13

Физический механизм работы палладий-бариевых катодов СВЧ-приборов

© В.И. Капустин, 1 И.П. Ли, 2 А.В. Шуманов, 1,2 С.О. Москаленко, 1,2 А.А. Буш, 1 Ю.Ю. Лебединский 3

¹ Московский технологический университет (МИРЭА),

119454 Москва, Россия

 2 OAO "Плутон",

105120 Москва, Россия

³ Российский физико-технический институт (государственный университет),

141700 Долгопрудный, Московская обл., Россия

e-mail: kapustin@mirea.ru

Поступило в Редакцию 6 июля 2018 г. Окончательной редакции 1 ноября 2018 г. Принято к публикации 1 ноября 2018 г.

Методом рентгеноструктурного анализа высокого разрешения (PCA) определены размеры и кристаллографическая ориентация нанокристаллитов фаз Pd и Pd $_5$ Ba в палладий-бариевом катоде. Методом электронной спектроскопии для химического анализа (ЭСХА) исследованы химические состояния Ba и Pd в катодном материале и определен фазовый состав материала, в том числе наличие в фазах растворенных микропримесей. Сопоставление результатов PCA и ЭСХА позволили выявить механизм формирования кристаллитов BaO в катодном материале, ответственных за его эмиссионные свойства. Методом спектроскопии характеристических потерь энергии электронов определена концентрация кислородных вакансий в кристаллитах BaO, сформировавшихся в катодном материале в результате его активирования. По результатам исследований сформулирована "кристаллитная" модель работы палладий-бариевых катодов, являющаяся альтернативой известной "пленочной" модели и позволяющая оптимизировать технологию изготовления и активирования таких катодов.

DOI: 10.21883/JTF.2019.05.47483.267-18

Введение

Палладий-бариевые катодные материалы представляют собой композицию из порошка палладия и порошка интерметаллида Pd_5Ba с содержанием бария в композиции 0.5-2.0%. Интерметаллид Pd_5Ba обычно получают электродуговой переплавкой бария и палладия в среде аргона с избытком палладия в количестве 5-8% по отношению к стехиометрии соединения. При этом катоды СВЧ-приборов формируют либо прессованием и прокаткой композиции "палладий—интерметаллид" в ленту толщиной $200\,\mu\text{m}$, которая используется в качестве внешнего слоя цилиндрического или плоского катода, либо прессованием и последующим спеканием композиции в форме катода электронного прибора, обычно в виде полого цилиндра с внешним диаметром $4-8\,\text{mm}$ и высотой $2-4\,\text{mm}$.

Палладий-бариевые катоды начиная с 60-х годов прошлого века широко применяются в электровакуумных СВЧ-приборах миллиметрового и сантиметрового диапазонах длин волн, прежде всего в магнетронных усилителях и генераторах. Рабочая температура катодов лежит в интервале $300-700^{\circ}$ С, при этом катод в магнетронах подвергается электронной бомбардировке со средней мощностью 5-15 W/cm². В зависимости от типа СВЧ-прибора величина максимального коэффициента вторичной электронной эмиссии σ -материала катода

должна составлять 2.4—2.9, а величина работы выхода ϕ — 2.3—2.7 eV. При этом для СВЧ-генераторов и усилителей от катодного материала требуется различное сочетание значений параметров σ и ϕ при различающейся рабочей температуре катодов.

Эмиссионные свойства и долговечность Pd-Вакатодов, а также их устойчивость к электронной бомбардировке, зависят от технологических параметров их изготовления и активирования в приборах. В частности, оптимальным режимом активирования катодов является прогрев в вакууме 10^{-7} Ра при температуре 1070° С в течение 6-8 h [1]. Чувствительность свойств изначально двуфазных Pd-Ва-катодов к температуре и длительность времени активирования свидетельствуют о протекании в катодном материале физико-химических процессов, сопровождающихся формированием в материале новых фаз.

Режимы эксплуатации Pd-Ва-катодов в приборах различных типов (температура, средняя и импульсная мощность электронной бомбардировки, энергия бомбардировщих катод электронов) сильно различаются. Поэтому для оптимизации составов и технологий катодов под различные типы приборов необходимы адекватные физические представления, описывающие механизм формирования эмиссионных центров, обеспечивающих требуемое сочетание эмиссионных свойств новых фаз, сформировавшихся в катодном материале в результате

его активирования. Отметим, что исходные фазы Pd и Pd₅Ba в соответствии с установленными физикохимическими закономерностями эмиссионных свойств чистых металлов и сплавов [2] не могут обеспечить сочетание значений σ и φ , требуемых для катода магнетрона.

В настоящее время распространенными являются представления о "пленочном" механизме работы Pd-Baкатода [3-5]. Согласно данной модели, на поверхности катода формируется либо моноатомная пленка бария, либо пленка "слой кислорода-слой бария", которые снижают потенциальный барьер на поверхности катодного материала, снижая тем самым величину ϕ и увеличивая величину σ . Однако, во-первых, для формирования пленки бария на поверхности катода изза низкого значения энергии активации поверхностной диффузии не требуется столь значительное время активирования катода при достаточно высокой температуре и, во-вторых, само существование таких пленок в отсутствие внешнего потока бария при температуре выше 700°C невозможно ввиду испарения бария с поверхности или взаимодействия бария с кислородом из газовой фазы прибора [6]. В то же время существование пленок типа "слой кислорода-слой бария" в магнетронах при повышенной температуре и наличии электронной бомбардировки поверхности катода невозможно из-за эффекта электронно-стимулированной десорбции пленок типа "слой кислорода-слой щелочного/щелочноземельного/редкоземельного металла" [7,8].

В работе [1] было установлено, что после активирования Pd-Ва-катода при температуре 1000°C в течение 8 h в вакууме $1 \cdot 10^{-7} \, \text{Pa}$ на поверхности катода формируются "бугорки" со средними линейными размерами $0.5-1\,\mu{\rm m}$. В то же время активирование катода при температуре 900°C не приводит к образованию "бугорков", при этом сам катод не обладает требуемыми эмиссионными свойствами. Исследования элементного состава "бугорков" показали, что они содержат барий, палладий и значительное количество кислорода. Это дает основание предположить, что поверхность катодного материала после активирования состоит из фаз Pd и Pd_5Ba , а также фазы BaO. При этом именно кристаллиты оксида бария, содержащие оптимальную концентрацию кислородных вакансий, могут обеспечить требуемые значения σ и ϕ Pd-Ba-катода [9]. Так как вакуум в приборах при активировании катодов высокий, а парциальный состав его невоспроизводим, то кислород из остаточных газов в приборе не может быть источником формирования кристаллитов ВаО при активировании катодов. Поэтому вопрос о механизме формирования эмиссионно-активных фаз на поверхности палладий-бариевых катодов остается открытым.

Целью настоящей работы является исследование физического механизма работы палладий-бариевых катодов, а именно исследование источника и роли кислорода в формировании фаз, прежде всего фазы BaO, ответственных за эмиссионные свойства катодов.

1. Методики экспериментальных исследований

В соответствии с целью настоящей работы задачами исследований являлись:

- исследование размеров и кристаллографической ориентации кристаллитов фаз Pd и Pd_5Ba методом рентгеноструктурного анализа (PCA) высокого разрешения, так как растворимость кислорода и его диффузионный поток из кристаллитов, очевидно, будет зависеть от размера и ориентации кристаллитов в наноразмерной области;
- исследование химического состояния бария и палладия в катодном материале методом электронной спектроскопии для химического анализа (ЭСХА), так как данный метод позволяет с высокой чувствительностью определить фазовый состав материала, в том числе наличие в фазах растворенных примесей;
- исследование концентрации кислородных вакансий в кристаллитах оксида бария методом спектроскопии характеристических потерь энергии электронов (СХПЭЭ), так как данный метод позволяет непосредственно определить наличие кристаллитов оксида бария и наличие в нем кислородных вакансий. Для количественной интерпретации результатов СХПЭЭ использован метод оптической спектроскопии, позволяющий определить эффективный заряд и эффективную массу электронов кислородных вакансий в оксиде бария.

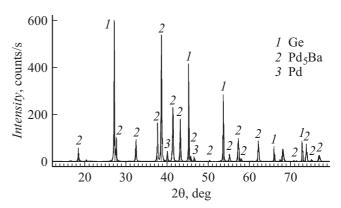
Для изготовления образцов катодных материалов в качестве исходных компонентов использовали Ва металлический (ТУ 48-4-465-85) и Pd порошкообразный марки ПдАП-1 с массовой долей Pd не менее 99.98% (ГОСТ 14836-82) фракции $20-45\,\mu\text{m}$. Интерметаллид Pd₅Ba выплавляли в электродуговой печи с нерасходуемым электродом в среде очищенного аргона. После выплавки интерметаллид размалывали в шаровой мельнице и агатовой ступке, просеивали на ситах, причем для изготовления образцов катодов использовали фракцию интерметаллида 20-45 µm. Исследования в растровом электронном микроскопе показали, что частицы порошков Pd и Pd₅Ba состоят из кристаллитов размером $1-3\,\mu{\rm m}$ и менее. Размеры кристаллитов Pd, а также характер и содержание в них примесей, зависят от технологических параметров их производства на заводеизготовителе и от режимов термообработки на этапе изготовления катода. Размеры кристаллитов Pd₅Ba, а также характер и содержание в них примесей, зависят от скорости охлаждения при кристаллизации, т.е. от массы навески при плавке, и режима термообработки на этапе изготовления катода.

Размеры кристаллитов Pd и Pd $_5$ Ba и значения параметров их кристаллических структур исследованы на установке ДРОН-3 с внутренним эталоном, в качестве которого использовали порошок Ge фракции $20-25\,\mu$ m, полученный размолом монокристалла Ge, который добавляли в количестве 20-25% в исследуемые порошки.

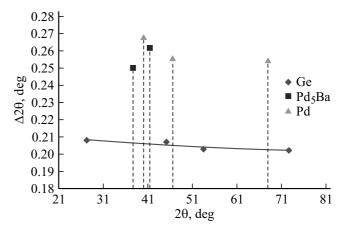
Здесь и далее указаны весовые проценты. Все исследования проведены с использованием $CuK_{\alpha 1}$ -излучения с длиной волны 1.54058 Å. Положение пиков на рентгеновских спектрах с поправкой на положение пиков эталона позволило определить значения параметров кристаллической решетки кристаллитов Pd и Pd_5Ba , а уширение пиков Pd и Pd_5Ba с учетом аппаратурного уширения пиков эталона — определить размеры кристаллитов по основным кристаллографическим направлениям. Для расчета размеров кристаллитов использовали известное уравнение Шеррера—Селякова

$$\Delta(2\theta_{hkl}) = \frac{a\lambda}{L_{hkl}\cos\theta} + b,\tag{1}$$

где L_{hkl} — средний размер частиц; Å, a — коэффициент, близкий к единице (0.94); λ — длина волны рентгеновского излучения; $\Delta(2\theta_{hkl})$ — ширина пиков на половине высоты (в радианах); θ — угловое положение пика в спектре; b — ширина германиевого пика, приведенного к положению пика исследуемого вещества. Если перевести значение уширения пиков в градусы, то средний размер частиц порошка будет равен


$$L_{hkl} = \frac{180a\lambda}{\pi(\Delta - b)\cos\theta}.$$
 (2)

Электронную структуру уровней кислородных вакансий в ВаО исследовали с использованием оптического спектрометра T-70+UV/VIS Spectrometer фирмы PG Instruments Ltd путем регистрации спектров оптического поглощения в диапазоне длин волн 600—1100 nm. Шаг развертки спектров — 0.5 nm, эффективная ширина щели — 5 nm. Обработка оптических спектров позволила экспериментально определить эффективный заряд и эффективную массу электронов кислородных вакансий.


Структуру электронных уровней Pd и Ва в образцах исследовали с использованием спектрометра Theta Probe фирмы Thermo Scientific методом ЭСХА, шаг развертки спектров — 0.05 eV. Концентрацию кислородных вакансий в кристаллитах ВаО исследовали методом СХПЭЭ на спектрометре Theta Probe. Обработку результатов исследований методами оптической спектрометрии, ЭСХА и СХПЭЭ проводили с использованием методик, описанных в работе [10]. Образцы для исследований изготавливали прессованием исходных порошковых компонентов в таблетки диаметром 6.7 mm и толщиной 1 mm, после чего таблетки спекали в вакууме при температуре 1100°С в течение 2 h.

Размеры и кристаллографическая ориентация кристаллитов в Pd и Pd₅Ba

На рис. 1 в качестве примера приведена рентгенограмма фазы $Pd_5Ba+8\%$ Pd, навеска при электродуговой плавке 50 g, после размола слитка и выделения просеиванием фракции порошка $25-45\,\mu{\rm m}$ с добавлением в

Рис. 1. Рентгенограмма фазы Pd₅Ba+8% Pd, навеска при плавке 50 g, с добавлением эталона Ge.

Рис. 2. Угловая зависимость уширения пиков фазы $Pd_5Ba+8\%$ Pd, навеска при плавке 50 g, с добавлением эталона Ge

качестве эталона порошка Ge фракции $20-25\,\mu\mathrm{m}$. На рис. 2 в качестве примера приведена угловая зависимость уширения пиков фазы $Pd_5Ba+8\%$ Pd, навеска при плавке $50\,\mathrm{g}$, с добавлением эталона — порошка Ge. Величину уширения пиков фаз Pd и Pd_5Ba , в частности на рис. 2, определяли по расстоянию от значений уширения для каждого пика фаз до кривой, описывающей угловую зависимость уширения пиков Ge, т. е. до кривой аппаратурного уширения пиков.

В табл. 1 приведены сводные данные по параметрам кристаллической структуры Pd и размерам кристаллитов по кристаллографическим направлениям. Палладий имеет простую кубическую решетку с параметром элементарной ячейки для массивного образца $a=3.8902\,\mathrm{\AA}$ по данным базы ICCD. Образцы 1 и 3 соответствуют различным партиям 1 и 2 порошков Pd, полученным с завода-изготовителя. Образцы 2 и 4 — это образцы 1 и 3 соответственно, но после вакуумного отжига при температуре $1000^{\circ}\mathrm{C}$ в течение $30\,\mathrm{min}$.

В кубической кристаллической решетке наибольшей плотностью упаковки атомов является плоскость (111), поэтому при кристаллизации таких веществ направ-

N₂ π/π	Фаза	Параметр ячейки, Å	Изменение параметра ячейки Δa , Å	Индекс направления $[hkl]$	Размер кристаллитов по направлению, nm
1	Pd, партия 1, исходный	3.8898(8)	-0.0003(2)	[111] [002] [202]	360 290 350
2	Pd, партия 1, отжиг	3.8898(1)	-0.0003(9)	[111] [002] [202]	680 230 400
3	Pd, партия 2, исходный	3.8899(1)	-0.0002(9)	[111] [002] [202]	420 170 145
4	Pd, партия 2, отжиг	3.8898(3)	-0.0003(7)	[111] [002] [202]	640 500 660

Таблица 1. Параметры кристаллической структуры Pd и размеры кристаллитов по кристаллографическим направлениям

Таблица 2. Параметры кристаллической структуры фаз в слитке Pd₅Ba+Pd и размеры кристаллитов по кристаллографическим направлениям

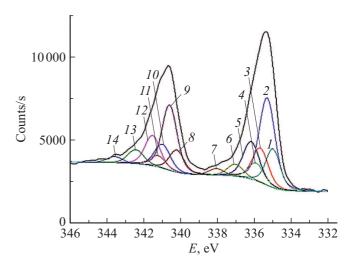
Nº n/n	Фаза	Параметры ячейки a и c , Å	ячейки а и с, параметров ячейки направления		Размер кристаллитов по направлению, nm					
	Φ азы $Pd_5Ba+8\%$ Pd , навеска при плавке $50\mathrm{g}$									
	Pd ₅ Ba	a = 5.5016(3) $c = 4.3520(3)$	$\Delta a = -0.0383(7)$ $\Delta c = +0.0220(3)$	[0001] [1010]	240 195					
A	Pd	a = 3.8901(4)	$\Delta a = -0.0000(6)$	[111] [002] [202]	170 235 420					
	Фазы Pd ₅ Ba+8% Pd, навеска при плавке 100 g									
	Pd ₅ Ba	a = 5.5026(2) $c = 4.3514(2)$	$\Delta a = -0.0373(8)$ $\Delta c = +0.0214(2)$	[0001] [1010]	2620 290					
В	Pd	a = 3.8905(5)	$\Delta a = +0.0003(5)$	[111] [002] [202]	130 160 660					

лением роста кристаллов является направление [111]. Средний размер кристаллитов в образцах 1 и 3 по направлению [111] составляет 390 nm, причем различие этого размера по образцам 1 и 3 не превышает 8%, а различие параметров кристаллической решетки не превышает 5%. Однако поперечные размеры кристаллитов в исходных материалах различаются в среднем в 2 раза, что, видимо, связано с вариациями параметров технологий их производства.

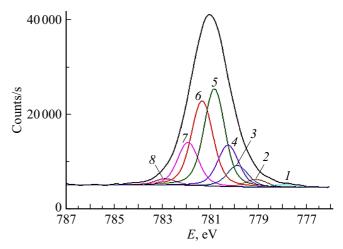
Вакуумный отжиг образцов, как видно для образцов 2 и 4, приводит к увеличению размеров кристаллитов вдоль направления наибольшей плотности упаковки в среднем в 1.7 раза. В других направлениях кристаллиты материала из партии 1 после отжига изменяются мало, а в материале из партии 2 увеличиваются примерно

в 2—3 раза, причем различие в размерах кристаллитов в исходных материалах из партии 1 и 2 после отжига уменьшается. При этом отжиг приводит к изменению параметра кристаллической решетки в материалах из партии 1 и 2 примерно на 25% по отношению к значениям параметров кристаллической решетки до отжига образцов.

В табл. 2 приведены сводные данные по параметрам кристаллической структуры фаз в слитке $Pd_5Ba+8\%$ Pd и размеры кристаллитов по кристаллографическим направлениям. Образец A получен переплавкой компонентов с избытком палладия при общей массе навески $50\,\mathrm{g}$, а образец B — переплавкой компонентов с избытком палладия при общей массе навески $100\,\mathrm{g}$. Основное отличие образцов A и B состоит B том, что скорость


охлаждения образца В при кристаллизации меньше, чем образца А. Интерметаллид Pd_5Ba имеет гексагональную структуру с параметрами решетки $a=5.5400\,\mathrm{\AA}$, $c=4.3300\,\mathrm{\AA}$ по данным базы ICCD. Плоскостью максимальной упаковки в такой структуре является плоскость [0001], поэтому и рост кристаллов протекает преимущественно по направлению (0001).

Как видно из табл. 2, величина скорости кристаллизации интерметаллида Pd_5Ba не очень существенно влияет на размер кристаллитов вдоль направления a, однако уменьшение скорости кристаллизации приводит к увеличению размера кристаллитов вдоль направления с примерно в 10 раз. При этом независимо от скорости кристаллизации параметры кристаллической решетки интерметаллида a и c изменяются примерно одинаково, но разнонаправлено: решетка "сжимается" вдоль направления a и "растягивается" вдоль направления a.


Параметры кристаллической решетки кристаллитов Pd, образовавшихся после выплавки интерметаллида с избытком Pd, принципиально отличаются от параметров кристаллитов Pd из табл. 1. Размеры кристаллитов Pd после переплавки соизмеримы с размерами исходных кристаллитов Pd и Pd после отжига из табл. 1. При кристаллизации с высокой скоростью охлаждения, как видно для кристаллита Pd из образца A табл. 2, параметр его кристаллической решетки практически не отличается от параметра решетки для массивного образца Pd, хотя должен был уменьшиться с учетом наноразмерности кристаллитов. Более того, при кристаллизации с более низкой скоростью охлаждения, как видно для кристаллита Pd из образца В табл. 2, параметр его кристаллической решетки, несмотря на наноразмерность кристаллитов, даже превышает параметр кристаллической решетки для массивного образца Pd.

3. Химическое состояние Pd и Ba в катодном материале

На рис. 3 в качестве примера приведен участок спектра ЭСХА, отнощийся к $3d_{3/2}$ и $3d_{5/2}$ уровням Pd, для образца В из табл. 2 с разбиением спектра на гауссовы пики, относящиеся к ризличным химическим состояниям Рd. Пики соответствуют состояниям Pd: 1 и 8 — Pd₅Ba, 2 и 9 — Pd, 3 и 10 — Pd[O;H], 4 и 11 — Pd[C], 5 и 12 — Pd[O], 6 и 13 — PdO, 7 и 14 — PdO₂. В квадратных скобках у фаз отмечены химические элементы, растворенные в кристаллитах этих фаз и влияющие на химические сдвиги пиков. В табл. 3 приведены сводные данные по химическим состояниям палладия в образцах 1 и 2 из табл. 1 и образцах А и В из табл. 2. Спектры ЭСХА образцов 3 и 4 из табл. 1 принципиально не отличаются от спектров ЭСХА образцов 1 и 2. Для повышения однозначности расшифровки в табл. 3 приведены также результаты исследований образца 1 из табл. 1, отожженного в водороде при температуре 600°C

Рис. 3. Участок спектра ЭСХА, относящийся к состояниям Pd, образца B (табл. 2).

Рис. 4. Участок спектра ЭСХА, относящийся к состояниям Ва, образца В (табл. 2).

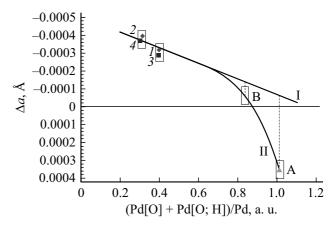
в течение 30 min, а затем в вакууме при температуре 1000°C в течение 1 h. Воспроизводимость положения гауссовых пиков различных химических состояний Pd в различных образцах составляет 0.02 eV, ширина всех пиков на половине высоты лежит в интервале 0.95—1.01 eV.

На рис. 4 приведен спектр ЭСХА, относящийся к $3d_{5/2}$ уровню Ва для образца В. Пики соответствуют состояниям Ва: I — $Pd_5Ba[H]$, 2 — $Ba(OH)_2 \cdot H_2O$, 3 — $Pd_5Ba[C]$, 4 — $Pd_5Ba[O;H]$, 5 — Pd_5Ba , 6 — $Pd_5Ba[O]$, 7 — $BaO_{(1-x)}$, 8 — $Ba_{(1-y)}O_{(1-x)}Pd_y$. В табл. 4 приведены сводные данные по химическим состояниям Ва в образцах А и В, а также в катодных материалах, изготовленных из порошка палладия партии 1 и фаз А и В прессованием и спеканием в вакууме при 1050° С в течение 2 h.

Сдвиги электронных уровней элементов зависят от химического окружения элемента, в частности, от величины электронного сродства окружающих атомов.

			Рd № 1 (табл. 1	Pd ₅ Ba+8% Pd (табл. 2)		
No n/n	Фаза	Исходный	Отжиг в вакууме	Отжиг в Н2 и вакууме	Образец А	Образец В
		E, eV/I, counts/s	E, eV/ I , counts/s	E, eV/I, counts/s	E, eVI, counts/s/	E, eV/I, counts/s
1	Pd ₅ Ba[H]	-/-	-/-	-/-	334.90/360	334.90/695
2	Pd ₅ Ba	-/-	-/-	-/-	335.07/2061	335.06/1701
3	Pd[H]	-/-	-/-	333.69/88	333.73/40	333.69/30
4	Pd	335.29/8009	335.30/6526	335.24/4687	335.30/5937	335.30/3773
5	Pd[O, H]	-/-	-/-	335.63/2421	335.65/2111	335.64/1897
6	Pd[C]	335.89/653	335.88/571	335.89/431	335.91/1402	335.91/716
7	Pd[O]	336.14/3191	336.15/2044	336.15/2402	336.16/2852	336.16/1926
8	PdO	337.03/2179	337.02/533	337.02/949	337.03/875	337.03/823
9	PdO_2	337.90/591	337.91/538	337.90/427	337.91/513	337.92/346
10	$PdCl_2$	338.58/263	338.58/208	338.58/157	-/-	-/-

Таблица 3. Сводные данные по химическим состояниям палладия в различных образцах


Таблица 4. Сводные данные по химическим состояниям Ва в различных образцах

Nº	Фаза	Фаза В, E, eV/I, counts/s	Фаза A, E, eV/I, counts/s	Катодный материал Pd+5% фазы B, <i>E</i> , eV/ <i>I</i> , counts/s	Катодный материал Pd+5% фазы A, <i>E</i> , eV/ <i>I</i> , counts/s
1	Pd ₅ Ba[H]	778.03/627	778.02/398	778.03/327	778.05/245
2	Ba(OH) ₂ H ₂ O	779.12/1930	779.12/1825	779.12/1817	779.13/1796
3	Pd ₅ Ba[C]	779.88/5384	779.89/3476	779.77/4752	779.78/5187
4	Pd ₅ Ba[O,H]	780.27/10467	780.28/11468	780.26/8884	780.29/8547
5	Pd₅Ba	780.84/24314	780.86/20738	780.84/4462	780.83/4387
6	Pd ₅ Ba[O]	781.35/22111	781.37/18937	781.35/786	781.35/1128
7	$BaO_{(1-x)}$	781.93/10748	781.96/12297	781.93/379	781.96/380
8	$Ba_{(1-y)}O_{(1-x)}Pd_y$	782.87/1566	782.86/1789	_	_

Поэтому расшифровку химических состояний Pd и Ba в различных образцах материалов проводили с учетом известных значений электронного сродства χ элементов: $\chi=0.56\,\mathrm{eV}\,$ для Pd, $\chi=0.75\,\mathrm{eV}\,$ для H, $\chi=1.27\,\mathrm{eV}\,$ для C, $\chi=1.46\,\mathrm{eV}\,$ для O, $\chi=3.62\,\mathrm{eV}\,$ для Cl, $\chi=0\,\mathrm{eV}\,$ для Ba. Воспроизводимость положения гауссовых пиков различных химических состояний Ba в различных образцах составляет $0.02\,\mathrm{eV}$, ширина всех пиков на половине высоты лежит в интервале $0.95-1.01\,\mathrm{eV}.$ Отметим, что ширина пиков Ba в оксидных системах (металлопористые, скандатные, оксидные катоды) составляет $\approx 2\,\mathrm{eV}\,$ из-за поляризации и зарядки поверхности диэлектриков [10].

На рис. 4 и в табл. 4 фаза $BaO_{(1-x)}$ — кристаллиты BaO, содержащие кислородные вакансии, фаза $Ba_{(1-y)}O_{(1-x)}Pd_y$ — кристаллиты BaO, содержащие кислородные вакансии и растворенные атомы Pd. Отметим, что ввиду малого содержания фазы Pd_5Ba в катодных материалах, чувствительности метода ЭСХА недостаточно для регистрации в них кристаллитов $Ba_{(1-y)}O_{(1-x)}Pd_y$ на фоне шумов (два правых нижних столбца табл. 4). У пиков 1, 3, 4 и 6 табл. 4 в квадратных скобках указаны элементы, растворенные в кристаллитах фазы Pd_5Ba .

На рис. 5 приведена корреляционная диаграмма между отклонением $y=\Delta a$ параметра кристалличе-

Рис. 5. Корреляционная диаграмма в координатах $y = \Delta a$; $x = \{ Pd[O] + Pd[H,O] \} / Pd.$

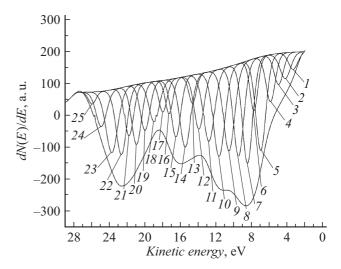
ской решетки Pd от значения для массивного образца палладия, у которого $a=3.8902\,\mathrm{\AA}$, и суммарным относительным содержанием кислорода и гидроксильных групп в образцах, определенным методом ЭСХА $x=\{\mathrm{Pd}[\mathrm{O}]+\mathrm{Pd}[\mathrm{H,O}]\}/\mathrm{Pd}$. На рис. 5 экспериментальные точки 1-4 соответствуют образцам 1-4 табл. 1, а экспериментальные точки A и B — фазам Pd из образцов A

и В табл. 2. Прямая I — линейная экстраполяция изменения параметра решетки палладия при содержании в нем только примесей кислорода, нелинейная кривая II — изменение параметра решетки палладия при наличии в нем примесей и кислорода, и водорода. Прямоугольники на рис. 5 отражают области экспериментальной погрешности.

Анализ результатов рис. 5 показывает, что вакуумный отжиг палладия, как и следовало ожидать, снижает содержание кислорода в палладии. Однако в кристаллитах избыточного палладия в образцах материалов А и В наблюдается повышенное содержание кислорода, в том числе в составе гидроксильных групп. Именно данный кислород ответствен за формирование кристаллитов ВаО в палладий-бариевых катодных материалах по схемам

$$\{Pd[O] + Pd[H,O]\} + Pd_5Ba \Rightarrow BaO_{(1-x)}, \qquad (3)$$

$${Pd[O] + Pd[H,O]} + Pd_5Ba \Rightarrow Ba_{(1-v)}O_{(1-x)}Pd_v.$$
 (4)


Данный механизм формирования кристаллитов оксида бария в палладий-бариевых катодных материалах объясняет то обстоятельство, что в процессе разработки и использования палладий-бариевых катодов выплавка фазы Pd_5Ba всегда осуществляется с избытком палладия, что обеспечивает формирование запаса кислорода, необходимого для протекания процессов (3) и (4). При формировании в катодном материале кристаллитов оксида бария $BaO_{(1-x)}$, содержащего кислородные вакансии, может иметь место растворение в данных кристаллитах атомов палладия с формированием фазы $Ba_{(1-y)}O_{(1-x)}Pd_y$. Кристаллиты этих фаз, действительно, наблюдаются методом ЭСХА.

4. Концентрация кислородных вакансий в кристаллитах ВаО

Исследование электронной концентрации в различных фазах катодных материалов были проведены методом СХПЭЭ при энергии первичных электронов 1000 eV. На рис. 6 в качестве примера приведен спектр СХПЭЭ для образца В, описанного выше.

Спектр на рис. 6 для повышения чувствительности получен численным дифференцированием спектра распределения вторичных электронов вблизи пика упруго отраженных электронов. В спектре выделены гауссовы пики, пронумерованные в порядке возрастания энергии потерь, с использованием стандартного пакета программ спектрометра. Ширина всех пиков на половине высоты составляет 1.20—1.40 eV.

Характеристические потери в фазах катодных материалов обусловлены возбуждением объемных и поверхностных плазменных колебаний электронов в зонах проводимости кристаллитов фаз Pd_5Ba и Pd, а также объемных и поверхностных плазменных колебаний электронов на уровнях кислородных вакансий в кристаллитах фазы

Рис. 6. Спектр СХПЭЭ для образца В состава $Pd_5Ba+8\% Pd$.

 ${\rm BaO}_{(1-x)}$ и фазы ${\rm Ba}_{(1-y)}{\rm O}_{(1-x)}{\rm Pd}_y$. При этом потери энергии электронов в каждой фазе составят

$$\Delta E = n_1 \Delta E_{vol} + n_2 \Delta E_{surf}, \tag{5}$$

где n_1 и n_2 — целые числа, ΔE_{vol} и ΔE_{surf} — соответственно энергии возбуждения объемного и поверхностного плазмонов. Для оксидных фаз $\mathrm{BaO}_{(1-x)}$ и $\mathrm{Ba}_{(1-y)}\mathrm{O}_{(1-x)}\mathrm{Pd}_y$ они определяются известными соотношениями [10]:

$$\Delta E_{vol} = \sqrt{\frac{e^{*2}N_V\hbar^2}{\varepsilon\varepsilon_0m^*}}, \ \Delta E_{surf} = \sqrt{\frac{e^{*2}N_S\hbar^2}{2\varepsilon\varepsilon_0m^*}}.$$
 (6)

Здесь N_V и N_S — концентрации кислородных вакансий в объеме и на поверхности оксидов соответственно, m^* — эффективная масса электронов кислородный вакансий, e^* — эффективный заряд электронов, \hbar — постоянная Планка, ε — диэлектрическая проницаемость оксида, ε_0 — диэлектрическая постоянная.

Для фаз Pd₅Ba и Pd, имеющих металлический тип проводимости, соотношения (6) напрямую неприменимы. Однако в рамках одноэлектронной модели металлов рассмотрение плазменных колебаний приводит к соотношениям (6), если формально положить $\varepsilon = 1$, $e^*/e = 1$, $m^*/m = 1$. При этом рассчитанные по соотношениям (6) значения электронной концентрации, конечно, не будут равны их истинным значениям в данных металлических фазах, но позволяют оценить изменение концентрации электронов в зоне проводимости данных фаз при наличии в них примесей, например кислорода и водорода, концентрации которых зависят от технологии материалов. В табл. 5 в качестве примера приведена схема расшифровки спектра, приведенного на рис. 6. Индексами s и v обозначены соответственно поверхностный и объемный плазмоны.

Для каждой регистрируемой фазы в табл. 5 в соответствии с соотношением (5) были выделены

No	E, eV		$BaO_{(1-x)}$		Ba _(1-y)	$O_{(1-x)}Pd_y$		Pd	Po	d ₅ Ba
	,	Ряд 1	Ряд 2	Ряд 3	Ряд 4	Ряд 5	Ряд 6	Ряд 7	Ряд 8	Ряд 9
	0	0 s.			0 s.		0 s.		0 s.	
1	3.49	1 s.								
2	4.24				1 s.					
3	4.99		0 s. + 1 v.							
4	5.90					0 s. + 1 v.				
5	7.00	2 s.					1 s.			
6	7.77								1 s.	
7	8.49		1 s. + 1 v.		2 s.					
8	9.50			0 s. + 2 v.				0 s. + 1 v.		
9	10.57	3 s.				1 s.+1 v.				0 s. + 1 v.
10	11.69		2 s.+1 v.							
11	12.84				3 s.					
12	13.98	4 s.		1 s. + 2 v.			2 s.			
13	14.68					2 s.+1 v.				
14	15.50		3 s. + 1 v.						2 s.	
15	16.55				4 s.			1 s. + 1 v.		
16	17.32	5 s.		2 s.+2 v.		3 s.+1 v.				
17	18.02									1 s. + 1 v.
18	19.00		4 s. + 1 v.							
19	20.03			3 s. + 2 v.						
20	20.99	6 s.			5 s.		3 s.			
21	21.83					4 s. + 1 v.				
22	22.69		5 s. + 1 v.							
23	23.76			4 s. + 2 v.				2 s.+1 v.	3 s.	
24	24.96	7 s.								
25	25.98				6 s.	5 s.+1 v.				2 s.+1 v.

Таблица 5. Схема расшифровки спектра рис. 2

Таблица 6. Электронная концентарция и концентрация кислородных вакансий в различных образцах

N₂	Фаза	Параметр	Фаза В	Фаза А	Катодный материал Pd+5% фазы В
1	Pd	E_{vol} , eV E_{surf} , eV N_V , m ⁻³ N_S , m ⁻³	9.47 7.06 $6.51 \cdot 10^{28}$ $7.24 \cdot 10^{28}$	9.66 7.00 $6.77 \cdot 10^{28}$ $7.11 \cdot 10^{28}$	$9.47 \\ 7.01 \\ 6.50 \cdot 10^{28} \\ 7.13 \cdot 10^{28}$
2	Pd₅Ba	E_{vol} , eV E_{surf} , eV N_V , m ⁻³ N_S , m ⁻³	$ \begin{array}{r} 10.58 \\ 7.80 \\ 8.12 \cdot 10^{28} \\ 8.84 \cdot 10^{28} \end{array} $	$ \begin{array}{r} 10.65 \\ 7.84 \\ 8.23 \cdot 10^{28} \\ 8.93 \cdot 10^{28} \end{array} $	$ \begin{array}{r} 10.58 \\ 7.65 \\ 8.13 \cdot 10^{28} \\ 8.50 \cdot 10^{28} \end{array} $
3	$BaO_{(1-x)}$	E_{vol} , eV E_{surf} , eV N_V , m ⁻³ N_S , m ⁻³	5.01 3.51 $1.76 \cdot 10^{25}$ $1.73 \cdot 10^{25}$	5.32 3.53 $1.99 \cdot 10^{25}$ $1.75 \cdot 10^{25}$	5.02 3.48 $1.77 \cdot 10^{25}$ $1.70 \cdot 10^{25}$
4	$Ba_{(1-y)}O_{(1-x)}Pd_y$	E_{vol} , eV E_{surf} , eV N_V , m ⁻³ N_S , m ⁻³	6.35 4.09 $1.97 \cdot 10^{25}$ $1.63 \cdot 10^{25}$	6.02 4.42 $1.77 \cdot 10^{25}$ $1.91 \cdot 10^{25}$	$6.25 4.00 1.91 \cdot 10^{25} 1.57 \cdot 10^{25}$

несколько рядов плазменных потерь, по которым с использованием соотношений (6) определены электронные концентрации в фазах Pd_5Ba и Pd и кон-

центрации кислородных вакансий в фазах $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$, приведенные в табл. 6. Для фаз $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ эффективные заряды и

эффективные массы электронов кислородных вакансий определены по методике [10] методом оптического поглощения: $e^*/e = 1.57$, $m^*/m = 4.16 \cdot 10^{-4}$ для фазы $\mathrm{Ba}_{(1-y)}\mathrm{O}_{(1-x)}\mathrm{Pd}_y$ и $e^*/e=1.39$ и $m^*/m=4.68\cdot 10^{-4}$ для фазы $BaO_{(1-x)}$. Методика определения данных параметров основана на том обстоятельстве, что уровни кислородных вакансий в фазах $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ расщепляются, что обусловлено неупорядоченным пространственным распределением кислородных вакансий в этих оксидных фазах [9]. При этом величина расщепления электронного уровня кислородных вакансий составляет 45 meV для фазы $BaO_{(1-x)}$ и 40 meV для фазы $Ba_{(1-y)}O_{(1-x)}Pd_y$. Уменьшение величины расщепления электронного уровня кислородных вакансий в кристаллитах фазы $BaO_{(1-x)}$ при появлении в них микропримесей Pd свидетельствует о возникновении определенной степени упорядочения в пространственном распределении кислородных вакансий. Для сравнения растворение в фазе $BaO_{(1-x)}$ атомов Са и Sr приводит к увеличению расщепления уровня кислородных вакансий соответственно до 65 и 62 meV, т.е. к увеличению степени беспорядка, а одновременное растворение указанных примесей снижает его до 45 meV, что означает появления определенной степени упорядочения.

При соотнесении рядов 1-3, 4-5, 6-7 и 8-9 соответствующим фазам было учтено следующее. Протекание реакций образования кристаллитов ВаО по схемам (3) и (4) определяется только термодинамикой процессов, при этом различие значений энергии Гиббса образования фаз $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ будет незначительным из-за малости концентрации Pd, растворенного в кристаллитах ВаО. Поэтому и концентрации кислородных вакансий в указанных фазах должны отличаться мало. Однако в фазах $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$ может существенно различаться диффузионная подвижность ионов кислорода по кислородным вакансиям из-за упорядочения вакансий в фазе $Ba_{(1-y)}O_{(1-x)}Pd_y$ [10]. Поэтому соотношение количества данных фаз в катоде скажется на его эмиссионной долговечности. Электронная концентрация в фазе Pd₅Ba должна быть выше, чем в фазе Pd, так как Pd имеет полностью заполненную d-оболочку, а Ва имеет два *s*-электрона на внешней оболочке. При этом соотношение значений электропроводности указанных фаз может быть иным из-за различия конфигураций поверхности Ферми в этих фазах, различия длины свободного пробега электронов относительно рассеяния.

Величина концентрации кислородных вакансий в фазах ${\rm BaO}_{(1-x)}$ и ${\rm Ba}_{(1-y)}{\rm O}_{(1-x)}{\rm Pd}_y$, сформировавшихся в Pd-Ba-катоде на этапе его изготовления, меньше концентрации кислородных вакансий в фазе ${\rm BaO}_{(1-x)}$, которая, как было показано в работе [10], формируется в металлопористом и скандатном катоде. А это означает [9], что величины σ и φ для Pd-Ba-катода должна быть иными, чем указанные параметры для металлопористого или скандатного катодов, что в действительности и наблюдается на практике [1,3–5].

Заключение

Результаты исследований позволили сформулировать "кристаллитную" модель работы Pd-Ва-катодов СВЧприборов, которая принципиально отличается от известной "пленочной" модели работы таких катодов. Суть модели состоит в следующем:

- компоненты Pd-Ва-катодов имеют нанокристаллитную структуру, при этом размеры кристаллитов по различных кристаллографическим направлениям могут сильно различаться и зависят от технологической предыстории материалов;
- технологическая предыстория определяет и значения параметров кристаллической структуры нанокристаллитов, которые зависят также и от типа и концентрации растворенных в них микропримесей;
- диффузионная подвижность микропримесей (С, О, Н), а также компонентов катодного материала (Ва, Рd), зависящая от размеров и параметров решетки нанокристаллитов по кристаллографическим направлениям, определяет эффективность формирования новых фаз на этапе активирования катода, которые, в свою очередь, определяют его эмиссионные свойства;
- эмиссионные свойства Pd-Ba-катодов определяют кристаллиты фазы $BaO_{(1-x)}$ и фазы $Ba_{(1-y)}O_{(1-x)}Pd_y$, содержащие кислородные вакансии и формирующиеся на этапе изготовления и активирования катода, при этом "поставщиком" кислорода для образования данных кристаллитов являются кристаллиты Pd, преимущественно те, которые прошли электродуговую переплавку в качестве избыточной фазы при синтезе интерметаллида Pd_5Ba , а "поставщиком" бария являются кристаллиты фазы Pd_5Ba ;
- в фазах $BaO_{(1-x)}$ и $Ba_{(1-y)}O_{(1-x)}Pd_y$, несмотря на близость значений концентрации кислородных вакансий, может существенно различаться диффузионная подвижность ионов кислорода по кислородным вакансиям из-за упорядочения вакансий в фазе $Ba_{(1-y)}O_{(1-x)}Pd_y$, поэтому соотношение количества данных фаз в катоде будет определять его эмиссионную долговечность.

Список литературы

- [1] Автореф. канд. дис. *Ли И.П.* Формирование структуры и физических свойств катодов для разработки малогабаритных магнетронов с безнакальным: 01.04.07. М., 2012. 123 с.
- [2] Савицкий Е.М. Электрические и эмиссионные свойства сплавов. М.: Наука, 1978. 269 с.
- [3] Дюбуа Б.Ч., Култашев О.К., Поливникова О.В. // Электронная техника. Сер. 1. СВЧ-техника. 2008. Вып. 4 (497). С. 3–22.
- [4] Дюбуа Б.Ч., Земчихин Е.М., Култашев О.К., Макаров А.П., Негирев А.А., Поливникова О.В., Рожков С.Е. // Электронная техника. Сер. 1. СВЧ-техника. 2013. Вып. 4 (519). С. 196–199.
- [5] Дюбуа Б.Ч., Королев А.Н. // Электронная техника. Сер. 1. СВЧ-техника. 2011. Вып. 1 (509). С. 5–25.

- [6] *Фоменко В.С.* Эмиссионные свойства материалов: справочник. Изд. 4-е, перераб. и доп. Киев: Наук. думка, 1981. 340 с.
- [7] Агеев В.Н., Кузнецов Ю.А., Потехина Н.Д. // ФТТ. 2004. Т. 46. Вып. 5. С. 945–952.
- [8] Агеев В.Н., Кузнецов Ю.А. // ФТТ. 2007. Т. 49. Вып. 5. С. 940–944.
- [9] *Капустин В.И.* // Перспективные материалы. 2000. № 2. С. 5–17.
- [10] Капустин В.И., Ли И.П., Шуманов А.В., Лебединский Ю.Ю., Заблоцкий А.В. // ЖТФ. 2017. Т. 87. Вып. 1. С. 105–115. [Kapustin V.I., Li I.P., Shumanov A.V., Lebedinskii Yu.Yu., Zablotskii A.V. // Techn. Phys. 2017. Vol. 62. N 1. P. 116–126.]