09,08

Синтез и люминесцентные свойства титанатов висмута $Bi_{1.6}Ho_xTi_2O_{7-\delta}$ и $Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}$

© А.В. Ищенко¹, М.С. Королева², М.И. Власов^{1,3}, Е.И. Истомина², И.В. Пийр²

Екатеринбург, Россия

Сыктывкар, Россия

Екатеринбург, Россия

E-mail: a-v-i@mail.ru

Представлены результаты синтеза и исследования структурных, оптических и люминесцентных свойств пирохлоров типа $\mathrm{Bi}_{1.6}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$, $\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (где x=0; 0.01; 0.05; 0.1) и $\mathrm{Bi}_{1.5}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (где x=0.25 и 0.5). В результате анализа экспериментально полученных данных и литературных теоретических сведений показано, что собственная люминесценция образцов обусловлена электронными переходами $\mathrm{O2}p \leftrightarrow \mathrm{Bi6}p$ и $\mathrm{Bi6}s \leftrightarrow \mathrm{Bi6}p$, примесная — f-f-переходами в ионах Ho^{3+} и переносом заряда $\mathrm{O2}p \to \mathrm{Ho}^{3+}$.

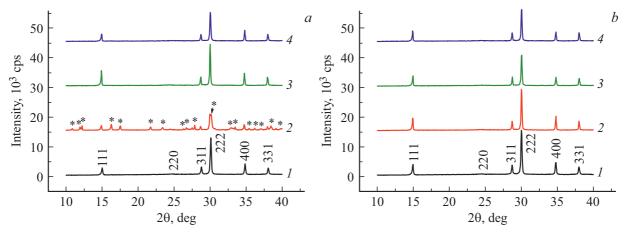
DOI: 10.21883/FTT.2019.05.47602.08F

1. Введение

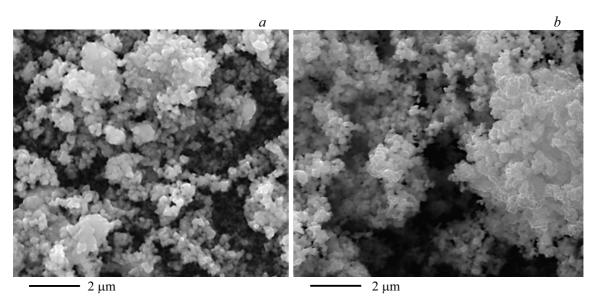
Соединения co структурой пирохлора $A_2^{3+}B_2^{4+}O_6O'$ известны уже достаточно долгое время [1]. Этот структурный тип хорошо изучен и в соответствии с последними представлениями рассматривается в виде суперпозиции двух взаимопроникающих подрешеток $A_4{\rm O}'$ (типа антикристаболита) и $B_2{\rm O}_6$ (каркаса из октаэдров BO_6 , связанных вершинами) [1]. В структурном типе пирохлора кристаллизуется много соединений, среди которых можно выделить титанат висмута Ві₂Ті₂О₇. В последние десятилетия, благодаря уникальному набору свойств, интерес к данному материалу неуклонно растет [2]. Вследствие относительно высокой диэлектрической проницаемости, низких диэлектрических потерь, низкой температуры синтеза, хороших электрических и люминесцентных свойств составов с редкоземельной легирующей примесью, титанаты висмута могут использоваться в качестве материалов для накопительных конденсаторов, люминофорных композиций для светодиодов, как эффективные материалы с антистоксовой люминесценцией, в качестве люминесцентных маркеров для доставки лекарств и т.д. [1-4]. В данной работе мы представляем результаты исследования структурных, оптических и люминесцентных свойств в видимой области излучения при оптическом возбуждении и возбуждении катодным пучком титанатов висмута $Bi_{1.6}Ho_xTi_2O_{7-\delta}$, $Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}$ (где x=0; 0.01; 0.05; 0.10) и $Bi_{1.5}Ho_xTi_2O_{7-\delta}$ (где x=0.25 и 0.50).

2. Синтез образцов и оборудование

Замещенные титанаты висмута $\mathrm{Bi}_{1.6}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ и $\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ ($x=0.01;\ 0.05;\ 0.10$) были синтезированы твердофазным методом из исходных оксидов $\mathrm{Bi}_2\mathrm{O}_3$ (99.99%), $\mathrm{Ho}_2\mathrm{O}_3$ (99.99%), MgO (99.99%), TiO_2


(99.999%, анатаз). Стехиометрическое количество оксидов перетирали в яшмовой ступке в течение 30 мин, прессовали в таблетки ($d=15\,\mathrm{mm},\ h\sim1.0\,\mathrm{mm}$), помещали в корундовые тигли и прокаливали при разных температурах T, °С (t,h): 650 (10), 850 (10), 950 (20), 1000 (20) с промежуточным перетиранием образцов. Температура дальнейшего прокаливания варьировалась в области $1100-1150^{\circ}$ С (20 h) в зависимости от состава. Методом соосаждения были синтезированы $Bi_{1.6}Ti_2O_{6.4}$ и $Bi_{1.6}Mg_{0.1}Ti_2O_{6.5}$. В качестве прекурсоров были использованы тетраизопропилат титана $Ti(OC_3H_7)_4$, пятиводный кристаллогидрат нитрата висмута $Bi(NO_3)_3 \cdot 5H_2O$ (99.9%),шестиводный кристаллогидрат нитрата магния Mg(NO₃)₂ · 6H₂O (99.9%). Массы прекурсоров были рассчитаны для получения 3 g конечного продукта. Стехиометрическое количество кристаллогидратов растворяли в водном растворе азотной кислоты $(50 \, \text{cm}^3, 2.8 \, \text{mol/dm}^3),$ добавляли Ті(ОС₃Н₇)₄, полученный коллоидный раствор перемешивали в течение 10 min, фильтровали, промывали дистиллированной водой $(V(H_2O) = 1.2 \, \text{dm}^3)$ до $pH \approx 7$. Полученный осадок высушивали при 95°C (5 h) и прокаливали при 650°С (6 h).

Фазовый состав образцов был исследован с помощью рентгенофазового анализа (РФА) на дифрактометре SHIMADZU XRD-6000 (Си K_{α} излучение, $10-40^{\circ}$, шаг — 0.05° , время экспозиции — 3 s) при 25° С. Локальный состав фаз полученных образцов определяли на шлифованной поверхности керамики с помощью энергодисперсионного микроанализатора X-ACT (ЭДС), совмещенного со сканирующим электронным микроскопом (СЭМ) (TESCAN VEGA 3SBU). Микрофотографии образцов получены в режиме упруго-отраженных электронов (BSE режим). Для образцов $Bi_{1.6}Ti_2O_{6.4}$ (BTO) и $Bi_{1.6}Mg_{0.1}Ti_2O_{6.5}$ (BTMO) локальный состав фаз определяли на порошках.


¹ Уральский федеральный университет,

² Институт химии Коми научного центра УрО РАН,

³ Институт высокотемпературной электрохимии УрО РАН,

Рис. 1. Рентгенограммы порошков $\mathrm{Bi}_{1.6}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (a) и $\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (b). I-x=0; 2-x=0.01; 3-x=0.05; 4-x=0.1.

Рис. 2. Микрофотографии СЭМ для Bi_{1.6}Ti₂O_{6.4} (a) и Bi_{1.6}Mg_{0.10}Ti₂O_{6.5} (b).

Измерения спектров диффузного отражения света выполнены при комнатной температуре на спектрометре Shimadzu 2450 с применением интегрирующей сферы ISR-2200 (300—900 nm). В качестве эталона использовался BaSO₄. Спектры оптического поглощения получали пересчетом спектров диффузного отражения в функцию F(R), пропорциональную коэффициенту поглощения, по формуле Кубелки—Мунка [5]: $F(R) = (1-R)^2/2R$, где R— коэффициент диффузного отражения.

Спектры импульсной катодолюминесценции (ИКЛ) измерены на установке КЛАВИ-Р (производство ИЭФ УрО РАН, Екатеринбург), оборудованной импульсной электронной пушкой РАДАН (длительность импульса — $2\,\mathrm{ns}$, энергия электронов — $150\,\mathrm{keV}$, плотность тока в импульсе — $150\,\mathrm{A/cm^2}$) и регистратором люминесценции на основе ПЗС-линейки с электронно-

оптическим преобразователем (диапазон измерений $350-800\,\mathrm{nm}$).

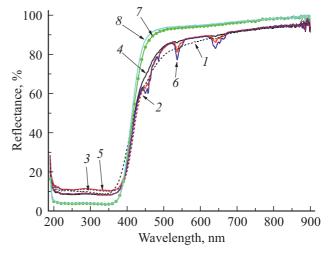
Спектры фотолюминесценции (ФЛ) и возбуждения фотолюминесценции (ВФЛ) регистрировались на спектрофотометре Perkin Elmer LS-55 с использованием импульсной ксеноновой лампы и ФЭУ Hamamatsu R928.

3. Кристаллическая структура и морфология образцов

Методами РФА и СЭМ установлено, что структура пирохлора (пространственная группа $Fd\bar{3}m$, № 227) образуется при 650°С для $\mathrm{Bi_{1.6}Ho_xTi_2O_{7-\delta}}$ и $\mathrm{Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}}$ при x=0, и при 1100—1150°С, когда x=0.01; 0.05; 0.10. Твердофазный синтез составов с x<0.05 при соотношении висмута к тита-

Состав	Состав по ЭДС анализу	Параметры ячейки, a , Å
Bi _{1.6} Ti ₂ O _{6.4}	$\mathrm{Bi}_{1.66}\mathrm{Ti}_2\mathrm{O}_{-\delta}$	10.288(3)
* Bi _{1.6} Ho _{0.01} Ti ₂ O _{6.415}	_	10.325(4)
$Bi_{1.6}Ho_{0.05}Ti_2O_{6.475}$	$\mathrm{Bi}_{1.66}\mathrm{Ho}_{0.05}\mathrm{Ti}_{2}\mathrm{O}_{7-\delta}$	10.317(4)
$Bi_{1.6}Ho_{0.10}Ti_2O_{6.415}$	$\mathrm{Bi}_{1.62}\mathrm{Ho}_{0.10}\mathrm{Ti}_{2}\mathrm{O}_{7-\delta}$	10.303(3)
$\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.10}\mathrm{Ti}_{2}\mathrm{O}_{6.5}$	${ m Bi_{1.65}Mg_{0.03}Ti_{2}O_{7-\delta}}$	10.312(4)
$\mathrm{Bi_{1.6}Mg_{0.10}Ho_{0.01}Ti_{2}O_{6.515}}$	${ m Bi_{1.68}Mg_{0.09}Ho_0Ti_2O_{7-\delta}}$	10.312(3)
$\mathrm{Bi_{1.6}Mg_{0.10}Ho_{0.05}Ti_{2}O_{6.575}}$	${ m Bi_{1.67}Mg_{0.08}Ho_{0.05}Ti_{2}O_{7-\delta}}$	10.313(3)
$Bi_{1.6}Mg_{0.10}Ho_{0.10}Ti_2O_{6.65}$	${ m Bi_{1.63}Mg_{0.09}Ho_{0.10}Ti_{2}O_{7-\delta}}$	10.310(4)

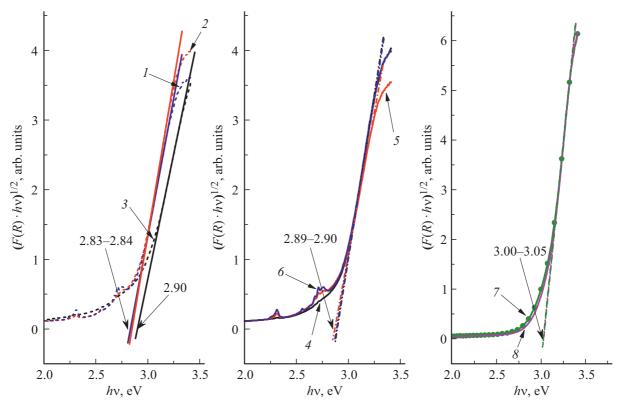
Результаты ЭДС анализа (СЭМ) $Bi_{1.6}Ho_xTi_2O_{7-\delta}$ и $Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}$

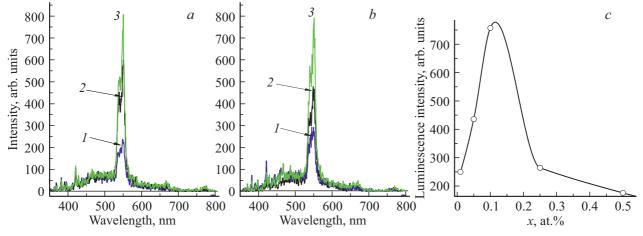

Примечание. * — неоднофазный образец.

ну 1.6:2 приводит к формированию более стабильной фазы слоистого перовскита $\mathrm{Bi}_4\mathrm{Ti}_3\mathrm{O}_{12}$ (рис. 1, дополнительная фаза отмечена звездочкой), что вызвано узкой областью стабильности структуры пирохлора $1.46 \leq r(A)/r(B) \leq 1.78 \ (A_2^3B_2^{4+}\mathrm{O}_6\mathrm{O}')$ [5]. В соответствии с предыдущими нашими работами [6–14] структура пирохлора в системе $\mathrm{Bi}_{1.6}\mathrm{M}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (M — Cr, Fe, Mn, Co, In, Sc, Li) образуется при $x \approx 0.05$ –0.10.

Локальный состав образцов, полученный методом ЭДС, практически соответствует исходно заданному составу (таблица). В таблице также приведен параметр элементарной ячейки для каждого образца. Из СЭМизображений для $\rm Bi_{1.6}Ti_2O_{6.4}$ и $\rm Bi_{1.6}Mg_{0.10}Ti_2O_{6.5}$ (рис. 2) видно, что образцы состоят из округлых частиц размером 100-300 nm, образующих агломераты.

4. Оптические и люминесцентные свойства


Оптические свойства образцов исследованы методом спектроскопии диффузного отражения света. На рис. 3 представлены полученные спектры диффузного отражения для серии образцов ВТО при различных концентрациях допирования магнием и гольмием. Видно, что введение гольмия приводит к появлению нескольких рядов узких полос поглошения, связанных с электронными возбуждениями в ионах Ho^{3+} . При этом добавка $5\% \text{ Mg}^{2+}$ (распределенного в A(Bi) позициях в структуре типа пирохлора [12-13]) не оказывает значительного влияния на характер спектров образцов как с гольмием, так и без него. Для оценки оптической ширины запрещенной зоны E_g спектры диффузного отражения были преобразованы с помощью формулы Кубелка-Мунка в спектры, пропорциональные оптическому поглощению, и затем выполнено построение Тауца в приближении непрямых разрешенных переходов (рис. 4). Для недопированного ВТО величина E_g приблизительно равна 3.0 eV и незначительно уменьшается с ростом концентрации допанта Ho^{3+} (2.90, 2.84, 2.83 eV для x = 0.01, 0.05, 0.10 соответственно). Для образца, допированного ионами Mg^{2+} , ширина оптической щели E_g незначительно увеличивается до $\approx 3.05\,\mathrm{eV}$. Совместное допирование


Рис. 3. Спектры диффузного отражения $Bi_{1.6}Ho_xTi_2O_{7-\delta}$ и $Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}$. I — $Bi_{1.6}Ho_{0.01}Ti_2O_{6.45}$; 2 — $Bi_{1.6}Ho_{0.05}Ti_2O_{6.475}$; 3 — $Bi_{1.6}Ho_{0.10}Ti_2O_{6.55}$; 4 — $Bi_{1.6}Mg_{0.1}Ho_{0.01}Ti_2O_{6.57}$; 5 — $Bi_{1.6}Mg_{0.1}Ho_{0.05}Ti_2O_{6.575}$; 6 — $Bi_{1.6}Mg_{0.1}Ho_{0.10}Ti_2O_{6.55}$; 7 — $8i_{1.6}Mg_{0.1}Ho_{0.05}Ti_2O_{6.575}$

ВТО гольмием и магнием (${\rm Ho^{3+}}$ и ${\rm Mg^{2+}}$) не приводит к существенному изменению постоянной решетки (таблица). Для этих составов величина E_g фиксируется вблизи $2.89-2.90\,{\rm eV}$ и не зависит от концентрации ${\rm Ho^{3+}}$. В работах [15-16] было показано, что активация различных оксидов (в частности ZnO) магнием может приводить к увеличению оптической ширины запрещенной зоны. Таким образом, в результате суперпозиции двух противоположных эффектов, вызываемых допированием гольмием и магнием и приводящих к компенсации размеров элементарной ячейки, оптическая ширина запрещенной зоны E_g остается равной $2.89-2.90\,{\rm eV}$.

Исследования свойств ИКЛ образцов $Bi_{1.6}Ho_xTi_2O_{7-\delta}$ и $Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}$ показывают, что спектральный состав люминесценции в диапазоне 400-800 nm (рис. 5,a,b) содержит типичные узкие полосы для f-f-переходов в ионах Ho^{3+} : интенсивная полоса при 536-550 nm $({}^5F_4,{}^5S_2\to{}^5I_8)$ и серия слабых переходов при 460-470 nm $({}^5F_3\to{}^5I_8)$, 650-670 nm $({}^5F_5\to{}^5I_8)$ и 770-780 nm $({}^5I_4\to{}^5I_8)$. Максимальной интенсивностью

Рис. 4. Спектры поглощения титанатов висмута (образцов) в координатах Тауца в приближении непрямых разрешенных переходов и значения ширины оптической щели для них. $1-\mathrm{Bi}_{1.6}\mathrm{Ho}_{0.01}\mathrm{Ti}_2\mathrm{O}_{6.45};\ 2-\mathrm{Bi}_{1.6}\mathrm{Ho}_{0.05}\mathrm{Ti}_2\mathrm{O}_{6.475};\ 3-\mathrm{Bi}_{1.6}\mathrm{Ho}_{0.10}\mathrm{Ti}_2\mathrm{O}_{6.55};\ 4-\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ho}_{0.05}\mathrm{Ti}_2\mathrm{O}_{6.575};\ 6-\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ho}_{0.10}\mathrm{Ti}_2\mathrm{O}_{6.65};\ 7-\mathrm{Bi}_{1.6}\mathrm{Ti}_2\mathrm{O}_{6.4};\ 8-\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ti}_2\mathrm{O}_{6.5}.$

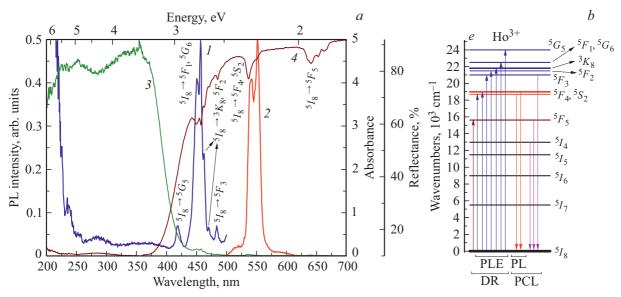


Рис. 5. Спектры ИКЛ титанатов висмута $\mathrm{Bi}_{1.6}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (*a*) и $\mathrm{Bi}_{1.6}\mathrm{Mg}_{0.1}\mathrm{Ho}_x\mathrm{Ti}_2\mathrm{O}_{7-\delta}$ (*b*) и зависимость интенсивности люминесценции полосы 545 nm от концентрации Ho^{3+} (*c*). $I-x=0.01;\ 2-x=0.05;\ 3-x=0.1.$

ИКЛ обладают образцы с 0.1 at.% $\mathrm{Ho^{3+}}$ (x=0.1), что хорошо видно на зависимости интенсивности люминесценции от концентрации активатора (рис. 5,c). Помимо узких линий ИКЛ исследуемых титанатов висмута в спектрах наблюдается слабая широкая полоса свечения с максимумом в районе $500\,\mathrm{nm}$. Данная полоса может быть отнесена к люминесценции собственных центров свечения, например, центров свечения, связанных с

ионами ${\rm Bi}^{3+}$ или дефектами в кислородной подрешетке, однако из-за низкой интенсивности свечения дополнительный анализ этой полосы затруднен. Как видно из спектров ИКЛ, введение ионов ${\rm Mg}^{2+}$ в состав титанатов висмута не приводит к видимому изменению спектров люминесценции (рис. 5, a,b).

Спектры ВФЛ и ФЛ всех исследуемых титанатов висмута, активированных ${\rm Ho}^{3+}$, аналогичны друг другу.

Рис. 6. Спектры ВФЛ (1), ФЛ (2), поглощения (3) и диффузного отражения (4) образца $\mathrm{Bi}_{1.5}\mathrm{Ho}_{0.1}\mathrm{Ti}_2\mathrm{O}_{7-\delta}$. Спектр ВФЛ измерен для полосы свечения 545 nm, спектр ФЛ измерен при возбуждении светом с длиной волны 455 nm. Схема наблюдаемых электронных переходов (b) в ионах Ho^{3+} в титанатах висмута. (PLE — ВФЛ, PL — ФЛ, DR — диффузное отражение, PCL — ИКЛ).

Введение соактиватора Mg^{2+} не меняет вид спектров $\Phi \Pi$ и В $\Phi \Pi$. Образцы без Ho^{3+} исследовать на предмет фотолюминесцентных свойств не удалось вследствие низкой интенсивности свечения. Для примера и дальнейшего анализа на рис. 6 приведены спектры $\Phi \Pi$ и В $\Phi \Pi$ образца $Bi_{1.5}Ho_{0.1}Ti_2O_{7-\delta}$.

Спектр ФЛ при возбуждении светом с длиной волны 455 nm в отличие от спектра ИКЛ представлен меньшим количеством полос. Отчетливо наблюдается интенсивная полоса в районе 536—550 nm (3F_4 , ${}^5S_2 \rightarrow {}^5I_8$). Такое различие связано с меньшей интенсивностью возбуждения свечения ФЛ, чем ИКЛ.

Спектр ВФЛ измерен для полосы люминесценции $536-550\,\mathrm{nm}$ (переход ${}^3F_4,\,{}^5S_2\to{}^5I_8$ в Ho^{3+}). Как видно, спектр состоит из серии интенсивных узких полос с максимумами 483, 470, 462, 457, 451 и 419 nm и широких малоинтенсивными полос с максимумами 360, 285 и 236 nm. Узкие полосы можно отнести к внутрицентровым переходам в ионах Ho^{3+} . Соотнесение переходов к конкретной полосе приведено на рис. 6. Появление полос с максимумами в районе 545 nm (терм ${}^3F_4,\,{}^5S_2\to{}^5I_8$) как в спектре отражения, так и в спектре ФЛ, свидетельствует об участии данных уровней как в процессах люминесценции, так и в процессах поглощения энергии с ее последующим высвобождением с участием ниже лежащих уровней ${}^5F_5,\,{}^5I_4,\,{}^5I_5,\,{}^5I_6$ и 5I_7 (схема уровней приведена на рис. 6, b).

Появление широких малоинтенсивных полос можно связать с переносом энергии от возбужденных ионов матрицы титанатов висмута к активатору Ho^{3+} . Возможная причина обсуждается ниже.

Дополнительную информацию о процессах переноса энергии в титанатах висмута с активатором Ho³⁺ может дать совместный анализ спектров ВФЛ, ФЛ, спектров диффузного отражения и спектров поглощения (рис. 6). Из рисунка видно, что область фундаментального поглощения в допированных гольмием титанатах висмута располагается в области энергий более 3.0 eV (менее 410 nm) (рис. 6, спектр поглощения). Согласно результатам квантово-химического моделирования [17], проведенного для титанатов висмута со структурой пирохлора, легированных магнием и кальцием (Ві_{1.5}Мg_{0.5}Ті₂О_{7.} и Bi_{1.5}Ca_{0.5}Ti₂O₇), валентная зона в данных материалах формируется преимущественно за счет 2р-состояний ионов кислорода O^{2-} и 6s- и 6p-состояний ионов ${\rm Bi^{3+}}$. Состояния ионов ${\rm Bi^{3+}}$ распределены по первой валентной зоне неравномерно: ближе к уровню Ферми расположены 6s-состояния, а 6p-состояния располагаются примерно на 5 eV ниже уровня Ферми. Зона проводимости сформирована в основном за счет 3d-состояний ионов Ті⁴⁺, однако в низкоэнергетической части имеется заметный вклад состояний Вібр. Как показывают расчеты [17], вклад состояний ионов Mg^{2+} и Ca^{2+} в формирование валентной зоны и зоны проводимости очень мал, поэтому прямое участие в процессах люминесценции данных активаторов минимально. Данный теоретический результат подтверждается экспериментально. Из представленных данных ИКЛ видно, что введение ионов Mg²⁺ в структуру ВТО не сказывается на спектральных характеристиках. Тем не менее, введение гетеровалентной примеси может повлечь увеличение концентрации точечных дефектов в структуре ВТО, что может привести к появлению ловушек для носителей заряда. Данное предположение требует проведения дополнительных исследований с применением методик термолюминесцентной спектроскопии. Однако, учитывая низкую интенсивность свечения образцов, проведение таких экспериментов представляется достаточно сложной задачей.

Из анализа результатов расчетов следует, что фундаментальное поглощение в титанатах висмута (рис. 6, спектр поглощения) обусловлено в основном электронными переходами O2p o Ti3d и в меньшей степени переходами в ионах висмута $Bi6s \rightarrow Bi6p$ и переходами с переносом заряда $O2p \to Bi6p$. Как показывает сравнение спектров ВФЛ и спектров оптического поглощения (рис. 6), межзонные переходы в титанатах висмута не приводят к интенсивной люминесценции в отличие, например, от известного сцинтиллятора Ві₄Ge₃O₁₂ (BGO). В BGO, как показывают результаты расчетов ab initio [18], эффективное возбуждение люминесценции происходит за счет переноса электрона $O2p \rightarrow Bi6p$ и $Bi6s \rightarrow Bi6p$. Состояния Ge4p в BGO, в отличие от Ti3dв ВТО, не являются доминирующими при формировании зоны проводимости и отсутствуют в ее низкоэнергетической зоне. Собственная люминесценция в BGO обусловлена распадом электронных возбуждений на ионах Bi^{3+} . Известно, что в титанатах с матричными комплексами $[TiO_6]^{8-}$ собственная люминесценция практически отсутствует [19]. Это связано с особенностями релаксации электронных возбуждений в октаэдрических комплексах, содержащих четырехвалентный металл. Комплексы с пяти- и шестивалентными металлами в тетраэдрической или октаэдрической координации как правило обладают интенсивной люминесценцией, например, ванадаты, вольфраматы, молибдаты и др. Октаэдрические и тетраэдрические комплексы с титаном чаще всего являются эффективными центрами люминесценции когда вводятся в широкозонный кристалл в виде примеси. В случае ВТО наблюдается интенсивное поглощение света в области 200-400 nm (рис. 6, спектр поглощения) группами $[\text{TiO}_6]^{8-}$ без последующей люминесценции при комнатной температуре (переход $O2p \rightarrow Ti3d$) и слабая собственная люминесценция, обусловленная электронными переходами $O_2p o Bi6p$ и Bi6s o Bi6p(широкие низкоинтенсивные полосы в спектре ВФЛ с максимумами при 360 и 285 nm, рис. 6, спектр ВФЛ) в висмутовом полиэдре с последующей излучательной релаксацией. Собственная люминесценция в ВТО проявляется в виде широкой полосы свечения в спектрах ИКЛ с максимумом в 500 nm (рис. 5, a, b). В результате можно сделать вывод, что низкая интенсивность собственной люминесценции, связанной с полиэдрами с Bi³⁺, обусловлена интенсивным поглощением света в комплексах $[{
m TiO_6}]^{8-}$. Для более тщательного исследования процессов, связанных с собственной люминесценцией в ВТО, требуется проведение низкотемпературных измерений.

Люминесценция ионов ${
m Ho^{3+}}$ в исследуемых титанатах висмута при комнатной температуре имеет два

канала возбуждения. Первый связан с внутрицентровыми f - f-переходами, что хорошо видно из сравнения спектров ВФЛ и оптического поглощения (рис. 6, спектры ВФЛ и поглощения). Возбуждение полосы люминесценции соответствующей переходу 3F_4 , ${}^5S_2 \rightarrow {}^5I_8$ (536-550 nm) происходит за счет переноса электронов с основного ${}^{5}I_{8}$ уровня на ${}^{5}G_{5}$, ${}^{5}F_{1}$, ${}^{5}G_{6}$, ${}^{3}K_{8}$, ${}^{5}F_{2}$ и ${}^{5}F_{3}$ уровни, лежащих в запрещенной зоне ВТО. Более высокоэнергетические f - f-переходы в ионах Ho^{3+} не реализуются вследствие интенсивного поглощения света с энергией более 3 eV комплексами матрицы $[\text{TiO}_6]^{8-}$ (O2 $p \to \text{Ti}3d$). Второй канал возбуждения свечения Ho³⁺ можно отнести к переходу с переносом заряда $O2p \to Ho^{3+}$, проявляющийся в виде полосы возбуждения люминесценции в спектре ВФЛ с максимумом при 236 nm (рис. 6, спектр ВФЛ). Аналогичная полоса проявляется в La_2O_3 : Ho^{3+} [20].

5. Заключение

В настоящей работе представлены результаты синтеза и исследования структурных, оптических и люминесцентных свойств титанатов висмута, допированных магнием и гольмием. Исследуемые образцы обладают относительно низкой интенсивностью свечения. Максимальной интенсивностью свечения обладают образцы с концентрацией ${\rm Ho^{3+}}$ равной 0.1 at.%. Показано, что концентрация ионов ${\rm Ho^{3+}}$ в структуре типа пирохлора в соединениях ${
m Bi_{1.6}Ho_xTi_2O_{7-\delta}},\,{
m Bi_{1.6}Mg_{0.1}Ho_xTi_2O_{7-\delta}}$ (где x = 0; 0.01; 0.05; 0.1) и $\text{Bi}_{1.5}\text{Ho}_x\text{Ti}_2\text{O}_{7-\delta}$ (где x = 0.25и 0.5) слабо влияет на объем элементарной ячейки и на оптическую ширину запрещенной зоны. Введение ионов Mg²⁺ практически не влияет на люминесцентные свойства титанатов висмута, активированных гольмием. В результате анализа экспериментально полученных данных и литературных теоретических сведений описаны процессы создания и релаксации электронных возбуждений, связанных с собственной (электронные переходы $O2p \rightarrow Bi6p$ и $Bi6s \rightarrow Bi6p$) и примесной люминесценцией (f-f-переходы в ионах Ho^{3+} и перенос заряда $O2p \rightarrow Ho^{3+}$) в данных соединениях.

Список литературы

- [1] M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid State Chem. **15**, 55 (1983).
- [2] F. Li, X. Liu, J. Zhao, L. Liu, Sh. He, D. Bao. Mater. Chem. Phys. 162, 801 (2015).
- [3] Y. Cun, Zh. Yang, J. Liao, J. Qiu, Zh. Song, Y. Yang. Mater. Lett. **131**, 154 (2014).
- [4] X.N. Yanga, B.B. Huanga, H.B. Wangb, S.X. Shangc, W.F. Yaoa, J.Y. Weia. J. Crystal Growth 270, 98 (2004).
- [5] P. Kubelka. J. Opt. Soc. Am. B 38, 448 (1948).
- [6] I.V. Piir, N.A. Sekushin, V.E. Grass, Y.I. Ryabkov, N.V. Chezhina, S.V. Nekipelov, V.N. Sivkov, D.V. Vyalikh. Solid State Ionics 225, 464 (2012).

- [7] I.V. Piir, M.S. Koroleva, D.A. Korolev, N.V. Chezhina, V.G. Semenov, V.V. Panchuk. J. Solid State Chem. 204, 245 (2013).
- [8] М.С. Королева, И.В. Пийр, Ю.И. Рябков, Д.А. Королев, Н.В. Чежина. Изв. АН. Сер. хим. **2**, 410 (2013).
- [9] I.V. Piir, M.S. Koroleva, Y.I. Ryabkov, E.Y. Pikalova, S.V. Nekipelov, V.N. Sivkov, D.V. Vyalikh. Solid State Ionics 262, 630 (2014).
- [10] И.В. Пийр, М.С. Королева, Н.А. Секушин, В.Э. Грасс, Ю.И. Рябков. Электрохимия 49, 8, 909 (2013).
- [11] A.G. Krasnov, I.V. Piir, M.S. Koroleva, N.A. Sekushin, Y.I. Ryabkov, M.M. Piskaykina, V.A. Sadykov, E.M. Sadovskaya, V.V. Pelipenko, N.F. Eremeev. Solid State Ionics 302, 118 (2017).
- [12] А.Г. Краснов, М.М. Пискайкина, И.В. Пийр. ЖОХ 86, 2, 177 (2016).
- [13] А.Г. Краснов, М.М. Пискайкина, И.В. Пийр. Химия в интересах устойчивого развития 5, 24, 687 (2016).
- [14] V.A. Sadykov, M.S. Koroleva, I.V. Piir, N.V. Chezhina, D.A. Korolev, P.I. Skriabin, A.V. Krasnov, E.M. Sadovskaya, N.F. Eremeev, S.V. Nekipelov, V.N. Sivkov. Solid State Ionics 315, 33 (2018).
- [15] Y.S. Wang, P.J. Thomas, P. O'Brien. J. Phys. Chem. B 110, 21412 (2006).
- [16] F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, W.J. Lee, B.C. Shin. J. Appl. Phys. 95, 4772 (2004).
- [17] A.G. Krasnov, I.R. Shein, I.V. Piir, Y.I. Ryabkov. Solid State Ionics 317, 183 (2018).
- [18] A.F. Lima, S.O. Souza, M.V. Lalić. J. Appl. Phys. 106, 013715 (2009).
- [19] G. Blasse. Luminescence and Energy Transfer. Structure and Bonding 42, 1 (1980).
- [20] G. Li, Ch. Li, Zh. Xu, Z. Cheng, J. Lin. Cryst. Eng. Commun. 12, 4208 (2010).

Редактор Д.В. Жуманов