10

Стратегия создания фотостабильных люминесцентных материалов молекулярной фотоники на основе β -дикетонатных комплексов лантаноидов (III)*

© Д.В. Лапаев 1 , В.Г. Никифоров 1 , В.С. Лобков 1 , А.А. Князев 2 , Ю.Г. Галяметдинов 1,2

420015 Казань, Россия

e-mail: d lapaev@mail.ru

Поступила в редакцию 24.09.2018 г.

Представлен анализ перспектив создания новых люминесцентных материалов молекулярной фотоники на основе мезогенных β -дикетонатных комплексов лантаноидов(III). Речь идет о застеклованых пленках, сочетающих интенсивную монохроматическую люминесценцию, высокое оптическое качество, полную устойчивость к УФ излучению со способностью изменять фотофизические свойства (например, ширину полосы поглощения и интенсивность люминесценции) в зависимости от локальной структуры и под действием внешних воздействий, таких как УФ излучение и температура. Обсуждены вопросы контроля фотофизических свойств пленок и возможности их использования в качестве рабочих сред высокотехнологичных люминесцентных материалов и устройств (например, люминесцентных сенсоров температуры, кислорода, УФ излучения, светотрансформирующих материалов).

DOI: 10.21883/OS.2019.01.47051.281-18

Введение

Комплексы лантаноидов(III) с β -дикетонатными лигандами сочетают способность эффективно преобразовывать УФ излучение в монохроматическую люминесценцию ионов лантаноидов (характеризующуюся высоким квантовым выходом и продолжительным временем жизни) [1,2] с привлекательными химическими свойствами (относительно легкий синтез, хорошая растворимость в органических растворителях, возможность допирования в различные твердые матрицы и т. д.) [3]. Некоторые из данных соединений обладают способностью изменять яркость люминесценции в зависимости от температуры [3-5] и концентрации кислорода [3,6]. Данные характеристики определяют перспективность применения β -дикетонатных комплексов лантаноидов(III) для создания люминесцентных материалов и устройств молекулярной фотоники: оптических сенсоров кислорода [3,6], люминесцентных термометров [3-5], люминесцентных хемосенсоров [7], монохроматических источников света, светотрансформирующих материалов и покрытий [3] и т. д.

Проблемы создания люминесцентных материалов на основе β -дикетонатных комплексов лантаноидов(III) заключаются в низкой фотостабильности под действием УФ излучения [3,8–12] и полосе поглощения, ограниченной УФ диапазоном [8,13–16]. Известные способы повышения фотостабильности данных соединений

основаны на их допировании в различные твердые матрицы: полимеры [3,8,11,12], кремниевые наночастицы [17], мезопористые молекулярные сита [18], органически модифицированные силикаты [19], органическиенеорганические гибриды [3,20] ит.д. Такие подходы, хотя и позволяют в отдельных случаях существенно повысить фотостабильность, до сих пор сопряжены с множеством технологических трудностей. Например, изза высокой склонности комплексов к кристаллизации сложно добиться их однородного распределения в матрицах. Нетривиальной задачей является поиск матрицы, устойчивой к УФ излучению и способной заблокировать доступ кислорода к комплексу. Показано, что даже в твердых матрицах падение интенсивности люминесценции под действием УФ излучения может превышать 15% в час [12,21-24]. Важно также отметить, что возбуждение люминесценции УФ светом в прикладных задачах нецелесообразно по причине низкой яркости и высокой стоимости источников УФ света. Поэтому актуальной задачей современной молекулярной фотоники является создание новых β-дикетонатных комплексов лантаноидов(III) и материалов на их основе, способных эффективно поглощать свет в видимой области. Наиболее известные стратегии для решения данной задачи основаны на синтетической модификации β -дикетонатных лигандов [8] и координации к трис(β -дикетонатам) лантаноидов(III) сложных хромофоров, способных эффективно поглощать свет в видимой области [22]. Однако по целому ряду причин [3,4] данные подходы сложны в коммерческой реализации, и поэтому не привели к существенному улучшению ситуации с точки зрения

¹ Казанский физико-технический институт им. Е.К. Завойского, Федеральный исследовательский центр "Казанский научный центр РАН"

⁴²⁰⁰²⁹ Казань, Россия

² Казанский национальный исследовательский технологический университет,

^{*} XIII International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM-2018), August 6–12, 2018, Suzdal–Moscow, Russia.

создания оптически-прозрачных пленочных материалов, сочетающих интенсивную люминесценцию, высокую фотостабильность и высокую поглощательную способность в видимой области.

Нами предложен альтернативный подход к решению вышеуказанных проблем, основанный на синтезе мезогенных β -дикетонатных комплексов лантаноидов(III) [25-31]. Принципиальное отличие данных соединений от известных модификаций комплексов лантаноидов(III) с *β*-дикетонатными лигандами заключается в молекулярной структуре, содержащей помимо традиционно используемых ароматических колец циклогексановые кольца и длинные углеводородные цепочки. Комплексы с такой структурой не подвержены кристаллизации, обладают высокой термостабильностью и низкими температурами размягчения. Данные свойства позволят создавать из расплавов порошков данных соединений люминесцентные материалы в виде застеклованных пленок. Явное преимущество таких пленок по сравнению с пленочными материалами на основе немезогенных β -дикетонатных комплексов лантаноидов(III) заключается в сочетании интенсивной люминесценции, высокой прозрачности в видимой области и полной устойчивости к УФ излучению. Помимо этого существует возможность изменять их фотофизические свойства (например, ширину полосы поглощения и интенсивность люминесценции) под действием внешних воздействий, таких как УФ излучение и температура [32–39]. При таком подходе отпадает необходимость в сложной, дорогостоящей и времязатратной синтетической модификации β -дикетонатных лигандов, использовании растворителей и фотостабилизирующих матриц, что позволяет избежать множества проблем, возникающих в случае альтернативных подходов. Важно отметить, что застеклованные пленки невозможно получить из известных β -дикетонатных комплексов лантаноидов(III) по причине высоких температур плавления (443-543 К) и склонности к кристаллизации [1].

В работе обсуждаются вопросы контроля фотофизических свойств пленок на основе мезогенных β -дикетонатных комплексов лантаноидов(III) и стратегии их использования в качестве рабочих сред высокотехнологичных люминесцентных материалов и устройств молекулярной фотоники с заданными функциональными свойствами, в том числе с варьируемыми в ходе эксплуатации фотофизическими свойствами (например, многоразовых люминесцентных сенсоров температуры и УФ излучения, оптических сенсоров кислорода, светотрансформирующих материалов), актуальных во многих областях науки и техники.

Локальная структура застеклованных пленок

Принципиальное отличие мезогенных β -дикетонатных комплексов лантаноидов(III) от немезогенных аналогов

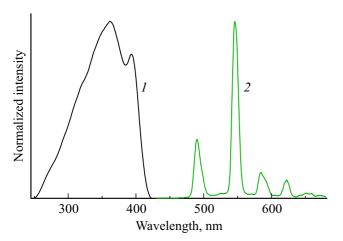
заключается в молекулярной структуре, содержащей помимо традиционно используемых ароматических колец циклогексановые кольца и длинные углеводородные цепочки (рис. 1). Порошки комплексов с такой структурой не подвержены кристаллизации, обладают высокой термостабильностью и низкими температурами размягчения [25–31]. Данные свойства позволят создавать из расплавов порошков этих соединений застеклованные пленки [29,30,34-38]. Способность порошков мезогенных β -дикетонатных комплексов лантаноидов к стеклованию доказана с помощью дифференциальной сканирующей калориметрии и поляризационной оптической микроскопии [25,29–31,37]. Технология позволяет изготавливать закрытые (закрепленные между кварцевыми пластинами) и открытые (нанесенные на поверхность кварцевых пластин) застеклованные пленки. Закрытые пленки получаются путем нагревания порошков комплексов между кварцевыми пластинами до температуры перехода в изотропный расплав и последующего контролируемого охлаждения до комнатной температуры. Открытые пленки готовятся путем нагревания порошков комплексов между кварцевыми пластинами до температуры перехода в изотропный расплав, разъединения пластин и последующего их контролируемого охлаждения до комнатной температуры.

Данные поляризационной оптической микроскопии показали, что пленки оптически изотропны, однородны, не содержат кристаллических включений и сохраняют фотофизические свойства в течение месяцев [29,34-38]. Важно отметить, что подобные пленки невозможно получить из немезогенных β -дикетонатных комплексов лантаноидов(III) по причине высоких температур плавления (443-543 К) [1,29] и склонности к кристаллизации [29]. В технологическом аспекте преимуществом застеклованных пленок является простота их изготовления. Применяемый нами подход к созданию оптическипрозрачных люминесцентных материалов не требует проведения сложной, дорогостоящей и времязатратной синтетической модификации β -дикетонатных лигандов для расширения полосы поглощения в видимую область, использования растворителей и допирования комплексов в твердые матрицы для защиты от фотодеструкции и контакта с атмосферным кислородом. Это позволяет избежать множества проблем, возникающих в случае альтернативных подходов.

Одна из характерных особенностей застеклованных пленок заключается в том, что, изменяя их локальную структуру путем организации разных типов межмолекулярных взаимодействий между соседними комплексами в образце (изменения соотношения между мономерами и агрегатами), можно манипулировать шириной полосы поглощения (или возбуждения) пленок [34–36,38]. Изменение организации межмолекулярных взаимодействий осуществляется на стадии приготовления пленок путем варьирования толщины и скорости охлаждения расплавов порошков комплексов.

$$C_3H_7$$
 C_3H_7
 C_3H_7
 C_5H_{11}
 C_7H_{15}
 C

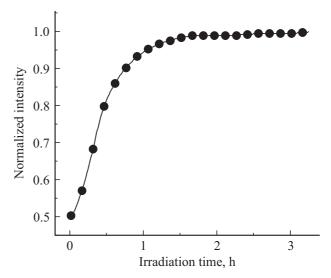
Рис. 1. Структурные формулы β -дикетонатных комплексов лантаноидов (III).

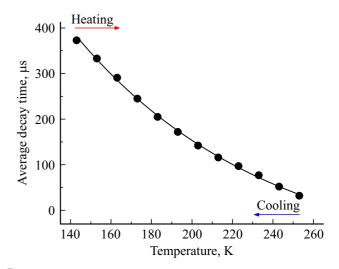

Другой яркой особенностью пленок является возможность управлять их фотофизическими и фотохимическими свойствами путем внешних воздействий, таких как УФ излучение и температура [34-39]. Управление фотофизическими свойствами пленок (с заданной локальной структурой) осуществляется путем их модификации интенсивным лазерным УФ излучением и определенным режимом термической обработки. Контролируя локальную структуру пленок на стадии их приготовления и изменяя технологию закрепления пленок, можно управлять интенсивностью люминесценции образцов путем воздействия на них лазерного УФ излучения на длине волны 337 nm. Фактически речь идет об управлении механизмами внутримолекулярного переноса энергии и скоростью безызлучательной релаксации на основе организации разных типов взаимодействий между соседними комплексами в образце.

Многофункциональные фотофизические свойства застеклованных пленок

В работах [32–39] исследованы фотофизические и фотохимические свойства застеклованных пленок, приготовленных из порошков мезогенных β -дикетонатных комплексов европия(III) и тербия(III). Полная устойчивость пленок к УФ излучению выгодно отличает их от пленочных материалов на основе немезогенных β -дикетонатных комплексов лантаноидов(III), интенсивность люминесценции которых необратимо уменьшается при длительном воздействии УФ излучения [3,8–12,21–24]. В прикладном аспекте очень интересен мезогенный β -дикетонатный комплекс Tb(CPDK₃₋₇)₃phen (CPDK₃₋₇ — 1-(4-(4-пентилциклогексил)фенил)декан-1,3-дионато, phen — 1,10-фенантролин), молекулярная структура которого приведена на

рис. 1. Из порошка данного соединения можно создавать (путем варьирования толщины и скорости охлаждения расплава) пленки с разной локальной структурой, влияющей на ширину полосы поглощения и возбуждения. Исследования показали, что фотофизические и фотохимические свойства пленок Tb(CPDK₃₋₇)₃phen сильно зависят от их локальной структуры, на которую оказывает значительное влияние технология закрепления пленок на кварцевых пластинах [34,35,37,38].


В работе [35] показано, что закрытые пленки Tb(CPDK₃₋₇)₃phen с разной локальной структурой отличаются шириной полосы поглощения (возбуждения) и по-разному изменяют свои фотофизические свойства при продолжительном воздействии на них излучения импульсного азотного лазера. Например, при продолжительном воздействии лазерного УФ излучения интенсивность люминесценции ионов Tb^{3+} (на длине волны 545 nm) в мономерных пленках уменьшается, а в агрегированных пленках увеличивается, причем без фотодеструкции комплексов. Наибольший интерес с точки зрения широкого прикладного использования представляет агрегированная пленка Tb(CPDK₃₋₇)₃phen. Она эффективно поглощает световую энергию в широком диапазоне 280-405 nm и конвертирует ее в монохроматическую зеленую люминесценцию ионов Tb³⁺ с максимумом на 545 nm (рис. 2) [34]. Нами был обнаружен необычный для β -дикетонатных комплексов лантаноидов(III) эффект 2-кратного увеличения интенсивности люминесценции ионов Ть3+ на длине волны 545 nm после 3-часового облучения пленки импульсным азотным лазером на длине волны 337 nm (средняя мощность $1.5 \,\mathrm{mW}$) при $T = 300 \,\mathrm{K}$ (рис. 3). Уникальность данного образца с точки зрения прикладного использования состоит в том, что пленка обладает способностью изменять свою локальную структуру под действием лазерной УФ модификации, сохранять в течение месяцев изменен-


Рис. 2. Спектры возбуждения люминесценции линии 545 nm (I) и люминесценции при лазерном возбуждении на длине волны 337 nm (2) закрытой пленки $\mathrm{Tb}(\mathrm{CPDK}_{3-7})_3$ phen при $T=300~\mathrm{K}$.

ное состояние и восстанавливаться в исхолное состояние под действием термической обработки. Многократные эксперименты по нагреванию образца до температуры, близкой к температуре его плавления ($\sim 353\,\mathrm{K}$), и последующего охлаждения показали, что измененные в процессе лазерного облучения фотофизические свойства застеклованной пленки восстанавливаются в исходное состояние [34]. Важно отметить, что облучение пленки на длине волны 400 nm не приводит к увеличению интенсивности люминесценции. Способность пленки многократно записывать, хранить и стирать оптическую информацию открывает перспективы в области создания принципиально новых устройств молекулярной фотоники. Известны попытки создания одноразовых сенсоров УФ излучения на основе β -дикетонатных комплексов лантаноидов(III) [40-42]. Принцип их работы основан на эффекте необратимого уменьшения интенсивности люминесценции под действием УФ излучения. Преимущество нашей пленки — в полной устойчивости к УФ излучению и возможности изготовления многоразовых люминесцентных сенсоров УФ излучения, способных "помнить" измеренное значение на протяжении нескольких месяцев.

В работе [38] показано, что закрытая пленка $Tb(CPDK_{3-7})_3$ рhen способна существенно увеличивать интенсивность и время затухания люминесценции ионов Tb^{3+} на длине волны 545 nm при уменьшении температуры от 253 до 143 К (рис. 4). Среднее время затухания люминесценции обратимо изменяется с температурой от 373 μ s при 143 К до 33 μ s при 253 К со средней абсолютной чувствительностью $-3.3\,\mu$ s · K $^{-1}$. Технологическими преимуществами пленки $Tb(CPDK_{3-7})_3$ phen являются простота изготовления (не требующего допирования комплекса в полимерную матрицу), нечувствительность к кислороду, эффективное поглощение света в области 385-405 nm, высокая прозрачность

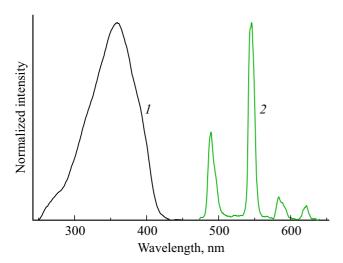
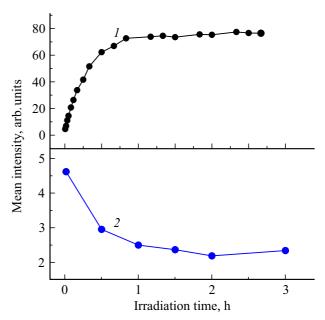
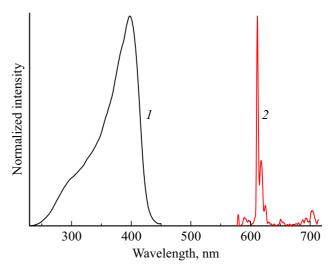

Рис. 3. Зависимость интенсивности люминесценции на длине волны 545 nm от длительности лазерного облучения (длина волны 337 nm, средняя мощность $1.5\,\mathrm{mW}$) при $T=300\,\mathrm{K}$ для закрытой пленки $\mathrm{Tb}(\mathrm{CPDK}_{3-7})_3\mathrm{phen}$.

Рис. 4. Температурная зависимость среднего времени затухания люминесценции на длине волны 545 nm для закрытой пленки $\mathrm{Tb}(\mathrm{CPDK}_{3-7})_3$ рhen при лазерном возбуждении (длина волны 337 nm, средняя мощность 0.17 mW). Сплошная линия соответствует аппроксимационной функции 2275.6 $\exp(-T/95.1)$ (T — температура) с коэффициентом корреляции $R^2=0.9990$.

 $(\sim 90\%)$ в области $450-800\,\mathrm{nm}$ и полная устойчивость к УФ излучению. В литературе нет примеров температурно-чувствительных люминесцентных пленок на основе β -дикетонатных комплексов тербия(III) с близкими характеристиками.


Хорошо известно, что атмосферный кислород является тушителем долгоживущих люминофоров, таких как органические красители и ароматические соединения, комплексы переходных металлов [6,43] ит.д. Известны также примеры тушения кислородом возбужденных со-


Рис. 5. Спектры возбуждения люминесценции линии 545 nm (I) и люминесценции при лазерном возбуждении на длине волны 337 nm в парах азота (2) открытой пленки $\mathrm{Tb}(\mathrm{CPDK}_{3-7})_3$ phen при $T=300\,\mathrm{K}$.

стояний в некоторых β -дикетонатных комплексах лантаноидов(III) [6,13]. Помимо тушения люминесценции кислород также значительно увеличивает скорость фотодиссоциации комплексов под действием УФ облучения [44]. В работах [37,39] исследованы фотофизические свойства застеклованной пленки Tb(CPDK₃₋₇)₃phen, закрепленной на поверхности кварцевой пластины и не защищенной от атмосферного кислорода. При облучении пленки импульсным азотным лазером (длина волны 337 nm, средняя мощность 0.17 mW) в атмосфере азота при $T = 300 \, \mathrm{K}$ наблюдается типичная люминесценция ионов Tb^{3+} с максимумом на 545 nm (рис. 5). Было обнаружено, что облучение открытой пленки импульсным азотным лазером (средняя мощность 1.5 mW) в атмосфере азота в 2.1 раза уменьшает среднюю интенсивность люминесценции на длине волны 545 nm (рис. 6). Необычный эффект 16-кратного увеличения средней интенсивности люминесценции ионов Ть³⁺ (без последующей фотодеструкции) был обнаружен при облучении пленки в присутствии атмосферного кислорода (рис. 6). Это свойство образца может быть использовано для создания принципиально новых люминесцентных материалов и устройств, не подверженных разрушающему воздействию УФ света в присутствии атмосферного кислорода, например сенсоров кислорода, работающих на новом эффекте разгорания люминесценции в присутствии кислорода. Такие сенсоры кардинальным образом отличаются от традиционных сенсоров кислорода на основе немезогенных β -дикетонатных комплексов лантаноидов(III), принцип работы которых основан на тушении люминесценции кислородом [6,13].

В работе [36] исследованы в диапазоне температур 143—348 К фотофизические и фотохимические свойства закрытой пленки, приготовленной

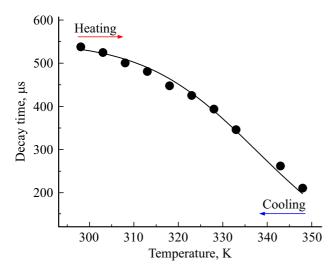


Рис. 6. Зависимость средней интенсивности люминесценции на длине волны 545 nm от длительности лазерного облучения (длина волны 337 nm, средняя мощность 1.5 mW) на воздухе (I) и в парах азота (2) для открытой пленки $\mathrm{Tb}(\mathrm{CPDK}_{3-7})_3$ рhen при $T=300\,\mathrm{K}.$

Рис. 7. Спектры возбуждения люминесценции линии $612\,\mathrm{nm}$ (*I*) и люминесценции при лазерном возбуждении на длине волны $337\,\mathrm{nm}$ (*2*) для закрытой пленки $\mathrm{Eu}(\mathrm{CPDK}_{3.5})_3$ рhen при $T=300\,\mathrm{K}$.

из порошка мезогенного β -дикетонатного комплекса $Eu(CPDK_{3-5})_3$ рhen ($CPDK_{3-5}1$ -(4-(4-пропилциклогексил)фенил)октан-1,3-дион, phen — 1,10-фенантролин), молекулярная структура которого приведена на рис. 1. Эксперименты показали, что пленка полностью поглощает свет в области 200-397 nm, характеризуется высокой прозрачностью в области 450-800 nm, способна эффективно преобразовывать световую энергию в

Рис. 8. Температурная зависимость времени затухания люминесценции на длине волны 612 nm (закрашенные кружки — экспериментальные данные, сплошная линия — моделирование [36]) при лазерном возбуждении (длина волны 337 nm, средняя мощность 0.17 mW) для закрытой пленки $Eu(CPDK_{3-5})_3$ phen.

области 280-415 nm в интенсивную оранжево-красную люминесценцию ионов Eu³⁺ с максимумом на 612 nm (внутренний квантовый выход ионов Eu³⁺ составляет 0.42 при $T = 298 \,\mathrm{K}$) (рис. 7) и не разрушается под действием УФ излучения. Помимо этого, пленка способна обратимо изменять время затухания люминесценции в зависимости от температуры в области 298-348 К (рис. 8). Средняя величина абсолютной температурной чувствительности времени затухания люминесценции $-6.5 \,\mu \text{s} \cdot \text{K}^{-1}$ является рекордной среди температурночувствительных пленочных материалов на основе немезогенных β -дикетонатных комплексов европия(III), эффективно поглощающих свет в фиолетовом диапазоне видимого спектра [4,13,21,22]. Данные свойства пленки Eu(CPDK₃₋₅)₃phen открывают перспективы для создания на ее основе фотостабильных материалов молекулярной фотоники, которые могут одновременно выполнять несколько функций: 1) служить эффективными светотрансформирующими материалами для преобразования световой энергии в диапазоне 280-415 nm в интенсивную монохроматическую люминесценции ионов Eu³⁺, 2) работать как широкополосные молекулярные УФ фильтры в области 200-397 nm, 3) выступать в качестве многоразовых рабочих элементов высокочувствительных люминесцентных термометров для измерения температуры в области 298-348 К.

Заключение

Комплексы лантаноидов(III) с β -дикетонатными лигандами интенсивно изучаются более 70 лет. В настоящее время основные фотофизические свойства данных

соединений (в том числе препятствующих их широкому прикладному использованию) хорошо известны. Наиболее существенными проблемами для широкого коммерческого использования являются низкая устойчивость к УФ излучению [3,8–12] и слабая поглощательная способность в видимой области [8,13–16], что вынуждает использовать для возбуждения люминесценции дорогие источники УФ излучения. Важно подчеркнуть, что скорость фотодеструкции комплексов существенно возрастает в присутствии атмосферного кислорода [44]. Технологическим недостатком данных соединений является их склонность к кристаллизации, препятствующей созданию люминесцентных материалов высокого оптического качества. Между тем анализ литературных данных показывает, что β -дикетонатные комплексы лантаноидов(III) до сих пор находятся в центре внимания многих исследовательских групп мира. Особенно бурно ведутся работы по созданию на основе данных соединений различного рода люминесцентных сенсоров (например, температуры, УФ излучения и кислорода) [4-6,40-42]. Однако по целому ряду причин данные подходы сложны в коммерческой реализации, и поэтому не привели к существенному улучшению ситуации с точки зрения создания оптическипрозрачных пленочных материалов, сочетающих интенсивную люминесценцию, высокую фотостабильность и высокую поглощательную способность в видимой

В настоящей работе отражены основные аспекты стратегии создания фотостабильных люминесцентных материалов молекулярной фотоники на основе β -дикетонатных комплексов лантаноидов(III). Нами предложен простой в реализации подход к решению вышеуказанных проблем, основанный на синтезе мезогенных β -дикетонатных комплексов лантаноидов(III) с анизометричной геометрией [25–31]. Высокая фото- и термостбильность, неподверженность кристаллизации и низкие температуры размягчения порошков данных соединений позволяют создавать из них многофункциональные застеклованные пленки с интенсивной монохроматической люминесценцией, высоким оптическим качеством и полной устойчивостью к УФ излучению [32–39]. Нами показано, что, воздействуя на локальную структуру пленок в процессе их приготовления (путем варьирования толщины и скорости охлаждения расплавов порошков комплексов), можно создавать образцы, эффективно поглощающие свет в фиолетовой области видимого спектра. Другой отличительной особенностью пленок является способность в зависимости от локальной структуры и технологических особенностей их закрепления поразному изменять фотофизические свойства (например, интенсивность люминесценции) под действием внешних воздействий, таких как УФ излучение и температура. Управление структурой пленок, шириной полосы поглощения (возбуждения), интенсивностью люминесценции и разные технологии закрепления открывают разные стратегии создания принципиально новых люминесцентных материалов и устройств молекулярной фотоники (например, многоразовых люминесцентных сенсоров температуры и УФ излучения, оптических сенсоров кислорода, широкополосных молекулярных светофильтров, светотрансформирующих материалов).

Список литературы

- [1] *Binnemans K.* // Handbook on the Physics and Chemistry of Rare Earths. V. 35 / Ed. by Gschneidner K.A., Jr., B.nzli J.-C.G., Pecharsky V.K. Amsterdam: Elsevier, 2005. P. 107–272.
- [2] Brito H.F., Malta O.L., Felinto M.C.F.C., Teotonio E.E.S. //
 The Chemistry of Metal Enolates. V. 1 / Ed. by Zabicky J.
 England: John Wiley & Sons Ltd., 2009. P. 131–184.
- [3] *Binnemans K.* // Chem. Rev. 2009. V. 109. P. 4283. doi 10.1021/cr8003983
- [4] Wang Xu-dong, Wolbeis O.S., Meier R.J. // Chem. Soc. Rev. 2013. V. 42. P. 7834. doi 10.1039/c3cs60102a
- [5] Brites C.D.S., Millán A., Carlos L.D. // Handbook on the Physics and Chemistry of Rare Earth. V. 49 / Ed. by Bünzli J.-C.G., Pecharsky V.K. Amsterdam: Elsevier, 2016. P. 339–427.
- [6] Quaranta M.Q., Borisov S.M., Klimant I. // Bioanal. Rev. 2012. V. 4. P. 115. doi 10.1007/s12566-012-0032-y
- Mirochnik A.G., Petrochenkova N.V., Shishov A.S., Bukvetskii B.V., Emelina T.B., Sergeev A.A., Voznesenskii S.S. // Spectrochim. Acta A 2016. V. 155.
 P. 111. doi 10.1016/j.saa.2015.11.004
- [8] Khalil G.E., Lau K., Phelan G.D., Carlson B., Gouterman M.,
 Callis J.B., Dalton L.R. // Rev. Sci. Instrum. 2004. V. 75.
 P. 192. doi 10.1063/1.1632997
- [9] Gameiro C.G., da Silva Jr. E.F., Alves Jr. S., de Sá G.F., Santa-Cruz P.A. // J. Alloys Compd. 2001. V. 323-324. P. 820. doi 10.1016/s0925-8388(01)01152-5
- [10] Pagnot T., Audebert P., Tribillion G. // Chem. Phys. Lett. 2000. V. 322. P. 572. doi 10.1016/s0009-2614(00)00478-4
- [11] Kai J., Felinto M.C.F.C., Nunes L.A.O., Malta O.L., Brito H.F. // J. Mater. Chem. 2011. V. 21. P. 3796. doi 10.1039/C0JM03474F
- [12] Герасимова В.И., Заворотный Ю.С., Рыбалтовский А.О., Леменовский Д.А., Тимофеева В.А. // Квантовая электроника 2006. Т. 36. № 8. С. 791; Gerasimova V.I. // Quantum Electron. 2006. V. 36. N 8. P. 791. doi 10.1070/QE2006v036n08ABEH013270
- Borisov S.M., Klimant I. // Anal. Bioanal. Chem. 2012. V. 404.
 P. 2797. doi 10.1007/s00216-012-6244-8
- [14] Kozak M., Kalota B., Tkaczyk S., Tsvirko M. // J. Appl. Spectrosc. 2014. V. 81. P. 678. doi 10.1007/s10812-014-9989-3
- [15] Basu B.B.J., Vasantharajan N. // J. Lumin. 2008. V. 128. P. 1701. doi 10.1016/j.jlumin.2008.03.024
- [16] Gerasimova V.I., Antoshkov A.A., Zavorotny Yu.S., Rabaltovskii A.O., Lemenovskii D.A. // J. Lumin. 2013. V. 134. P. 339. doi 10.1016/j.jlumin.2012.08.024
- [17] Wang Y., Qin W., Zhang J., Cao C., Zhang J., Jin Y., Ren X., Zheng Z., Lü S. // Solid State Commun. 2007. V. 142. P. 689. doi 10.1016/j.ssc.2007.04.038
- [18] Li S., Song H., Li W., Ren X., Lu S., Pan G., Fan L., Yu H., Zhang H., Qin R., Dai Q., Wang T. // J. Phys. Chem. B 2006. V. 110. P. 23164. doi 10.1021/jp064509d
- [19] Qian G., Wang M. // J. Am. Ceram. Soc. 2000. V. 83. P. 703. doi 10.1111/j.1151-2916.2000.tb01262.x

- [20] Lima P.P., Sá Ferreira R.A., Freire R.O., Almeida Paz F.A., Fu L., Jr. S.A., Carlos L.D., Malta O.L. // ChemPhysChem 2006. V. 7. P. 735. doi 10.1002/cphc.200500588
- [21] Lam H., Rao G., Loureiro J., Tolosa L. // Talanta 2011. V. 84.
 P. 65. doi 10.1016/j.talanta.2010.12.016
- [22] Borisov S.M., Klimant I. // J. Fluoresc. 2008. V. 18. P. 581. doi 10.1007/s10895-007-0302-1
- [23] *Мардалейшвили И.Р., Левин П.П., Иванов И.Б.* // Химическая физика 2000. Т. 28. № 7. С. 34; *Mardaleishvili I.R.* // Russ. J. Phys. Chem. В 2009. V. 3. N 4. P. 560. doi 10.1134/S1990793109040071
- [24] Wang X., Zhou S., Wu L. // Mater. Chem. Phys. 2012. V. 137.
 P. 644. doi 10.1016/j.matchemphys.2012.09.070
- [25] Galyametdinov Yu.G., Knyazev A.A., Dzhabarov V.I., Cardinaels T., Driesen K., Görller-Walrand C., Binnemans K. // Adv. Mater. 2008. V. 20. P. 252. doi 10.1002/adma.200701714
- [26] Князев А.А., Джабаров В.И., Лапаев Д.В., Лобков В.С., Хаазе В., Галяметдинов Ю.Г. // ЖОХ. 2010. Т. 80. № 4. С. 594; Knyazev А.А. // Russ. J. Gen. Chem. 2010. V. 80. N 4. P. 756. doi 10.1134/S1070363210040122
- [27] Князев А.А., Джабаров В.И., Молостова Е.Ю., Лапаев Д.В., Лобков В.С., Галяметдинов Ю.Г. // Журн. физ. химии 2011. Т. 85. № 7. С. 1377; Кпуаzev А.А. // Russ. J. Phys. Chem. A 2011. V. 85. N 7. P. 1270. doi 10.1134/S0036024411070132
- [28] Knyazev A.A., Molostova E.Yu., Krupin A.S., Heinrich B., Donnio B., Haase W., Galyametdinov Yu.G. // Liq. Cryst. 2013. V. 40. P. 857. doi 10.1080/02678292.2013.795626
- [29] Knyazev A.A., Krupin A.S., Molostova E.Yu., Romanova K.A., Galyametdinov Yu.G. // Inorg. Chem. 2015. V. 54. P. 8987. doi 10.1021/acs.inorgchem.5b01617
- [30] Knyazev A.A., Karyakin M.E., Romanova K.A., Heinrich B., Donnio B., Galyametdinov Yu.G. // Eur. J. Inorg. Chem. 2017. P. 639. doi 10.1002/ejic.201601286
- [31] Knyazev A.A., Krupin A.S., Heinrich B., Donnio B., Galyametdinov Yu.G. // Dyes Pigm. 2018. V. 148. P. 492. doi 10.1016/j.dyepig.2017.08.018
- [32] Лапаев Д.В., Никифоров В.Г., Князев А.А., Джаба-ров В.И., Лобков В.С., Салихов К.М., Галяметдинов Ю.Г. // Опт. и спектр. 2008. Т. 104. № 6. С. 939; Lapaev D.V., Nikiforov V.G., Lobkov V.S., Salikhov К.М., Galyametdinov Yu.G., Knyazev A.A., Dzhabarov V.I. // Opt. Spectrosc. 2008. V. 104. № 6. P. 851. doi 10.1134/S0030400X08060088
- [33] Лапаев Д.В., Никифоров В.Г., Сафиуллин Г.М., Галявиев И.Г., Джабаров В.И., Князев А.А., Лобков В.С., Галяметдинов Ю.Г. // Журн. структур. химии 2009. Т. 50. № 4. С. 809; Lapaev D.V., Nikiforov V., Safiullin G.M., Galyaviev I.G., Lobkov V.S., Galyametdinov Y.G., Dzabarov V.I, Knyazev A.A. // J. Struct. Chem. 2009. V. 50. № 4. Р. 775. doi 10.1007/s10947-009-0117-9
- [34] Lapaev D.V., Nikiforov V.G., Safiullin G.M., Lobkov V.S., Salikhov K.M., Knyazev A.A., Galyametdinov Yu.G. // Opt. Mater. 2014. V. 37. P. 593. doi 10.1016/j.optmat.2014.07.027
- [35] Lapaev D.V., Nikiforov V.G., Safiullin G.M., Lobkov V.S., Knyazev A.A., Krupin A.S., Galyametdinov Yu.G. // J. Lumin. 2016. V. 175. P. 106. doi 10.1016/j.jlumin.2016.02.006
- [36] Lapaev D.V., Nikiforov V.G., Lobkov V.S., Knyazev A.A., Galyametdinov Yu.G. // Opt. Mater. 2018. V. 75. P. 787. doi 10.1016/j.optmat.2017.11.042

- [37] Lapaev D.V., Nikiforov V.G., Safiullin G.M., Lobkov V.S., Knyazev A.A., Krupin A.S., Galyametdinov Yu.G. // J. Lumin. 2018. V. 194. P. 407. doi 10.1016/j.jlumin.2017.10.067
- [38] Lapaev D.V., Nikiforov V.G., Lobkov V.S., Knyazev A.A., Galyametdinov Yu.G. // J. Mater. Chem. C 2018. V. 6. P. 9475. doi 10.1039/c8tc01288a
- [39] Лапаев Д.В., Никифоров В.Г, Лобков В.С., Князев А.А., Галяметдинов Ю.Г., Шухина К.Л. // Изв. РАН. Сер. физ. 2018. Т. 82. № 8. С. 124; Lapaev D.V., Nikiforov V.G., Lobkov V.S., Galyametdinov Y.G., Knyazev A.A., Shukhina K.L. // Russ. Chem. В 2018. V. 82. № 8. Р. 1022. doi 10.3103/S1062873818080233
- [40] Quirino W., Reyes R., Legnani C., Nóbrega P.C., Santa-Cruz P.A., Cremona M. // Synth. Met. 2011. V. 161. P. 964. doi 10.1016/j.synthmet.2011.03.001
- [41] Shahi P.K., Singh A.K., Rai S.B., Ullrich B. // Sens. Actuators A. 2015. V. 222. P. 255. doi 10.1016/j.sna.2014.12.021
- [42] Sousa F.L.N., Mojica-Sánchez L.C., Gavazza S., Florencio L., Vaz E.C.R., Santa-Cruz P.A. // Mater. Res. Express. 2016. V. 3. P. 045701. doi 10.1088/2053-1591/3/4/045701
- [43] DeRosa M.C., Crutchley R.J. // Coord. Chem. Rev. 2002.
 V. 233–234. P. 351. doi 10.1016/s0010-8545(02)00034-6
- [44] Souza E.R., Zulato C.H.F., Mazali I.O., Sigoli F.A. // J. Fluoresc. 2013. V. 23. P. 939. doi 10.1007/s10895-013-1219-5