02

Теоретико-групповая интерпретация спектров гигантского комбинационного рассеяния фталоцианина меди, адсорбированного на фосфиде галлия

© A.М. Полуботко 1 , B.П. Челибанов 2

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

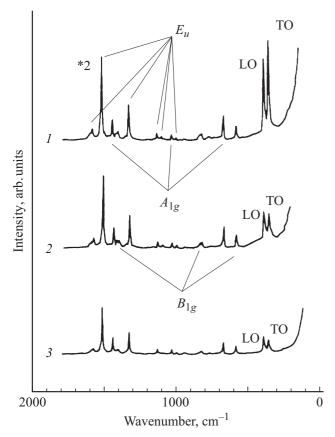
194021 Санкт-Петербург, Россия

² Университет ИТМО,

197101 Санкт Петербург, Россия

e-mail: Chelibanov@gmail.com

Поступила в редакцию 19.05.2018 г. В окончательной редакции 20.06.2018 г. Принята к публикации 06.11.2018 г.


Исследованы спектры гигантского комбинационного рассеяния молекулы фталоцианина меди, адсорбированной на подложке из GaP. Показано, что в спектре появляются очень сильные линии, запрещенные в обычном комбинационном рассеянии. Анализ спектров указывает, что эти линии обусловлены возникновением в системе сильного квадрупольного взаимодействия, а также большим усилением тангенциальных компонент напряженности электрического поля. Как было показано ранее, последний эффект характерен для гигантского комбинационного рассеяния на полупроводниковых и диэлектрических подложках, где усиливается не только нормальная, но и тангенциальные компоненты напряженности поля на поверхности.

DOI: 10.21883/OS.2019.03.47363.143-18

Исследование гигантского комбинационного рассеяния (Гиг. КР) на полупроводниковых и диэлектрических подложках представляет большой интерес как с теоретической, так и с экспериментальной точек зрения. В [1] показано, что причиной Гиг. КР в этом случае, так же как и в случае металлических подложек, является поверхностная шероховатость. Причем усиление происходит в малых областях поверхности с большой положительной кривизной. Нами было показано, что в случае Гиг. КР на полупроводниках и диэлектриках усиление в этих областях меньше, чем на металле с таким же значением модуля диэлектрической проницаемости. Этот результат связан с тем, что диэлектрики и полупроводники в принципе прозрачны для электромагнитного поля в достаточно широкой области частот в отличие от металла, который стремится "вытолкнуть" Поэтому системы с полупроводниковыми или диэлектрическими подложками в отличие от металлов имеют "меньшую неоднородность" среды, что приводит к меньшему усилению поля и его производных. Однако в соответствии с экспериментальными и теоретическими результатами [1] на шероховатых поверхностях полупроводников и диэлектриков должно происходить усиление как нормальной, так и тангенциальной компонент, что приводит к определенным особенностям в спектрах Гиг. КР. Нами была проведена интерпретация теоретико-групповыми методами спектров [2] Гиг. КР молекулы фталоцианина меди (рис. 1), адсорбированной на фосфиде галлия GaP. Как известно, молекула фталоцианина меди относится к группе симметрии D_{1h} .

Спектры этой молекулы, адсорбированной на частицах GaP со средним размером $d=106, 60, 40\,\mathrm{nm}$ в интервале волновых чисел $500-1700\,\mathrm{cm}^{-1}$ показаны на рис. 2. Сразу отметим, что символ *2 около кривой I означает, что интенсивность всего спектра должна быть умножена на 2. Также отметим, что спектры снимались при длине волны падающего излучения $514.5\,\mathrm{nm}$. При этом коэффициент усиления составил примерно 700, 300 и 200 соответственно для частиц со средними размерами d=106, 60,и $40\,\mathrm{nm}$. По нашим представлениям фта-

Рис. 1. Молекула фталоцианина меди.

Рис. 2. Спектры фталоцианина меди, адсорбированного на подложке фосфида галлия: I — средний размер частиц 106 nm, коэффициент усиления 700; 2 — средний размер частиц 60 nm, коэффициент усиления 300; 3 — средний размер частиц 40 nm, коэффициент усиления 200. LO, TO-линии отвечают соответственно продольным и поперечным фононам подложки. Символ *2 у кривой I означает, что интенсивность всего спектра должна быть умножена на 2.

лоцианин меди адсорбируется параллельно поверхности наночастиц. Из таблицы, составленной по результатам работы [3], видно, что в спектре присутствуют достаточно интенсивные линии, обусловленные колебаниями с неприводимыми представлениями A_{1g} и B_{1g} , с волновыми числами соответственно 680, 1030, $1440 \, \text{cm}^{-1}$ и 580, 1030, $1400\,\mathrm{cm}^{-1}$, характерные для обычного рамановского рассеяния. Однако в системе появляются и запрещенные линии с волновыми числами 1000, 1096, 1121, 1327, 1511, $1580\,\mathrm{cm}^{-1}$ и неприводимым представлением E_u , обусловленные колебаниями, преобразующимися как компоненты дипольного момента (d_x, d_y) , а также очень слабая линия с волновым числом 950 cm $^{-1}$ и неприводимым представлением A_{2u} , обусловленная колебанием, преобразующимся как дипольный момент d_z , перпендикулярный поверхности. Появление запрещенных линий с неприводимым представлением E_u согласуется с теорией Гиг. КР на полупроводниковых и диэлектрических подложках [1], по которой на них происходит усиление не только нормальной, но и танСоотнесение линий фталоцианина меди, адсорбированного на GaP [3], неприводимым представлениям группы D_{4h}

Волновое число, cm^{-1}	Соотнесение
580 ср.	B_{1g}
680 cp.	A_{1g}
830 оч. сл.	B_{1g}
950 оч. сл.	A_{2u}
1000 оч. сл.	E_u
1030 оч. сл.	A_{1g}
1096 оч. сл.	E_u
1121 оч. сл.	E_u
1327 с.	E_u
1400 оч. сл.	B_{1g}
1440 ср.	A_{1g}
1511 c.	E_u
1580 сл.	E_u

Примечание. оч. сл. — очень слабая, сл. — слабая, ср. — средняя, с — сильная.

генциальной компонент электрического поля. Согласно теории Гиг. КР [4] рассеяние может происходить через дипольные и квадрупольные моменты d_x, d_y, d_z, Q_{xx} , Q_{yy} , Q_{zz} или в симметричных молекулах через дипольные моменты и линейные комбинации вышеуказанных квадрупольных моментов, преобразующиеся по единичному неприводимому представлению. Для молекулы фталоцианина меди это $Q_1 = Q_{xx} + Q_{yy}$ и $Q_2 = Q_{zz}$, которые называются основными квадрупольными моментами Q_{main} . Здесь мы не будем повторять наши работы, в частности, монографию [4]. Укажем только, что рассеяние через основные квадрупольные моменты Q_1 , Q_2 и дипольные моменты, обозначенные как $(d-Q_{\mathrm{main}})$, определяет появление запрещенных линий. Поэтому их появление, а также появление очень слабой линии с неприводимым представлением A_{2u} говорит о возникновении достаточно сильного квадрупольного взаимодействия, которое возникает в данном случае в системе с полупроводниковой подложкой. Отметим, что мы уже указывали на появление запрещенных линий на молекуле гидрохинона, адсорбированной на подложке из TiO₂ [5], однако здесь запрещенные линии с неприводимым представлением имеют интенсивность даже большую, чем разрешенные линии с неприводимыми представлениями A_{1g} и B_{1g} — в отличие от гидрохинона, адсорбированного на TiO2, где они были очень слабы. Одной из причин может быть тот факт, что молекула фталоцианина меди значительно больше молекулы гидрохинона, а квадрупольное взаимодействие растет с увеличением размера молекул.

Список литературы

[1] *Полуботко А.М., Челибанов В.П.* // Опт. и спектр. 2017. Т. 122. № 6. С. 980.

- [2] *Hayashi S., Koh R., Ichiyama Y., Yamamoto K.* // Phys. Rev. Lett. 1988. V. 60. N 11. P. 1085.
- [3] *Harbeck S., Mack H.-G.* Электронный ресурс. Режим доступа. https://publikationen.uni-tuebingen.de/xmlui/bitstream/handle/10900/49961/pdf/
 CuPc_TiOPc_IR_Raman_Okt2013.pdf?sequence=1& isAllowed=y
- [4] Polubotko A.M. The Dipole Quadrupole Theory of Surface Enhanced / Raman Scattering. N. Y.: Nova Sci. Publ. Inc., 2009
- [5] *Полуботко А.М., Челибанов В.П.* // Опт. и спектр. 2018. Т. 124. № 1. С. 68.