05

Электронная структура и квадрупольные взаимодействия в перспективных катодных материалах $\mathrm{Na}_x M_y(\mathrm{MoO_4})_3$, $M=\mathrm{Mn}$, Fe, Co и Ni

© Н.И. Медведева, А.В. Сердцев

Институт химии твердого тела УрО РАН, Екатеринбург, Россия

E-mail: medvedeva@ihim.uran.ru

В рамках теории функционала электронной плотности с использованием приближений GGA и GGA+U впервые исследована электронная структура и магнитные свойства молибдатов $Na_xM_y(MoO_4)_3$, (M=Mn, Fe, Co и Ni), являющихся перспективными материалами для натриевых батарей. Расчеты показали, что все соединения являются ферромагнитными диэлектриками. Установлена важная роль корреляционных эффектов, обусловленных кулоновским взаимодействием между электронами на одном узле, в формировании зонной щели этих соединений. Квадрупольные константы для ядер 23 Na рассчитаны в немагнитном и ферромагнитном состояниях в схемах GGA и GGA+U. Показано, что квадрупольные частоты для неэквивалентных кристаллографических позиций натрия находятся в разных частотных диапазонах, что позволяет исследовать диффузию натрия в этих соединениях методом ядерного магнитного резонанса.

Работа выполнена при поддержке гранта РНФ № 18-12-00395.

DOI: 10.21883/FTT.2019.05.47575.04F

1. Введение

Литиевые батареи, появившиеся почти 30 лет тому назад, используются повсеместно — от цифровой техники до электрических автомобилей. Однако литий является относительно редким и дорогим для промышленной добычи химическим элементом, поэтому в последние годы ведется активный поиск альтернативных материалов для источников энергии [1-4]. В качестве замены предлагается использовать натриевые катодные материалы (НКМ), которые демонстрируют хорошие электрохимические свойства и производятся из более дешевого и распространенного натрия [5–11]. НКМ включают ряд соединений натрия со структурой аналогичной литиевым катодным материалам. Примерами таких соединений являются слоистые оксиды Na_xMO₂ и оксиды со структурой оливина NaMPO4, а также соединения со специфической структурой, такие как карбофосфаты. Недавно многокомпонентные оксиды со структурой аллюодита предложены как перспективные катодные и электролитные натриевые материалы [12-15]. Эти соединения с общей формулой $A(1)A(2)M(1)M(2)_2(XO_4)_3$ могут иметь различный химический состав $(A, M(1) = \text{Li}^+, \text{Na}^+, \text{Cu}^+,$ Ag^+ , Ca^{2+} , Mn^{2+} ; $M(2) = Mn^{2+,3+}$, $Fe^{2+,3+}$, $Co^{2+,3+}$ $Ni^{2+,3+}$, In^{3+} ...; X = P, As, S, Mo, W), и частичное заполнение позиций А и М [16]. Среди аллюодитоподобных соединений, сульфат железа $Na_{2+2x}Fe_{2-x}(SO_4)_3$ рассматривается как наиболее перспективный кандидат для НКМ, поскольку имеет высокий потенциал (3.8 V), хорошую цикличность и высокую скорость заряда [17]. Недавно было показано, что изоструктурный молибдат марганца $Na_{2.67}Mn_{1.67}(MoO_4)_3$ также демонстрирует хорошие электрохимические свойства [16].

Структура аллюодита допускает существование близких по химическому составу соединений. Молибдат марганца $\mathrm{Na_xMn_y(MoO_4)_3}$ согласно экспериментальным данным может иметь различный химический состав в структуре аллюодита. В статье Солодовникова и др. [18] приводится соединение $\mathrm{Na_{3.13}Mn_{1.43}(MoO_4)_3}$, с заполнением кристаллографических позиций: $A(1) = \mathrm{Na_4}, \quad A(2) = \mathrm{Na_{3.81}\square_{0.19}}, \quad M(1) = \mathrm{Na_{2.46}\square_{1.54}}, M(2) = \mathrm{Na_{2.26}Mn_{5.74}}$ (символом \square обозначена вакансия). В молибдате $\mathrm{Na_{2.67}Mn_{1.67}(MoO_4)_3},$ полученном в [16], приводится другое заполнение позиций: $A(1) = \mathrm{Na_4}, A(2) = \mathrm{Na_{2.67}\square_{1.33}}, M(1) = \mathrm{Na_4}, M(2) = \mathrm{Mn_{6.64}\square_{1.36}}.$

В последнее время *ab initio* методы широко используются для исследования структурных и электронных свойств материалов. Эти подходы являются весьма плодотворными, поскольку позволяют предсказать стабильную кристаллическую структуру, электронное строение, объяснить микроскопические причины наблюдаемых физико-химических свойств и предсказать направления для дальнейших экспериментальных исследований. Следует отметить, что электронная структура молибдатов $\mathrm{Na}_x M_y(\mathrm{MoO_4})_3$, $(M=\mathrm{Mn},\mathrm{Fe},\mathrm{Co}\;\mathrm{u}\;\mathrm{Ni})$ еще не была исследована.

Известно, что оксиды переходных 3d-металлов относятся к сильнокоррелированным системам, в которых величины энергетической щели могут быть корректно предсказаны в рамках приближения локальной электронной плотности лишь с учетом одноузельного кулоновского взаимодействия. В наиболее часто используемые обменно-корреляционные функционалы (LDA или GGA) вводится поправка Хаббарда на внутриатомное взаимодействие, которая выражается через экранированные кулоновский U и обменный параметры J (ме-

тоды LDA + U или GGA + U) [19,20]. Многочисленные исследования показали, что обменный параметр лишь незначительно зависит от переходного металла $(J \sim 1 \, {\rm eV})$, тогда как даже для одного металла не существует универсальной величины U, которая могла бы быть пригодной как для любых соединений этого металла, так и для моделирования различных свойств одного соединения [21–24]. Параметр Хаббарда для Mn3d-электронов, U_{Mn} , в бинарных и тройных оксидах марганца выбирался в различных работах в диапазоне от 2 до 8 eV [25-29], Для бинарных оксидов железа, кобальта и никеля предложены значения $U_{\text{Fe}} = 3.9 - 4.1 \text{ eV}$, $U_{\text{Co}} = 3.3 - 3.4\,\text{eV}$ и $U_{\text{Ni}} = 6.0 - 6.4\,\text{eV}$ [19,30]. Для описания магнитных свойств оксида кобальта выбрано $U_{\text{Co}} = 6 \,\text{eV}$ [31]. В [32] для расчета соединений со структурой оливина предложены U, равные 4.5, 6.1 и 5.7 eV для Mn, Co и Ni соответственно. В расчетах сульфатов железа со структурой аллюодита взяты значения для Fe $U_{\text{eff}} = U - J = 5.4 \,\text{eV}$ [15].

В настоящей работе нами проведены расчеты электронной структуры $\mathrm{Na}_x M_y (\mathrm{MoO_4})_3$ для различных значений кулоновского параметра U при фиксированном значении $J=1\,\mathrm{eV}$ для каждого металла $M=\mathrm{Mn}$, Fe, Co и Ni. Эти расчеты позволили проанализировать изменение запрещенной щели в зависимости от величины U и определить, при каких значениях U можно воспроизвести в расчете экспериментальное значение щели.

Одним из экспериментальных методов, позволяющих исследовать диффузию ионов натрия, является метод ядерного магнитного резонанса на ядре 23 Na 23 Na. Для многокомпонентных систем сложно однозначно отнести спектральные линии неэквивалентным магнитным ядрам 23 Na. Такое отнесение может быть проведено на основе расчета тензора градиента электрического поля 23 Na, определяемого неоднородностью электронной плотности вблизи ядра. В настоящей работе тензор 23 Па ядрах 23 Na рассчитывался для немагнитных и ферромагнитных структур 23 Na, и ферромагнитных структур 23 Na, и ферромагнитных образилю установить влияние магнитных взаимодействий и корреляционных эффектов на компоненты тензора 23 П на ядрах натрия в неэквивалентных позициях.

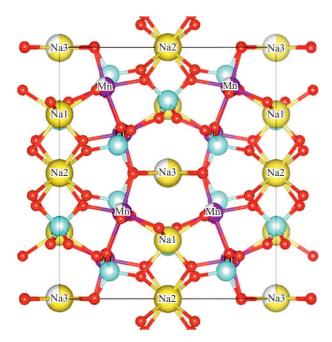
2. Методы расчета

Расчеты электронной структуры выполнены в рамках теории функционала плотности (Density Functional Theory, DFT) с использованием метода проекционных присоединенных волн (Projector-Augmented Wave, PAW) [33,34] и пакета VASP (Vienna Ab-initio Simulation Package) [35,36]. Для обменно-корреляционного функционала использовалось приближение GGA (Generalized Gradient Approximation) в схеме, предложенной Perdew— Вигке—Ernzerhof (PBE) [37]. В базис были включены плоские волны с энергией до 350 eV. Для натрия использовался псевдопотенциал с полуостовными состояниями (Na $2p^6$), который предсказывает в два раза большие значения ГЭП на ядрах натрия, чем псевдопотенциал с валентными состояниями, и дает лучшее согласие с экспериментальными квадрупольными частотами [38]. Интегрирование в обратном пространстве по зоне Бриллюэна проводилось по схеме Монкхорста-Пака [39] с использованием сетки k-точек $2 \times 2 \times 4$. Релаксация атомных координат проводилась минимизацией атомных сил градиентным методом [40] до достижения сил на всех атомах в ячейке менее 0.02 eV/Å. Из-за сложности кристаллической структуры и большого количества атомов в элементарной ячейке (моноклинная структура C2/c и 80 атомов, неплотно упакованных в элементарной ячейке), использовалась лишь частичная релаксационная схема с параметрами моноклинной решетки, фиксированными при экспериментальных значениях. Для учета одноузельных кулоновских корреляций в методе GGA + U использовался подход Дударева и др. [41], где кулоновский (U) и обменный (J) параметры представлены эффективным параметром $U_{\rm eff} = U - J$. Исследована зависимость магнитных свойств и зонной щели от величины U_{eff} , варьируемой в пределах $(0,4,6\,\text{eV})$, которые включают значения, используемые в GGA + U расчетах оксидов этих переходных металлов.

Тензор градиента электрического поля (ГЭП) описывает неоднородность электрического поля вблизи ядра. Компоненты этого тензора на ядрах атомов рассчитываются как [42]:

$$V_{ij}(\mathbf{r}) = \frac{\partial E_i(\mathbf{r})}{\partial r_j} - \frac{1}{3} \,\delta_{ij} \sum_{k} \frac{\partial E_k(\mathbf{r})}{\partial r_k}. \tag{1}$$

Электрическое поле электронов кристалла $E(\mathbf{r})$ вычисляется через электронную плотность $\rho_0(\mathbf{r})$


$$E_i(\mathbf{r}) = \int \frac{\rho_0(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} (\mathbf{r}_i - \mathbf{r}'_i) d\mathbf{r}.$$
 (2)

После диагонализации тензора собственные оси выбираются таким образом, чтобы выполнялось неравенство $|V_{zz}|>|V_{xx}|>|V_{yy}|$. На основе полученных компонент тензора ГЭП рассчитываются квадрупольная константа C_q и параметр асимметрии η , которые необходимы для интерпретации ЯМР-спектров

$$C_q = \frac{eQV_{zz}}{\hbar},\tag{3}$$

$$\eta = \frac{V_{yy} - V_{xx}}{V_{zz}},\tag{4}$$

где Q — квадрупольный момент ядра ($Q=104.0\,\mathrm{mb}$ для $^{23}\mathrm{Na}$). Расчеты тензора ГЭП проводились для всех неэквивалентных позиций Na в решетке с полностью заполненными позициями металла и натрия для ферромагнитного (GGA, GGA + U) и немагнитного состояний.

Рис. 1. Проекция структуры аллюодита в плоскости ab для $Na_{3,13}Mn_{1.43}(MoO_4)_3$ [18].

3. Кристаллическая структура

По данным рентгеноструктурного анализа молибдаты $Na_x M_y (MoO_4)_3$ имеют моноклинную структуру C2/c(Z = 4) с параметрами решетки равными a = 12.7387 Å, $b = 13.6716 \,\text{Å}, \quad c = 7.1904 \,\text{Å}, \quad \beta = 112.404^\circ \quad [18] \quad$ для M = Mn, $a = 12.646 \,\text{Å}$, $b = 13.685 \,\text{Å}$, $c = 7.206 \,\text{Å}$, $\beta = 112.56^{\circ}$ [43] для M = Fe; $a = 12.6381 \,\text{Å},$ $b=13.4888\,\mathrm{\AA},\ c=7.1244\,\mathrm{\AA},\ \beta=112.127^\circ$ [18] для M = Co и a = 12.613 Å, b = 13.348 Å, c = 7.086 Å, $eta = 111.85^{\circ}$ [44] для $M = {
m Ni.}$ Имеются три типа неэквивалентных позиций Na1 (4e), Na2 (4b) и Na3 (4e)с частичным заполнением позиции Na3. Тетраэдры МоО₄ и октаэдры МО₆ образуют в данной структуре трехмерный каркас с широкими каналами вдоль оси с. Благодаря такой структуре ионы натрия могут диффундировать вдоль отдельных Na2-Na2 и Na3-Na3 каналов в направлении оси c (рис. 1).

Согласно данным для $Na_{3.13}Mn_{1.43}(MoO_4)_3$ [18], заполнение позиции 8f ионами марганца составляет 0.717 (и 0.280 — ионами натрия). Таким образом, из восьми f-позиций металла в элементарной ячейке примерно шесть заполнены марганцем и две — натрием. Заполнение позиций Na1 и Na2 близко к 1, а заселенность Na3 равна 0.614. В структурных исследованиях для немного отличающегося состава $Na_{2.67}Mn_{1.67}(MoO_4)_3$ [16], степень заполнения позиции Mn равна 0.83, а ионы натрия в этой позиции отсутствуют. В этом случае имеется примерно семь атомов марганца в элементарной ячейке в позиции 8f. Позиция Na3 имеет заполнение 0.670 [16]. В молибдатах железа, кобальта и никеля заполнение металлом позиции 8f составляет 1.0, 0.660 и 0.654 соот-

ветственно, а степень заполнения позиции Na3 равна 1.0, 0.719 и 0.693 соответственно [18,43,44].

Моделирование структур с разупорядочением и частичным заполнением атомных позиций в рамках теории функционала электронной плотности затруднено, поскольку она предназначена для периодических структур, в которых каждая позиция в элементарной ячейке заполнена одним атомом. Для моделирования частичного заполнения позиций и дефектов с низкой концентрацией необходимо использовать огромные суперячейки с большим количеством атомов, что для структуры аллюодита (80 атомов в элементарной ячейке) является проблематичным. В настоящей работе расчеты $\mathrm{Na}_x M_y (\mathrm{MoO_4})_3$ проведены для структур с полным заполнением металлом позиции 8f и позиций натрия, а также для электрически нейтральных ячеек с частичным заполнением этих позиций.

4. Результаты и обсуждение

4.1. Моделирование структуры

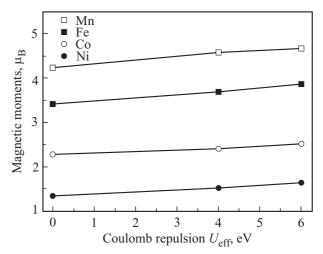
Для всех молибдатов $Na_xM_y(MoO_4)_3$, (M=Mn, Fe, Co и Ni) проведена релаксация атомных координат для структур с полным заполнением всех позиций. Оптимизированные и экспериментальные координаты атомов в различных неэквивалентных позициях и их заполнение n для $Na_{3,13}Mn_{1,43}(MoO_4)_3$ приведены в табл. 1.

Из данных табл. 1 видно хорошее согласие теоретических и экспериментальных координат для всех атомов, входящих в ячейку. Это указывает на то, что структурная модель, соответствующая составу ${\rm Na_3Mn_2(MoO_4)_3}$ с полностью заполненной позицией металла является достаточно хорошим приближением для описания структуры аллюодита с небольшим разупорядочением в заполнении.

Элементарная ячейка, соответствующая составу $Na_3M_2(MoO_4)_3$, является заряженной. Для молибдата марганца со структурой аллюодита предложены два состава с разным заполнением позиции 8f [16,18], мы сравнили их стабильность, рассчитав полные энергии. Для выбора электрически нейтральной ячейки с частичным заполнением позиций были проведены расчеты трех структур с различным расположением вакансий. Первая структура (обозначена как M7) получается из идеальной путем удаления двух атомов натрия из позиции Na3 и одного атома металла M, что соответствует экспериментальной структуре [16]. Во второй и третьей структурах электронейтральной ячейки $Na_3M_{1.5}(MoO_4)_3$ (далее обозначены как $M6_{\rm near}$ и $M6_{\rm far}$ соответственно) тоже удалены два атома натрия Na3, а два атома металла замещены на атомы натрия, что соответствует структуре [18]. В $M6_{\text{near}}$ для замещения выбраны наиболее близкие друг к другу атомы металла, а в $M6_{
m far}$ наиболее удаленные атомы металла в ячейке. Структура с полностью заполненными позициями обозначена как М8. Сравнение энергий различных структур проведено с учетом полных энергий марганца и натрия в их

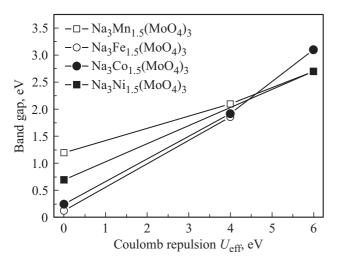
Позиция	Координаты атомов								
	Оптимизированные			Экспериментальные			n		
Mo1 4e	0.0000	0.2815	-0.2500	0.0000	0.2893	-0.2500	1.000		
Mo2 8f	0.2668	0.3921	0.3758	0.2693	0.3898	0.3758	1.000		
Mn 8 <i>f</i>	0.2864	0.3426	-0.1248	0.2895	0.3427	-0.1219	0.830		
Na1 4e	0.5000	0.2324	0.7500	0.5000	0.2332	0.7500	1.000		
Na2 4b	0.0000	0.5000	0.0000	0.0000	0.5000	0.0000	1.000		
Na3 4e	0.5000	0.5087	0.7500	0.5000	0.5026	0.7500	0.670		
O1 8f	0.3272	0.3303	0.6111	0.3300	0.3297	0.6100	1.000		
O2~8f	0.1193	0.4161	0.3087	0.1247	0.4107	0.3141	1.000		
O3 8f	0.2788	0.3214	0.1676	0.2831	0.3184	0.1793	1.000		
O4 8f	0.3468	0.5074	0.4076	0.3389	0.5028	0.3945	1.000		
O5 $8f$	0.1105	0.3657	-0.2445	0.1083	0.3704	-0.2469	1.000		
O6 8f	0.0433	0.2042	-0.0248	0.0413	0.2176	-0.0289	1.000		

Таблица 1. Координаты атомов: оптимизированные для $Na_3Mn_2(MoO_4)_3$ с позициями 8f, полностью заполненными марганцем, и экспериментальные для $Na_{3.13}Mn_{1.43}(MoO_4)_3$ [16]


основном состоянии. Установлено, что во всех случаях $M6_{\rm far}$ является энергетически более предпочтительной на $0.6\,{\rm eV}$. Наличие вакансии в незаполненной металлом позиции 8f энергетически невыгодно на $2.7\,{\rm eV}$, и две вакансии натрия находятся в позиции Na3. Электрически нейтральная ячейка, соответствующая конфигурации $M6_{\rm far}$ с двумя удаленными вакансиями Na3 использовалась для расчета электронной структуры.

4.2. Магнитная структура

В работе [16] отмечается, что в структуре аллюодита наблюдается образование пар атомов металла M-M. Известно, что магнитные моменты имеют тенденцию к АФМ-упорядочению в парах магнитных переходных металлов с короткими расстояниями между атомами. Для структур с полным заполнением подрешетки металла (М8) нами были рассчитаны полные энергии при ферромагнитном и антиферромагнитном упорядочениях магнитных моментов ближайших атомов металла. Расчеты показали, что во всех случаях ферромагнитное упорядочение более выгодно, антиферромагнитное упорядочение выше по энергии на $\sim 0.08\,\mathrm{eV}$ (Mn), $0.31\,\mathrm{eV}$ (Fe), 0.14 eV (Co), 0.22 eV (Ni) и может существовать как метастабильное состояние. Наименее вероятно АФМ упорядочение в парах Fe-Fe. Рассчитанные расстояния между парами атомов металла уменьшаются в ряду Mn-Fe-Co-Ni как при ферромагнитном, так и при антиферромагнитном упорядочении. В первом случае расстояния равны 3.43, 3.33, 3.22 и 3.22 Å, во втором — 3.43, 3.39, 3.27 и 3.26 Å для M = Mn, Fe, Co и Ni соответственно.

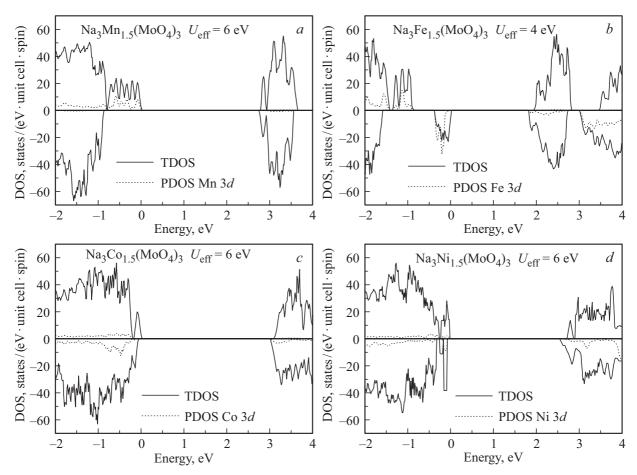

С увеличением степени корреляции (с ростом $U_{\rm eff}$) магнитные моменты атомов металла увеличиваются (рис. 2). При этом с ростом атомного номера величина магнитного момента снижается от марганца к никелю.

Магнитные моменты рассчитывались также и для электронейтральной ячейки $M6_{\rm far}$ с неполным заполне-

Рис. 2. Зависимость магнитного момента атомов металла в $Na_3M_2(MoO_4)_3$ от $U_{\rm eff}$.

нием позиций металла и вакансиями в позиции Na3. В отсутствие дополнительной корреляции молибдаты марганца и железа демонстрируют схожее магнитное поведение. Все шесть атомов марганца (железа) ферромагнитно упорядочены и имеют примерно одинаковый магнитный момент $4.29 \,\mu_{\rm B} \, (3.56 \,\mu_{\rm B})$, который линейно растет с увеличением $U_{\rm eff}$ и достигает значений $4.68\,\mu_{\rm B}$ $(U_{
m eff} = 6\,{
m eV})$ и $3.73\,\mu_{
m B}$ $(U_{
m eff} = 4\,{
m eV})$ соответственно. В GGA-расчетах $M6_{\mathrm{far}}$ молибдата кобальта магнитный момент неспаренных атомов уменьшается до $0.91 \, \mu_{\rm B}$, а магнитный момент в парах равен $2.52 \mu_B$. В молибдате никеля (GGA-расчет) устанавливается антиферромагнитное взаимодействие в парах с магнитным моментом $\pm 1.5 \mu_{\rm B}$. В GGA + *U*-расчетах ($U_{\rm eff}=6\,{\rm eV}$) молибдатов кобальта и никеля атомы металла упорядочены ферромагнитно с магнитным моментом, одинаковым на всех шести атомах металла, 2.80 и $1.80 \mu_{\rm B}$ для $M={\rm Co}$ и Ni соответственно.

Рис. 3. Зависимость ширины запрещенной зоны ${\rm Na}_3 M_{1.5} ({\rm MoO_4})_3$ от $U_{\rm eff}$.


4.3. Плотности состояний

Расчеты плотности состояний выполнены для электронейтральной ячейки $M6_{\rm far}$, которая наиболее близко соответствует стабильным составам двойных молибдатов

с переходным металлом. В рамках приближения GGA без учета межатомных электронных корреляций все молибдаты должны быть полупроводниками с величиной запрещенной щели E_g равной 1.2, 0.7, 0.13, 0.25 eV для $M={\rm Mn}$, Fe, Co и Ni соответственно. Полученная величина E_g существенно меньше, чем наблюдаемая в молибдатах, фосфатах и сульфатах переходных металлов. Расчеты в приближении GGA +U предсказывают линейное возрастание ширины запрещенной щели с увеличением $U_{\rm eff}$ (рис. 3).

На рис. 4, a-d представлены графики полной плотности состояний (TDOS) и парциальной плотности 3d-состояний металла (PDOS M3d), полученные при выбранных выше значениях $U_{\rm eff}$ для ${\rm Na}_3 M_{1.5} ({\rm MoO}_4)_3 (M6_{\rm far})$.

Как видно из рис. 4, a 3d-уровни марганца со спином вверх $(3d^{\uparrow})$ формируют верх валентной зоны, при этом плотность 3d-электронов со спином вниз $(3d^{\downarrow})$ мала, что приводит к высокоспиновому состоянию марганца (магнитный момент марганца $\sim 4.6\,\mu_{\rm B}$). Плотность 3d-состояний марганца в зоне проводимости мала, дно зоны проводимости формируется пустыми 4d-уровнями молибдена. Величина щели для состояний со спином вверх и вниз различна, $E_{g\uparrow}=2.82\,{\rm eV}$ и $E_{g\downarrow}=3.68\,{\rm eV}$ соответственно. В молибдате железа (рис. 4, b) потолок

Рис. 4. Полные и парциальные плотности состояний в $Na_3M_{1.5}(MoO_4)_3$ (M = Mn (a), Fe (b), Co (c) и Ni (d)), рассчитанные методом GGA + U.

	$Na_{3}Mn_{2}(MoO_{4})_{3} \\$	$Na_3Fe_2(MoO_4)_3$	$Na_3Co_2(MoO_4)_3$	$Na_3Ni_2(MoO_4)_3$
Na1	2.08 (0.88) NM	-1.70 (0.84) NM	-1.34 (0.97) NM	1.49 (0.55) NM
	1.28 (0.75) FM	-1.62 (0.79) FM	-1.27 (0.73) FM	-1.12 (1.00) FM
	-0.85 (0.90) U	0.99 (0.64) U	1.12 (0.82) U	-1.16 (0.70) U
Na2	-4.12 (0.57) NM	-3.50 (0.89) NM	3.59 (0.74) NM	3.76 (0.5) NM
	3.10 (0.90) FM	-3.16 (0.98) FM	3.26 (0.69) FM	3.47 (0.46) FM
	3.34 (0.59) U	3.42 (0.52) U	3.51 (0.52) U	3.65 (0.32) U
Na3	2.51 (0.70) NM	2.29 (0.92) NM	-2.08 (0.72) NM	2.63 (0.58) NM
	3.26 (0.52) FM	3.08 (0.62) FM	-2.63 (0.93) FM	2.39 (0.86) FM
	2.76 (0.51) U	2.96 (0.11) U	2.75 (0.74) U	2.11(0.97) U

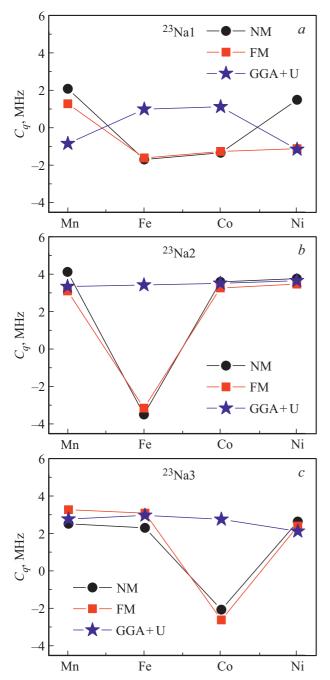
Таблица 2. Квадрупольные константы C_q (MHz) и параметры асимметрии η (в скобках) на ядрах ²³Na в Na₃ M_2 (MoO₄)₃ в немагнитном (NM) и ферромагнитном (FM) состояниях (расчеты GGA) и с учетом электронной корреляции (U)

валентной зоны образован состояниями ${\rm Fe}3d^{\downarrow}$, запрещенная щель уменьшается за счет отдельного пика в плотности этих состояний. Дно зоны проводимости в молибдате железа образовано преимущественно пустыми 4d-уровнями молибдена с примесью ${\rm Fe}3d^{\downarrow}$, а состояния ${\rm Fe}3d^{\uparrow}$ полностью заполнены. Величина щели для состояний со спином вверх и вниз различна, $E_{g\uparrow}=2.82\,{\rm eV}$ и $E_{g\downarrow}=1.85\,{\rm eV}$ соответственно. В молибдатах кобальта и никеля (рис. 4,c и d) зонная щель для состояний со спином вверх и вниз примерно одинакова, $E_g=3.10\,{\rm eV}$ и $E_g=2.75\,{\rm eV}$ для $M={\rm Co}$ и ${\rm Ni}$ соответственно. Вклад 3d-состояний металла в интервале от $-2\,{\rm eV}$ до 0 уменьшается по сравнению с молибдатами марганца и железа, и они дают небольшой вклад в зону проводимости.

Таким образом, при значениях $U_{\rm eff}$ равных 4 eV для Fe и 6 eV для Mn, Co и Ni, Eg в Na₃ $M_{1.5}$ (MoO₄)₃ составляет 2.82, 1.85, 3.10 и 2.75 eV для M= Mn, Fe, Co и Ni соответственно. Согласно оптическим измерениям ширина запрещенной щели в молибдате никеля Na_{2.67}Ni_{0.67}(MoO₄)₂ равна 3.59 eV [45], что уже неплохо воспроизводится в расчетах Na₃Ni_{1.5}(MoO₄)₃ с параметром $U_{\rm eff}=6$ eV для никеля. Следует подчеркнуть, что расчеты, проведенные для ячейки с вакансиями в позициях натрия и неполным заполнением металлической подрешетки, дают заниженное значение щели из-за вакансионных пиков вблизи верха валентной зоны и/или дна зоны проводимости (рис. 4).

4.4. Тензор градиента электрического поля на ядрах ²³Na

Квадрупольные константы C_q и параметры асимметрии η для неэквивалентных ядер ²³Nа в Nа₃ M_2 (MoO₄)₃, рассчитанные в приближении GGA для немагнитного и ферромагнитного состояний, а также с использованием метода GGA + U ($U_{\rm eff}$ равно 4 eV для Fe и 6 eV для Mn, Co и Ni) приведены в табл. 2.


Расчеты показывают, что константа C_q существенно зависит от магнитного состояния и меняется как ее величина, так и знак. Для всех молибдатов абсолютные значения C_q , рассчитанные в приближении GGA для

позиций Na1 и Na2, в немагнитном состоянии выше, чем в ферромагнитном. Для позиции Na3 получена обратная зависимость (кроме $M=\mathrm{Ni}$).

В молибдате марганца при переходе от немагнитной к ферромагнитной структуре существенно уменьшается квадрупольная константа для Na1, при этом значение параметра асимметрии остается большим. Это свидетельствует о значительном уменьшении не только компоненты V_{zz} тензора ГЭП, но и разности компонент, т.е. электрическое поле на ядрах Na1 становится более однородным. В расчете GGA + U квадрупольная константа меняет знак и уменьшается по абсолютной величине, параметр асимметрии при этом увеличивается. Для Na2 величина C_q уменьшается при переходе от NM к FM, а расчеты GGA + U предсказывают существенное изменение только параметра асимметрии, в то время как C_a примерно совпадает с GGA значением, рассчитанным для FM-состояния. В Na3 наоборот, ГЭП увеличивается в FM-состоянии по результатам GGA расчета и снижается при расчете с учетом корреляций. Это может быть связано с тем, что позиция Na3, в отличие от остальных, окружена ионами марганца.

В молибдате железа C_q для Na1 также уменьшается при переходе от NM к FM-GGA и GGA + U, и меняет знак при включении в расчет кулоновской корреляции. Для Na2 также наблюдается смена знака и уменьшение параметра асимметрии при переходе к GGA + U, но C_q в меньшей степени зависит от схемы расчета. Аналогично результатам расчетов для молибдата марганца, спинполяризованные расчеты предсказывают более высокие значения ГЭП для Na3, при этом значение параметра асимметрии существенно уменьшается, особенно в схеме GGA + U.

В молибдате кобальта квадрупольная константа на ядре Na1 уменьшается по абсолютной величине при переходе от NM к FM-GGA и GGA + U, и кроме того, учет корреляций меняет знак C_q . В позиции Na2 величина C_q почти не зависит от схемы расчета, а η уменьшается в схеме GGA + U. Квадрупольные константы для Na3 увеличиваются по абсолютному значению при переходе от NM к FM-GGA и GGA + U. Для молибдата никеля спинполяризованные расчеты предсказывают смену знака C_q

Рис. 5. Графики зависимости квадрупольных констант от переходного металла M в структуре $\mathrm{Na}_x M_y (\mathrm{MoO_4})_3$ для ядер $\mathrm{Na1}~(a)$, $\mathrm{Na2}~(b)$ и $\mathrm{Na3}~(c)$.

и более высокую анизотропию для позиции Na1, чем расчет немагнитной фазы. Для Na2 все схемы расчета дают близкие C_q , а в случае GGA+U существенно уменьшается параметр асимметрии. Для Na3 в GGA+U получено минимальное значение квадрупольной константы и максимальный параметр асимметрии.

Проведенные расчеты показывают, что трем неэквивалентным позициям натрия в $Na_3M_2(MoO_4)_3$ соответствуют различные квадрупольные константы, которые зависят от типа металла (M=Mn, Fe, Co, Ni). Для

всех молибдатов, вне зависимости от магнитного состояния и схемы расчета (GGA или GGA + U), абсолютные величины квадрупольных констант находятся в последовательности $C_q(\mathrm{Na2}) > C_q(\mathrm{Na3}) > C_q(\mathrm{Na1})$, т.е. наименьший градиент электрического поля на ядре Na1, а максимальный на ядре Na2. На рис. 5, наглядно видно, что основное влияние учета корреляционных эффектов в схеме GGA + U — это смена знака C_q на ядрах Na1 (M = Fe и Co), Na2 (M = Fe) и Na3 (M = Co).

Анализируя абсолютные величины квадрупольных частот, которые определяются как $v_q = (3e^2QV_{zz})/$ $(2I(2I-1)\hbar)$, где I — спин ядра натрия, можно сделать вывод, что при использовании оптимального значения $U_{\rm eff}$, квадрупольные частоты слабее зависят от переходного элемента, чем в GGA расчетах. В приближении GGA + U, частоты ν_q примерно равны 0.5, 1.7 и 1.4 MHz, для Na1, Na2 и Na3 ядер соответственно. Для ферромагнитного состояния в GGA расчете эти частоты варьируются в пределах 0.6-0.8, 1.5-1.7 и 1.2-1.6 МНz, а расчет магнитно неупорядоченной фазы дает значительно больший разброс значений: 0.7-1.0, 1.7-2.1 и 1.0-1.3 MHz соответственно. Вследствие того, что квадрупольные частоты для неэквивалентных ядер ²³ Na в разных позициях отличаются друг от друга, по их температурной зависимости можно судить о диффузии ионов натрия в данной структуре.

5. Заключение

Проведено *ab initio* исследование влияния одноузельных кулоновских корреляций на электронную и магнитную структуру, а также квадрупольные взаимодействия в $\mathrm{Na}_x M_y (\mathrm{MoO_4})_3$ для $M=\mathrm{Mn}$, Fe, Co и Ni. Расчеты без учета корреляций показали, что исследуемые молибдаты должны быть полупроводниками с шириной запрещенной зоны $E_g=0.13-1.2\,\mathrm{eV}$. Включение в расчет одноузельных корреляций позволило получить значения $E_g=1.85-3.68\,\mathrm{eV}$, более близкие к экспериментальным ланным.

Ферромагнитное упорядочение предсказано в GGA-расчетах для $\mathrm{Na}_x M_y (\mathrm{MoO_4})_3$ с полным заполнением всех позиций. Для электронейтральных составов с частичным заполнением подрешеток металла и натрия расчеты в приближении GGA предсказывают различное магнитное упорядочение в зависимости от типа металла. При учете корреляций в рамках метода GGA + U расчеты предсказывают ферромагнитное упорядочение для всех соединений.

Расчеты тензора ГЭП на ядрах ²³Nа показали, что квадрупольная константа и параметр асимметрии существенно зависят от магнитного состояния атомов и учета одноузельных корреляций. Установлено, что вне зависимости от схемы расчета атомы натрия из разных кристаллографических позиций имеют существенно отличающиеся квадрупольные параметры. Это делает возможным исследование диффузии атомов натрия в данных соединениях методами ЯМР спектроскопии.

Список литературы

- [1] D. Larcher, J.M. Tarascon. Nature Chem. 7, 1, 19 (2015).
- [2] H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang. Adv. Energy Mater. 6, 1600943 (2016).
- [3] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi. Nature 407, 724 (2000).
- [4] A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín. Nature Mater. 15, 169 (2016).
- [5] J.-M. Tarascon. Phil. Trans. R. Soc. London. Ser. A 368, 3227 (2010).
- [6] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang. J. Power Sources 196, 2, 814 (2011).
- [7] X. Lu, G. Xia, J.P. Lemmon, Zh. Yang. J. Power Sources 195, 2431 (2010).
- [8] J. Lu, Q. Jiang, L. Qin. Adv. Mater. Res. 443-444, 189 (2012).
- [9] I. Kim, J.-Y. Park, Ch.H. Kim, J.-W. Park, J.-P. Ahn, J.-H. Ahn, K.-W. Kim, H.-J. Ahn. J. Power Sources 301, 332 (2016).
- [10] X. Lu, J.P. Lemmon, J.Y. Kim, V.L. Sprenkle, Zh. Yang. J. Power Sources 224, 312 (2013).
- [11] M.D. Slater, D. Kim, E. Lee, Ch.S. Johnson. Adv. Funct. Mater 23, 947 (2013).
- [12] G. Oyama, S. Nishimura, Y. Suzuki, M. Okubo, A Yamada. Chem. Electro Chem. 2, 7, 1019 (2015).
- [13] K. Trad, D. Carlier, L. Croguennec, A. Wattiaux, M. Ben Amara, C. Delmas. Chem. Mater. 22, 19, 5554 (2010).
- [14] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, Sh. Oro, I. Moriguchi, M. Okubo, A. Yamada. Nature Commun. 6, 6544 (2015).
- [15] L.L. Wong, H.M. Chen, S. Adams. Phys. Chem. Chem. Phys. 17, 14, 9186 (2015).
- [16] J. Gao, P. Zhao, K. Feng. Chem. Mater. 29, 940 (2017).
- [17] G. Oyama, O. Pecher, K.J. Griffith, S.I. Nishimura, R. Pigliapochi, C.P. Grey, A. Yamada. Chem. Mater. 28, 15, 5321 (2016).
- [18] S.F. Solodovnikov, Z.A. Solodovnikova, E.S. Zolotova, V.N. Yudin, O.A. Gulyaeva, Y.L. Tushinova. J. Solid State Chem. 253, 121 (2017).
- [19] V.I. Anisimov, J. Zaanen, O.K. Andersen. Phys. Rev. B 44, 943 (1991).
- [20] A.I. Liechtenstein, V.I. Anisimov, J. Zaanen. Phys. Rev. B 52, R5467 (1995).
- [21] A. Rohrbach, J. Hafner, G. Kresse. J. Phys.: Condens. Matter 15, 979 (2003).
- [22] F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, G. Ceder. Phys. Rev. B 70, 235121 (2004).
- [23] B. Loschen, J. Carrasco, K. Neyman, F. Illas. Phys. Rev. B 75, 035115 (2007).
- [24] C. Franchini, R. Podloucky, J. Paier, M. Marsman, G. Kresse. Phys. Rev. B 75, 195128 (2007).
- [25] S. Satpathy, Z.S. Popović, F.R. Vukajlovic. Phys. Rev. Lett. 76, 960 (1996).
- [26] L. Uba, S. Uba, L.P. Germash, L.V. Bekenov, V.N. Antonov. Phys. Rev. B 85, 125124 (2012).
- [27] J. Hong, A. Stroppa, J. Iniguez, S. Picozzi, D. Vanderbilt. Phys. Rev. B 85, 54417 (2012).
- [28] F. Bridges, C.H. Booth, G.H. Kwei, J.J. Neumeier, G.A. Sawatzky. Phys. Rev. B 61, R9237 (2000).
- [29] M. Molinari, D.A. Tompsett, S.C. Parker, F. Azough, R. Freer. J. Mater. Chem. A 2, 14109 (2014).

- [30] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyźyk, G.A. Sawatzky. Phys. Rev. B 48, 16929 (1993).
- [31] S. Selcuk, A. Selloni. J. Phys. Chem. C 119, 18, 9973 (2015).
- [32] F. Zhou, C. Marinetti, M. Cococcioni, D. Morgan, G. Ceder. Phys. Rev. B 70, 235121 (2004).
- [33] P.E. Blöchl. Phys. Rev. B 50, 17953 (1994).
- [34] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [35] G. Kresse, J. Hafner. Phys. Rev. B 49, 14251 (1994).
- [36] G. Kresse, J. Furthmuller. Comput. Mater. Sci. 6, 15 (1996).
- [37] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996).
- [38] A.A. Savina, V.A. Morizov, A.L. Buzlukov, I.Yu. Arapova, S.Yu. Stefanovich, Y.V. Balklanova, T.A. Denisova, N.I. Medvedeva, M. Bardet, J. Hadermann, B.I. Lazoryak, E.G. Khaikina. Chem. Mater. 29, 8901 (2017).
- [39] H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 12, 5188 (1976).
- [40] D.M. Bylander, L. Kleinman, S. Lee. Phys. Rev. B 42, 2, 1394 (1990).
- [41] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Phys. Rev. B 57, 1505 (1998).
- [42] H.M. Petrilli, P.E. Blöchl, P. Blaha, K. Schwarz. Phys. Rev. B 57, 23, 14690 (1998).
- [43] E. Muessig, K.G. Bramnik, H. Ehrenberg. Acta Crystallogr. 59, 5, 611 (2003).
- [44] R.F. Klevtsova, S.V. Borisov, N.A. Bliznyuk, L.A. Glinskaya, P.V. Klevtsov. J. Struct. Chem. 32, 6, 885 (1992).
- [45] В.К. Слепухин, В.С. Кийко, В.М. Жуковский, Ю.Г. Петросян. Спектроскопические свойства молибдатов элементов второй группы. Химия твердого тела 2, Свердловск (1978). С. 151–155.

Редактор Ю.Э. Китаев