхности структуры. Оценочная величина встроенного электрического поля в районе квантовых ям составляет порядка нескольких десятков кВ/см.

На рис. 3 приведена схема перераспределения носителей в структуре под действием падающего излучения. Как видно из рис. 2, в интервале длин $400-700\,\mathrm{Hm}$ концентрация электронов в КЯ находится на уровне $\sim 5\cdot 10^{10}\,\mathrm{cm}^{-2}$, что является следствием нескольких конкурирующих процессов. До длины волны $\lambda\approx 780\,\mathrm{hm}$,

Рис. 3. Схема перераспределения носителей внутри структуры под действием падающего излучения.

соответствующей ширине запрещенной зоны в СdTe, межзонная генерация электронно-дырочных пар происходит во всех слоях структуры, при этом, как видно из рис. 2, в КЯ сохраняется электронный тип проводимости. Помимо уже упомянутого механизма увлечения электронов к КЯ встроенным электрическим полем (роль которого, очевидно, уменьшается при смене типа проводимости в КЯ с р на n) это может быть связано с большей подвижностью электронов, которые могут диффундировать к КЯ и против силы электрического поля. Дырки, напротив, при низкой температуре должны захватываться на ловушки, в роли которых могут выступать вакансии ртути — двойные акцепторы, обусловливающие исходный p-тип проводимости структуры [7]. Здесь следует отметить особенность в виде широкого пика сопротивления (и локального минимума электронной концентрации), наблюдаемую во всех трех образцах в области $\lambda \approx 520\,\mathrm{Hm}$. Соответствующая энергия кванта 2.4 эВ близка к сумме ширины запрещенной зоны (1.6 эВ) и энергии спинового расщепления в валентной зоне ($\Delta_{SO} = 0.91$ эВ) и связывается с прохождением потолка спин-отщепленной подзоны дырок [10]. Резонансный характер особенности указывает на фотовозбуждение некоего локализованного центра, связанного со спин-отщепленной зоной дырок, приводящее к генерации высокоэнергетичных дырок, которые достигают КЯ, уменьшая тем самым концентрацию электронов в последней.

Резкое возрастание сопротивления при достижении длины волны $\lambda \approx 780\,\mathrm{hm}$ (1.6 эВ), соответствующей ширине запрещенной зоны CdTe, означающее фактически переход образцов в изолирующее состояние (см. рис. 1, b,c), сохраняющееся вплоть до длины волны 950 нм, требует особого осмысления. Энергии квантов излучения в этом участке спектра заметно превышают как величины ширины запрещенной зоны в барьерных

слоях исследуемых образцов ($\sim 0.73 \, {\rm эB}$), так и энергии спин-орбитального расщепления во всех слоях структуры $(0.91-0.98 \, \mathrm{9B})$. Таким образом, оказывается, что несмотря на продолжающуюся генерацию сравнительно высокоэнергетичных электронов на межзонных переходах в барьерных слоях ($E_{\rm kin}\sim 0.8\,{
m sB}$, так как эффективная масса у электронов много меньше, чем у дырок, им "достается" почти вся разница между энергией кванта и шириной запрещенной зоны), динамическое равновесие смещается "в пользу" дырок, процесс генерации которых выключается на длине волны $\sim 0.95\,\mathrm{мкм}~(\sim 1.3\,\mathrm{эB})$ (см. рис. 1). Так как соответствующая энергия кванта не соизмерима ни с одной характерной энергией на зонной схеме структуры (рис. 3), остается заключить, что имеют место переходы с достаточно широкого (по энергетической шкале) ансамбля глубоких центров (расположенных в барьерных слоях CdHgTe), которые могут начинаться и при $\hbar\omega > 1.6$ эВ, но "шунтируются" в этой области межзонными переходами в CdTe. Такие переходы с центров "в глубине" валентной зоны на дно зоны проводимости СdHgTe приводят к возникновению высокоэнергетичных дырок, которые диффундируют и достигают КЯ HgTe. При дальнейшем увеличении длины волны более 1100 нм такие переходы "выключаются" и генерируемые на межзонных переходах в CdHgTe горячие электроны вновь сдвигают динамическое равновесие в сторону п-типа проводимости в КЯ. При дальнейшем росте длины волны энергия фотоэлектронов в КЯ уменьшается, что приводит к постепенному падению концентрации электронов в КЯ.

Работа выполнена в рамках выполнения государственного задания ИФМ РАН, тема 0035-2014-0201, при частичной поддержке РФФИ (№ 16-02-00672). Характеризация и уточнение параметров структур выполнены при поддержке гранта Президента Российской Федерации для государственной поддержки молодых российских ученых — кандидатов наук МК-4399.2018.2. В работе использовано оборудование ЦКП ИФМ РАН.

Список литературы

- [1] C.L. Kane, E.J. Mele. Phys. Rev. Lett., 95, 146802 (2005).
- [2] B.A. Bernevig, T.L. Hughes, S.C. Zhang. Science, 314, 1757 (2006).
- [3] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang. Science, 318, 766 (2007).
- [4] M. Schultz, U. Merkt, A. Sonntag, U. Rössler, R. Winkler, T. Colin, P. Helgesen, T. Skauli, S. Løvold. Phys. Rev. B, 57, 14772 (1998).
- [5] В.Я. Алешкин, В.И. Гавриленко, Д.М. Гапонова, А.В. Иконников, К.В. Маремьянин, С.В. Морозов, Ю.Г. Садофьев, S.R. Johnson, Y.-H. Yang. ФТП, **39** (1), 30 (2005).
- [6] А.В. Иконников, А.А. Ластовкин, К.Е. Спирин и др. Письма ЖЭТФ, **92** (11–12), 837 (2010).
- [7] V.V. Rumyantsev, D.V. Kozlov, S.V. Morozov, M.A. Fadeev, A.M. Kadykov, F. Teppe, V.S. Varavin, M.V. Yakushev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko. Semicond. Sci. Technol., 32, 095007 (2017).

- [8] А.В. Иконников, Л.С. Бовкун, В.Я. Алешкин, М. Orlita, В.А. Ріоt, М. Роtemski, С.С. Криштопенко, С.А. Дворецкий, Н.Н. Михайлов, В.И. Гавриленко. Тр. ХХІІ Междунар. симп. "Нанофизика и наноэлектроника" (12—15 марта 2018 г., Нижний Новгород) т. 2, с. 635.
- [9] М.В. Якунин, С.С. Криштопенко, С.М. Подгорных, М.Р. Попов, В.Н. Неверов, F. Терре, В. Jouault, W. Desrat, С.А. Дворецкий, Н.Н. Михайлов. Тр. ХХІІ Междунар. симп. ,Нанофизика и наноэлектроника" (12–15 марта 2018 г., Нижний Новгород) т. 2, с. 843.
- [10] K.H. Yoo, R.L. Aggarwal, L.R. RamMohan, O.K. Wu. J. Vac. Sci. Technol. A, 8, 1194 (1990).

Редактор А.Н. Смирнов

Bipolar persistent photoconductivity effects in HgTe/CdHgTe (013) double quantum well heterostructures

K.E. Spirin¹, D.M. Gaponova¹, K.V. Marem,yanin¹, V.V. Rumyantsev¹, V.I. Gavrilenko¹, N.N. Mikhailov², S.A. Dvoretsky²

 Institute for Physics of Microstructures, Russian Academy of Sciences,
 603950 Nizhny Novgorod, Russia
 Rzhanov Institute of Semiconductor Physics,
 Siberian Branch of Russian Academy of Sciences,
 630090 Novosibirsk, Russia

Abstract Persistent photoconductivity effects in HgTe/CdHgTe (013) heterostructures with double quantum wells has been investigated at $T=4.2\,\mathrm{K}$. The bipolar character of persistent photoconductivity in this system, i.e. both positive and negative persistent photoconductivity depending on the wavelength of illumination has been shown.