Антиструктурные дефекты в полупроводниковых стеклах Ge—Te и Ge—As—Te

© А.В. Марченко¹, П.П. Серегин¹, Е.И. Теруков², К.Б. Шахович¹

E-mail: ppseregin@mail.ru

(Поступила в Редакцию 27 ноября 2018 г. В окончательной редакции 3 декабря 2018 г. Принята к публикации 10 декабря 2018 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопах 119mm Sn(119m Sn), 119m Te(119m Sn), 125 Sn(125 Te) и 125m Te(125 Te) продемонстрировано образование антиструктурных дефектов в стеклообразных сплавах Ge_{20} Te $_{80}$ и Ge_{15} As $_4$ Te $_{81}$ в виде атомов олова в узлах теллура и атомов теллура в узлах германия. Показано, что изовалентное замещение атомов германия атомами олова не изменяет симметрию локального окружения узлов германия, тогда как атомы олова и теллура в несвойственных для них позициях перестраивают свое локальное окружение.

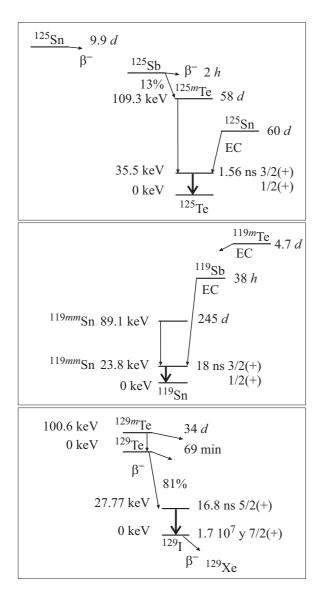
DOI: 10.21883/FTP.2019.05.47570.9032

1. Введение

Антиструктурные дефекты — это дефекты, возникающие в соединениях из-за взаимного обмена местами атомов различной химической природы. Такие дефекты встречаются, как правило, когда размеры указанных атомов сопоставимы и роль ионной составляющей химической связи невелика [1]. В частности, антиструктурные дефекты наблюдались в нелегированном арсениде галлия, в котором наряду с вакансиями мышьяка и галлия, межузельными атомами мышьяка и галлия присутствуют атомы мышьяка в позиции галлия и атомы галлия в позиции мышьяка [2]. В ионных соединениях антиструктурные дефекты практически не встречаются. Однако использование эмиссионной мессбауэровской спектроскопии позволяет стабилизировать такие дефекты и в полупроводниковых соединениях с большой ионной составляющей химической связи [3-8].

В настоящей работе приводятся результаты экспериментального наблюдения атомов олова и теллура. входящих в состав антиструктурных дефектов в стеклообразных полупроводниковых сплавах $Ge_{20}Te_{80}$ и Ge₁₅As₄Te₈₁. Для этой цели был использован эмиссионный вариант мессбауэровской спектроскопии на изотопах ^{119mm}Sn(^{119m}Sn), ^{119m}Te(^{119m}Sn), ¹²⁵Sn(¹²⁵Te) и 125m Te(125 Te), что позволило стабилизировать примесные атомы олова и атомы теллура в несвойственных им положениях после цепочки радиоактивных распадов материнских ядер. Если использовать традиционную шкалу электроотрицательности химических элементов, то атомы олова и германия могут рассматриваться как представители металлов, тогда как атомы теллура являются представителями металлоидов (неметаллов). Таким образом, антиструктурные дефекты в структурной сетке стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ должны возникать в

результате стабилизации зонда 119m Sn в узлах теллура и зонда 125 Те в узлах германия. Для идентификации структурных позиций атомов теллура в стеклах использовалась эмиссионная мессбауэровская спектроскопия на изотопах 129m Te(129 I). Схемы распадов изотопов 119mm Sn, 119m Te, 125 Sn, 125m Te и 129m Te приведены на рис. 1.


2. Методика эксперимента

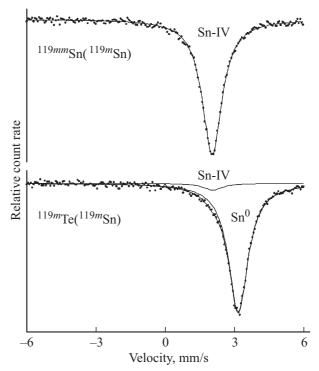
Исходные компоненты сплавлялись в тонкостенных кварцевых ампулах, вакуумированных до 10^{-3} мм рт. ст. Расплавы весом 1 г выдерживались при 1050° С в течение 24 ч и затем закалялись в ледяную воду для получения стеклообразных образцов. Критериями стеклообразного состояния служили раковистый излом, рентгеноаморфность и отсутствие микровключений при просмотре шлифованных поверхностей с помощью металлмикроскопа МИМ-7. Поскольку области стеклообразования в выбранных системах невелики, для получения однородных стекол были выбраны составы, находящиеся вблизи середины этих областей — $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$.

Изотопы 119mm Sn, 119m Te, 125 Sn, 125m Te и 129m Te получали по реакциям 118 Sn(n,γ) 119mm Sn,) 117 Sn(α , 2n) 119m Te, 124 Te(n,γ) 125m Te, 124 Sn(n,γ) 125 Sn и 128 Te(n,γ) 129m Te. Мессбауэровские источники готовили путем сплавления стекол с радиоактивными препаратами 119mm Sn, 119m Te, 125 Sn, 125m Te и 129m Te. Мессбауэровские спектры 119m Sn, 125 Te и 129 I измерялись при $80\,\mathrm{K}$ с поглотителями 119 SnO $_3$ (поверхностная плотность по 119 Sn составляла 125 Te составляла 2m Cm) и 25 I (поверхностная плотность по 125 Te составляла 2m Cm) и 29 I (поверхностная плотность по 129 I составляла 10 мг/см 2) соответственно. Спектр поглотителя 29 I составляла 219 SnO $_3$ с источником 219mm SnO $_3$ представлял собой одиночную

¹ Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им .В.И. Ленина, 197376 Санкт-Петербург, Россия

Рис. 1. Схемы распада ядер 125 Sn, 125m Te, 119mm Sn, 119 Sb, 119m Te и 129m Te.


линию с шириной на полувысоте G = 0.80(3) мм/с, которая принималась за аппаратурную ширину спектральной линии (естественная удвоенная ширина ядерного уровня изомера 119m Sn составляет 0.647 мм/с). Спектр поглотителя Zn^{125} Те с источником Zn^{125m} Те имел ширину 6.10(9) мм/с, которая считалась аппаратурной шириной (естественная удвоенная ширина ядерного уровня изомера 125Те составляет 5.208 мм/с). Спектр поглотителя K^{129} I с источником Zn^{129m} Те представлял собой одиночную линию с шириной на полувысоте $G=1.10(3)\,\mathrm{mm/c}$, которая принималась за аппаратурную ширину спектральной линии (естественная удвоенная ширина ядерного уровня изомера 129 I составляет 0.586 мм/с). Изомерные сдвиги мессбауэровских спектров ^{119m}Sn, ¹²⁵Те и 129 І приводятся относительно указанных выше поглотителей. Типичные спектры приведены на рис. 2-7, а их параметры сведены в таблице.

3. Экспериментальные результаты и их обсуждения

3.1. Мессбауэровская спектроскопия на изотопе ¹¹⁹Sn

Мессбауэровские спектры 119m Sn стекол представляют собой либо одиночные уширенные линии, либо суперпозицию двух уширенных линий (ширина на полувысоте составляла $\sim 1.04-1.06$ мм/с). При обработке спектров предполагалось, что уширение спектров объясняется неоднородным изомерным сдвигом (см., например, [5,7,8]). Полученные значения изомерного сдвига IS и площадей под нормированным мессбауэровскими спектрами S сведены в таблице.

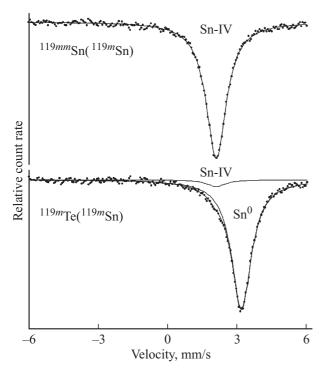
Поскольку атомы олова и германия находятся в главной подгруппе IV группы таблицы Менделеева и известно свойство атомов олова изовалентно замещать атомы германия в структурной сетке стекол [9], то ожидалось, что в случае материнских атомов 119m Sn дочерний зонд 119m Sn в стеклообразных сплавах $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ должен оказаться в узлах германия, Как видно из рис. 2 и 4, мессбауэровские спектры 119m Sn стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ с материнскими атомами 119mm Sn представляют собой одиночные линии с изомерными сдвигами IS $\sim 2.05-2.09$ мм/с (см. таблицу). Эти сдвиги близки к изомерному сдвигу мессбауэровского спектра 119 Sn серого олова (~ 2.05 мм/с [10]), в котором олово

Рис. 2. Эмиссионные мессбауэровские спектры 119mm Sn(119m Sn) и 119m Te(119m Sn) стеклообразного сплава $Ge_{20}Te_{80}$. Показано положение спектров, отвечающие центрам 119m Sn в узлах германия (Sn–IV) и в узлах теллура (Sn 0).

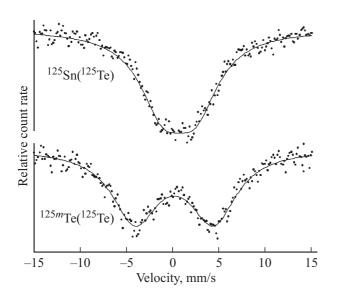
Состав	Изотопы	IS,	С, мм/с	S, отн. ед.	Локализация зонда
Ge ₂₀ Te ₈₀	$^{119mm}\mathrm{Sn}(^{119m}\mathrm{Sn})$	2.05			^{119m} Sn в узлах Ge
As ₄ Ge ₁₅ Te ₈₁	$^{119mm}\mathrm{Sn}(^{119m}\mathrm{Sn})$	2.09			^{119m} Sn в узлах Ge
Ge ₂₀ Te ₈₀	^{119m} Te(^{119m} Sn)	3.17		0.95	^{119m} Sn в узлах Те
		2.06		0.05	^{119m} Sn в узлах Ge
$As_{4}Ge_{15}Te_{81}$	^{119m} Te(^{119m} Sn)	3.16		0.90	^{119m} Sn в узлах Те
		2.07		0.05	^{119m} Sn в узлах Ge
$Ge_{20}Te_{80}$	¹²⁵ Sn(¹²⁵ Te)	0.65	7.00		¹²⁵ Те в узлах Ge
As ₄ Ge ₁₅ Te ₈₁	¹²⁵ Sn(¹²⁵ Te)	0.62	6.80		¹²⁵ Те в узлах Ge
As ₄ Ge ₁₅ Te ₈₁	$^{125m}{\rm Te}(^{125}{\rm Te})$	0.12	16.90		¹²⁵ Те в узлах Те
Ge ₂₀ Te ₈₀	$^{125m}{\rm Te}(^{125}{\rm Te})$	0.22	16.70		¹²⁵ Те в узлах Те
$\mathrm{Ge_{20}Te_{80}}$	^{129m} Te(¹²⁹ I)	1.25	-17.6	0.15	¹²⁹ I в узлах Te—I
		0.94	-23.8	0.85	¹²⁹ I в узлах Te—II
As ₄ Ge ₁₅ Te ₈₁	^{129m} Te(¹²⁹ I)	1.23	-17.7	0.17	¹²⁹ I в узлах Te—I
		0.97	-23.6	0.83	¹²⁹ I в узлах Te-II
	119m Te(119m Sn)	3.02	0.67		¹¹⁹ Sn в узлах Те
Te	^{125m} Te(¹²⁵ Te)	0.99	14.70		¹²⁵ Те в узлах Те
	$^{129m}\text{Te}(^{129}\text{I})$	1.15	-16.7		¹²⁹ I в узлах Те

Параметры эмиссионных мессбауэровских спектров 119m Sn, 125 Te и 129 I стекол $Ge_{20}Te_{80}$, $As_4Ge_{15}Te_{81}$ и кристаллического теллура

Примечание. IS — изомерный сдвиг спектров (погрешности в определении для изотопов 119m Sn, 125 Te и 129 I составляют ± 0.01 , ± 0.06 и ± 0.02 мм/с соответственно); С — постоянная квадрупольного взаимодействия (погрешности в определении для изотопов 125 Te и 129 I составляют ± 0.09 и ± 0.04 мм/с соответственно); S — площадь под нормированным мессбауэровским спектром (погрешности в определении для изотопов 119m Sn и 129 I составляют ± 0.02 и ± 0.05 соответственно).


образует тетраэдрическую систему химических связей (на рис. 2 и 4 это состояние олова обозначено как Sn-IV). Поскольку, согласно рентгеноструктурным данным [11], германий в стеклообразных сплавах $Ge_{1x}Te_x$ образует тетраэдрическую систему связей, можно утверждать, что в стеклах $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ олово, как и ожидалось, изовалентно замещает четырех координированный германий, повторяя структуру его химических связей, и образует структурный дефект замещения.

В случае материнских атомов 119m Те дочерний зонд 119m Sn в стеклообразных сплавах $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ а priori должен оказаться в узлах теллура, т.е должен представлять собой антиструктурный дефект. Мессбауэровские спектры 119m Sn стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ с материнскими атомами 119m Te (рис. 2 и 4) представляют собой суперпозицию двух одиночных линий различной интенсивности (см. таблицу). Менее интенсивная линия отвечает атомам 119m Sn, смещенным из узлов теллура в узлы германия вследствие энергии отдачи, возникающей при радиоактивном распаде материнских атомов теллура (доля таких атомов согласно [1-4,6], не превышает 0.1). Изомерный сдвиг этой линии соответствует состоянию Sn-IV (см. таблицу). Более интенсивные линии в этих


спектрах имеют изомерный сдвиг IS ~ 3.16 мм/с, который соответствует изомерным сдвигам мессбауэровских спектров интерметаллических соединений олова ($\sim 2.30-3.20$ мм/с [10]). На рис. 2 и 4 это состояние олова обозначено как Sn^0 .

Информацию о числе структурно неэквивалентных позиций теллура и их локальной симметрии в стеклах $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ можно получить с использованием эмиссионной мессбауэровской спектроскопии на изотопах 129m Te(129 I). Как видно из рис. 6, мессбауэровские спектры 129 I с материнскими атомами 129m Te стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ представляют собой суперпозицию двух квадрупольных мультиплетов, различающихся как по интенсивности, так и по величине постоянной квадрупольного взаимодействия $C = eQU_{zz}$ (здесь eзаряд электрона, Q — квадрупольный момент ядраизомера мессбауэровского изотопа, U_{zz} — главная компонента тензора градиента электрического поля на ядре) (см. таблицу). Иными словами, в стеклах локальная симметрия атомов теллура ниже кубической и теллур занимает две структурно неэквивалентные позиции Те-І и Te-II, причем чем меньше величина С для позиции теллура, тем меньше ее заселенность.

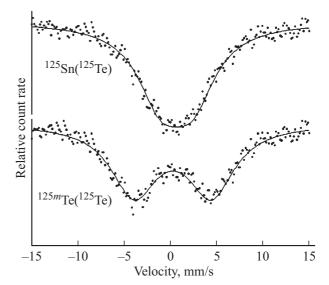

В связи с этим следует отметить, что, согласно мессбауэровским спектрам 119m Te(119m Sn) тех же стекол (см. рис. 2 и 4), примесные атомы олова занимают единственную позицию в структурной сетке стекол с кубической симметрией своего локального окружения. Иными словами, имеется очевидное противоречие данных мессбауэровской спектроскопии на изотопах

Рис. 3. Эмиссионные мессбауэровские спектры 119mm Sn(119m Sn) и 119m Te(119m Sn) стеклообразного сплава $Ge_{15}As_4Te_{81}$. Показано положение спектров, отвечающее центрам 119m Sn в узлах германия (Sn-IV) и в узлах теллура (Sn 0).

Рис. 4. Эмиссионные мессбауэровские спектры $^{125}{\rm Sn}(^{125}{\rm Te})$ и $^{125m}{\rm Te}(^{125}{\rm Te})$ стеклообразного сплава ${\rm Ge}_{20}{\rm Te}_{80}.$

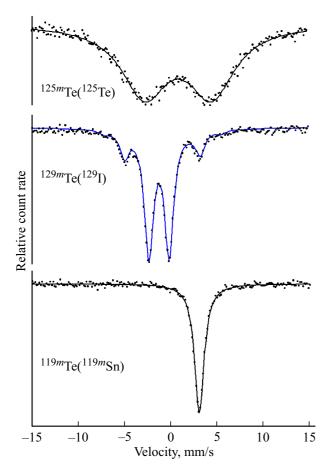


Рис. 5. Эмиссионные мессбауэровские спектры 125 Sn(125 Te) и 125m Te(125 Te) стеклообразного сплава Ge_{15} As₄Te₈₁.

Рис. 6. Эмиссионные мессбауэровские спектры 129m Te(129 I) стеклообразных сплавов $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$. Показано разложение экспериментальных спектров на два квадрупольных мультиплета, отвечающих двум структурно неэквивалентным центрам теллура Te-I (менее интенсивный мультиплет) и Te-II (более интенсивный мультиплет).

 119m Te(119m Sn) и 129m Te(129 I). Это может быть следствием различного характера перестроения локального окружения узла структурной сетки стекла при заселении его конкретным мессбауэровским зондом. Поскольку составы исследованных стекол обогащены теллуром, то для иллюстрации возможности возникновения описанной выше ситуации были измерены мессбауэровские спек-

Рис. 7. Эмиссионные мессбауэровские спектры 125m Te(125 Te), 129m Te(129 I) и 119m Te(19m Sn) элементарного теллура. Сплошными линиями представлены расчетные спектры для случая единственного состояния атомов теллура.

тры элементарного теллура с использованием изотопов 125m Te(125 Te), 129m Te(129 I) и 119m Te(119m Sn) (см. рис. 7, параметры спектров сведены в таблице). Мессбауэровский спектр ^{119m}Sn с материнскими атомами ^{119m}Te представляет собой уширенную одиночную линию, тогда как спектры 125 Те (с материнскими атомами 125m Те) и 129 І (с материнскими атомами ^{129m}Te) демонстрируют типичную картину квадрупольного расщепления (различие в тонкой структуре этих спектров объясняется различием спинов ядер 125 Те и 129 I). Нет сомнений, что во всех случаях материнские атомы (119m Te, 125m Te и 129m Te) занимают узлы решетки теллура и что подавляющая часть дочерних атомов (119m Sn, 125 Te и 129 I) не покидают эти узлы. Однако различие структуры мессбауэровских спектров указывает на различие в локальной симметрии узлов теллура, занятых зондами 125 Te, 129 I или 119m Sn. В частности, мессбауэровские спектры 125mTe(125Te) и 129m Te(129 I) однозначно свидетельствуют о некубичности локальной симметрии узлов теллура, занятых зондами ¹²⁵Те и ¹²⁹І. Это согласуется с рентгеноструктурными данными [12] и указывает на неизменность локальной структуры узлов теллура при их замещении мессбауэровскими зондами 125 Те и 129 І. В то же время мессбауэровский спектр 119m Те(119m Sn) отвечает кубической симметрии узлов, занятых зондом 119m Sn. Иными словами, образование антиструктурного дефекта при замещении атома-металлоида (Те) примесным атомомметаллом (Sn) в структуре элементарного теллура сопровождается перестроением локального окружения узлов теллура. Очевидно, что аналогичная ситуация возникает и при радиоактивном распаде атомов 119m Те в стеклах 119m Те в стеклах 119m Те и 119m Те в стеклах 119m Те (металлоид) оловом (металл) происходит перестроение локальной структуры как узлов Те-І, так и узлов Те-ІI с образованием антиструктурного дефекта олова.

3.2. Мессбауэровская спектроскопия на изотопе ¹²⁵Те

В зависимости от химической природы материнских атомов (125m Te или 125 Sn) мессбауэровский зонд 125 Te может оказаться либо в узлах германия (материнские атомы 125 Sn должны изовалентно замещать атомы германия, так что зонд 125 Te будет представлять собой антиструктурный дефект), либо в узлах теллура (материнские атомы 125m Te естественным образом находятся в узлах теллура).

Как видно из рис. 3 и 5, мессбауэровские спектры 125 Те стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ с материнскими атомами ¹²⁵Sn представляют собой одиночные несколько уширенные линии с близкими значениями изомерных сдвигов (IS $\sim 0.62 - 0.67\,\text{мм/c}$). Если использовать полученные выше результаты на изотопах 119mm Sn $(^{119m}$ Sn)в стеклах $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$, можно считать, что примесные центры теллура 125Те, возникающие после распада материнских атомов ¹²⁵Sn, находятся в узлах германия (образуется антиструктурный дефект теллура) и, следовательно, зонд 125 Те образует химические связи только с атомами теллура, что объясняет близость изомерных сдвигов указанных выше спектров с изомерным сдвигом спектра 125m Te(125 Te) элементарного теллура (см. таблицу). Однако следует отметить, что мессбауэровский спектр 125m Te(125 Te) элементарного теллура представляет собой квадрупольный дублет (рис. 7), тогда как спектры 125 Sn(125 Te) стекол Ge₂₀Te₈₀ и Ge₁₅As₄Te₈₁ — уширенные синглеты. Иными словами, симметрия локального окружения атомов ¹²⁵Те в элементарном теллуре и в узлах стекол Ge₂₀Te₈₀ и Ge₁₅As₄Te₈₁ различны. Это и следовало ожидать, поскольку структура элементарного теллура представляет собой винтообразные бесконечные цепи, составленные из атомов двухкоординированного теллура [12], тогда как в узлах германия стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ локальное окружение атомов 125Те хотя и представлено атомами теллура (как в металлическом теллуре), но оно является октаэдрическим, что было продемонстрировано выше на примере зонда 119m Sn, образовавшегося после распада материнских атомов 119m Те в узлах теллура стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$.

Мессбауэровские спектры 125 Те с материнскими атомами 125m Те стекол $Ge_{20}Te_{80}$ и $Ge_{15}As_4Te_{81}$ (рис. 3 и 5) представляют собой квадрупольные дублеты (С ~ 17 мм/с) с близкими значениями изомерных сдвигов (IS ~ 0.66 мм/с). Поскольку в стеклах примесные центры теллура 125 Те, возникающие после распада материнских атомов 125m Те, находятся только в узлах теллура, то мессбауэровские спектры несут информацию о локальном окружении атомов теллура: в большинстве случаев зонд 125 Те образуют химические связи с атомами теллура, а симметрия локальное окружение центров 125 Те оказывается близкой к симметрии окружения теллура в элементарном теллуре.

4. Заключение

Распад радиоактивных материнских атомов 119mm Sn, 119m Te, 125 Sn и 125m Te в узлах структурной сетки стеклообразных сплавов Ge_{20} Te $_{80}$ и Ge_{15} As $_4$ Te $_{81}$ сопровождается стабилизацией как структурных дефектов (в виде примесных атомов олова в узлах германия), так и в виде антиструктурных дефектов (в виде примесных атомов олова в узлах теллура и примесных атомов теллура в узлах германия). Изовалентное замещение атомов германия атомами олова не изменяет структуру ближнего порядка узлов германия, тогда как атомы олова и теллура в несвойственных для них позициях перестраивают локальное окружение занимаемых ими структурных позиций.

Список литературы

- [1] Z. Jiawei, L. Bolin, C. Gang. Semicond. Sci. Techn., **31**, 043001 (2016).
- [2] H. Overhof, J.-M. Spaeth. Phys. Rev. B, 72, 115205 (2005).
- [3] N.P. Seregin, P.P. Seregin, S.A. Nemov, A.Yu. Yanvareva. J. Phys.: Condens. Matter, 15, 7591 (2003).
- [4] С.А. Немов, П.П. Серегин, С.М. Иркаев, Н.П. Серегин. ФТП, **37**, 279 (2003).
- [5] Г.А. Бордовский, П.В. Гладких, М.Ю. Кожокарь, А.В. Марченко, П.П. Серегин, Е.И. Теруков. ФТП, 44, 1012 (2010).
- [6] Г.А. Бордовский, С.А. Немов, А.В. Марченко, А.В. Зайцева, М.Ю. Кожокарь, П.П. Серегин. ФТП, **45**, 437 (2011).
- [7] Г.А.Бордовский, А.Ю. Дашина, А.В. Марченко, П.П. Серегин, Е.И. Теруков. ФТП, **45**, 801 (2011).
- [8] Г.А. Бордовский, М.Ю. Кожокарь, А.В. Марченко, А.С. Налетко, П.П. Серегин. ФТТ, 54, 1276 (2012).
- [9] А.В. Марченко, Е.И. Теруков, П.П. Серегин, А.Н. Раснюк, В.С. Киселев. ФТП, **50**, 893 (2016).
- [10] А.В. Марченко, П. Серегин. Эмиссионная мессбауэровская спектроскопия. Примеси и радиационные дефекты в полупроводниках. (Saarbrücken, Verlag, Palmarium Academic Publishing, 2014).
- [11] F. Betts, A. Bienenstock, S.R. Ovshinsky. Non-Cryst. Sol., 4, 554 (1970).
- [12] S. Kim, P. Boolchand. Phys. Rev. B, 19, 3187 (1979).

Редактор Г.А. Оганесян

Antistructural defects in semiconductor glasses Ge—Te and Ge—As—Te

A.V. Marchenko¹, P.P. Seregin¹, E.I. Terukov², K.B. Shakhovich¹

¹ Herzen State Pedagogical University of Russia,
¹ 191186 St. Petersburg, Russia
² Ioffe Institute,
¹ 194021 St. Petersburg, Russia

Abstract Using the method of emission Mossbauer spectroscopy on the isotopes $^{119mm}\mathrm{Sn}(^{119m}\mathrm{Sn}),$ $^{119m}\mathrm{Te}(^{119m}\mathrm{Sn}),$ $^{125}\mathrm{Sn}(^{125}\mathrm{Te})$ and $^{125m}\mathrm{Te}(^{125}\mathrm{Te})$ was demonstrated the formation of antistructiral defects in vitreous alloys at the tellurium sites $Ge_{20}\mathrm{Te}_{80}$ and $Ge_{15}\mathrm{As}_4\mathrm{Te}_{81}$ and tellurium atoms at the germanium sites. It is shown that the isovalent replacement of germanium atoms by tin atoms does not change the symmetry of the local environment of the germanium sites, whereas the tin and tellurium atoms in their non-native positions rearrange their local environment.