02

# Влияние полимерной матрицы на люминесцентные свойства композиций, допированных хелатами бора

© Е.В. Федоренко<sup>1</sup>, А.А. Хребтов<sup>2</sup>, А.Г. Мирочник<sup>1</sup>, П.С. Нефедов<sup>2</sup>, Л.А. Лим<sup>2</sup>, В.А. Реутов<sup>2</sup>, И.С. Павлов<sup>2</sup>, А.А. Сергеев<sup>3</sup>

1 Институт химии Дальневосточного отделения РАН,

690022 Владивосток, Россия

<sup>2</sup> Дальневосточный федеральный университет,

690091 Владивосток, Россия

<sup>3</sup> Институт автоматики и процессов управления Дальневосточного отделения РАН,

690041 Владивосток, Россия

e-mail: xrebtov aa@dvfu.ru

Поступила в редакцию 24.12.2018 г./

В окончательной редакции 24.12.2018 г.

Принята к публикации 07.05.2019 г.

Исследованы полимерные люминесцентные композиции на основе полистирола ( $\Pi$ C), поликарбоната ( $\Pi$ K) и полиметилметакрилата ( $\Pi$ MMA), допированные дибензоилметанатом дифторида бора ( $DBMBF_2$ ), антраценоилацетонатом дифторида бора ( $AntAcBF_2$ ) и их смесью. Максимальным квантовым выходом люминесценции обладает композиция на основе  $\Pi$ C. Выявлена роль  $\Pi$ C в повышении эффективности передачи энергии от донора ( $DBMBF_2$ ) к акцептору ( $AntAcBF_2$ ), что обусловлено образованием эксиплексов  $DBMBF_2$  с фенильными кольцами  $\Pi$ C.

**Ключевые слова:**  $\beta$ -дикетонаты дифторида бора, дибензоилметанат дифторида бора, полимеры, люминесценция, эксиплексы.

DOI: 10.21883/OS.2019.09.48195.373-18

## Введение

Одним из перспективных направлений применения полимерных люминесцентных композиций является разработка люминесцентных солнечных концентраторов (ЛСК), которые могут быть использованы в светопрозрачных конструкциях зданий (окнах, витражах) [1,2].

Разработка эффективных ЛСК непосредственно связана с выбором оптимальных люминофоров, к которым предъявляется значительный перечень требований, таких как высокий квантовый выход люминесценции (КВ); широкая полоса поглощения в области, где эффективность фотоэлектрических преобразователей (ФЭП) низка; высокий коэффициент поглощения; полоса излучения, совпадающая с областью максимальной спектральной чувствительности ФЭП; большой стоксов сдвиг для минимизации потерь в результате самопоглощения; фотостабильность в течение длительного периода времени [3].

β-дикетонаты дифторида бора являются перспективными люминофорами для этой цели, так как удовлетворяют вышеназванным требованиям [4–6], однако исследования, посвященные использованию данного класса соединений в ЛСК, практически отсутствуют.

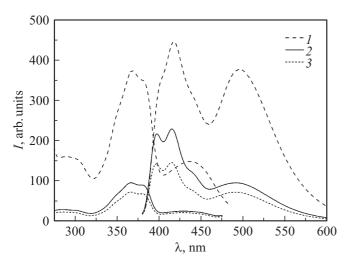
На эффективность ЛСК значительное влияние также оказывает полимерная матрица. Матрица должна удовлетворять следующим условиям: хорошая растворимость люминофора, высокая фотостабильность в течение длительного периода времени, низкий коэффициент

поглощения в широком спектральном диапазоне [3]. Этим условиям соответствуют следующие оптически прозрачные полимерные материалы: полистирол (ПС), полиметилметакрилат (ПММА), поликарбонат (ПК), а также сополимеры метилметакрилата (ММА) со стиролом и стирола с акрилонитрилом [7].

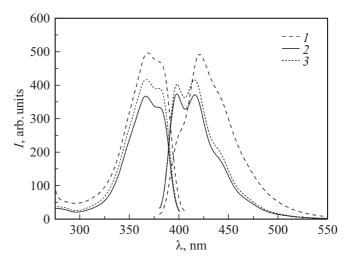
Ранее были исследованы полимерные композиции на основе ПС, допированного смесью дибензоилметаната дифторида бора (DBMBF<sub>2</sub>) и антраценоилацетоната дифторида бора (AntAcBF<sub>2</sub>) (схема), которые характеризуются наличием сенсибилизированной люминесценции [8] и могут быть использованы для изготовления ЛСК [9]. В продолжение исследований в настоящей работе проведено сравнительное исследование люминесцентных свойств полимерных композиций на основе ПС, ПК и ПММА, допированных DBMBF<sub>2</sub> и AntAcBF<sub>2</sub>.

Схема.

#### Экспериментальная часть


DBMBF2 и AntAcBF2 были получены по методикам [10] и [11] соответственно. ПС марки ПСМ-115 и ПК марки ПК-Л-10 были предварительно очищены методом переосаждения. ПММА был получен полимеризацией  $10\,\mathrm{g}$  MMA в  $40\,\mathrm{ml}$  толуола при  $80^\circ\mathrm{C}$  в течение  $4\,\mathrm{h}$ , в качестве инициатора использовали  $0.01\,\mathrm{g}$  перекиси бензоила.

Полимерные пленки на основе ПС, ПК, ПММА, допированные 0.2 wt.% AntAcBF2, 0.2 wt.% DBMBF2 и смесью люминофоров с мольным соотношением AntAcBF2: DBMBF2 1:1 (концентрация AntAcBF2 0.2 wt.%), были получены методом пневмонапыления на стеклянную подложку размером  $25 \times 76 \times 1 \text{ mm}$  растворов 0.5 g ПС, ПК, ПММА и точных навесок AntAcBF2 и DBMBF2 в 10 ml дихлорэтана (квалификация "Химически чистый"). После высыхания пленки помещали в сушильный шкаф на 1 h при температуре  $75^{\circ}\text{C}$ .


Спектры возбуждения люминесценции и люминесценции регистрировали на спектрофлуориметре Shimadzu RF5301. Время-разрешенные спектры и кинетика затухания люминесценции измерены на лазерном пикосекундном спектрофлуориметре FluoTime 200 (PicoQuant), источник PDL 800-В. Квантовые выходы люминесценции полимерных композиций измерены на спектрофлуориметре HoribaFluorolog 3 (Japan) методом интегрирующей сферы. Измерены полные КВ и КВ полосы эмиссии с  $\lambda_{\rm per}=500$  nm.

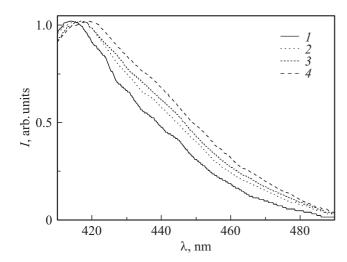
### Результаты и обсуждение

На рис. 1 представлены спектры возбуждения люминесценции и люминесценции пленок ПС, ПК и ПММА, содержащих смесь люминофоров с мольным



**Рис. 1.** Спектры возбуждения люминесценции (слева) и люминесценции (справа) пленок ПС ( $\lambda_{\rm per}=500~{\rm nm}$ ,  $\lambda_{\rm воз6}=365~{\rm nm}$ ) (I), ПК ( $\lambda_{\rm per}=490~{\rm nm}$ ,  $\lambda_{\rm воз6}=365~{\rm nm}$ ) (2) и ПММА ( $\lambda_{\rm per}=490~{\rm nm}$ ,  $\lambda_{\rm воз6}=365~{\rm nm}$ ) (3) с мольным соотношением AntAcBF $_2$ : DBMBF $_2$  1:1.




**Рис. 2.** Спектры возбуждения люминесценции (слева) и люминесценции (справа) пленок ПС ( $\lambda_{\rm per}=420~{\rm nm}$ ,  $\lambda_{\rm B036}=365~{\rm nm}$ ) (I), ПК ( $\lambda_{\rm per}=415~{\rm nm}$ ,  $\lambda_{\rm B036}=365~{\rm nm}$ ) (2) и ПММА ( $\lambda_{\rm per}=415~{\rm nm}$ ,  $\lambda_{\rm B036}=365~{\rm nm}$ ) (3), допированных 0.2 wt.% DBMBF<sub>2</sub>.

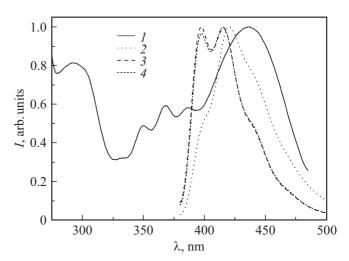
соотношением AntAcBF<sub>2</sub>: DBMBF<sub>2</sub> 1:1. В [8] показано, что в спектрах возбуждения люминесценции полимерной композиции на основе ПС полоса с максимумом 365 nm относится к возбуждению молекул DBMBF<sub>2</sub>, полоса с максимумом 440 nm — к возбуждению молекул AntAcBF<sub>2</sub>, а эмиссия DBMBF<sub>2</sub> и AntAcBF<sub>2</sub> характеризуется полосами 420 и 505 nm соответственно. В спектрах всех исследованных полимерных композиций наблюдаются полосы возбуждения люминесценции и люминесценции как DBMBF2, так и AntAcBF2. В отличие от ПС, где интенсивности полос люминесценции DBMBF<sub>2</sub> и AntAcBF<sub>2</sub> близки, в пленках ПК и ПММА полоса люминесценции DBMBF<sub>2</sub> значительно интенсивнее, чем AntAcBF<sub>2</sub>. При этом КВ пленки ПС (таблица) также имеет максимальное значение и более чем в 2 раза превышает КВ пленок ПК и ПММА.

Для объяснения наблюдаемого эффекта было проведено исследование поведения индивидуальных люминофоров в полимерных матрицах. Спектры люминесценции пленок ПС, ПК и ПММА, допированных 0.2 wt.% AntAcBF<sub>2</sub>, имеют идентичную структуру, однако длинноволновая полоса возбуждения люминесценции (440 nm) и полоса люминесценции (505 nm) в ПС батохромно сдвинуты относительно соответствующих полос в спектрах AntAcBF<sub>2</sub> в ПК (430 и 498 nm) и ПММА (430 и 496 nm). КВ пленок ПС (таблица) имеют более высокие значения по сравнению с пленками ПК и ПММА.

На рис. 2 приведены спектры возбуждения люминесценции и люминесценции полимерных пленок, допированных DBMBF<sub>2</sub>. Спектры возбуждения люминесценции не зависят от материала матрицы, имеют колебательную структуру и соответствуют возбуждению мономерной люминесценции растворов DBMBF<sub>2</sub> [12]. Однако в

| Образец                                 | $\lambda_{{\scriptscriptstyle { m BO3O}}}=365{ m nm}$ |                  | $\lambda_{{\scriptscriptstyle { m BO3}}f 6}=430{ m nm}$ |                  |
|-----------------------------------------|-------------------------------------------------------|------------------|---------------------------------------------------------|------------------|
|                                         | Полный КВ, %                                          | КВ при 500 nm, % | Полный КВ, %                                            | КВ при 500 nm, % |
| $\Pi$ C + AntAcBF <sub>2</sub>          | 4.35                                                  | 4.16             | 4.96                                                    | 1.66             |
| $\Pi K + AntAcBF_2$                     | 1.93                                                  | 0.9              | 0.51                                                    | 0.13             |
| $\Pi MMA + AntAcBF_2$                   | 3.43                                                  | 1.72             | 2.5                                                     | 0.21             |
| $\Pi C + DBMBF_2$                       | 10.54                                                 | _                | _                                                       | _                |
| $\Pi K + DBMBF_2$                       | 6.26                                                  | _                | _                                                       | _                |
| $\Pi MMA + DBMBF_2$                     | 11.65                                                 | _                | -                                                       | _                |
| $\Pi C + AntAcBF_2 : DBMBF_2 \ 1 : 1$   | 13.81                                                 | 8.97             | 5.14                                                    | 4.65             |
| $\Pi K + AntAcBF_2 : DBMBF_2 \ 1 : 1$   | 5.86                                                  | 2.12             | 0.31                                                    | 0.1              |
| $\Pi MMA + AntAcBF_2 : DBMBF_2 \ 1 : 1$ | 6.35                                                  | 2.2              | 1.36                                                    | 0.47             |




**Рис. 3.** Разрешенные во времени спектры люминесценции ( $\lambda_{\text{воз6}} = 365 \, \text{nm}$ ) пленки ПС, допированной 0.2 wt.% DBMBF<sub>2</sub>: время с момента возбуждения 0.2 (1), 0.5 (2), 0.7 (3), 1.6 ns (4).

спектрах люминесценции наблюдаются различия. Для пленок ПК и ПММА спектр люминесценции является зеркальным спектру возбуждения люминесценции и соответствует мономерной люминесценции разбавленных растворов DВМВГ<sub>2</sub> [12]. Для пленки ПС зеркальной симметрии спектров возбуждения люминесценции и люминесценции не наблюдается, колебательная структура спектра не выражена. При этом полоса люминесценции пленки ПС (420 nm) батохромно сдвинута относительно длинноволновых полос люминесценции в пленках ПК и ПММА (415 nm).

Кинетика люминесценции DBMBF $_2$  в пленках ПК и ПММА моноэкспоненциальна, время жизни возбужденного состояния составляет 1.4 и 1.6 пs соответственно. В пленке ПС кинетика люминесценции двухэкспоненциальна со временами жизни 3.5 и 1.4 пs (вклад 59.07 и 40.93% соответственно). Во времяразрешенных спектрах люминесценции пленки ПС, допированной 0.2 wt.%

 $DBMBF_2$  (рис. 3), наблюдается смещение максимума люминесценции с 414 до 419 nm с течением времени.

Известно, что DBMBF2 с ароматическими соединениями образует эксиплексы [13,14], для которых характерно батохромное смещение полосы люминесценции относительно мономерной люминесценции [15]. При этом эксиплексы характеризуются более яркой эмиссией по сравнению с мономерной люминесценцией [14,16]. Это согласуется с полученными в работе данными. Действительно, КВ композиции на основе ПС-матрицы, содержащей AntAcBF2 и DBMBF2, имеет большее значение по сравнению с композициями на основе ПК и ПММА. Более яркую эмиссию композиции на основе ПС можно объяснить образованием эксиплексов между фенильными кольцами полимера и молекулами DBMBF<sub>2</sub>. Это приводит к более интенсивному переносу энергии электронного возбуждения донор-акцептор и повышению КВ. Об эффективном переносе энергии возбуждения с уровней донора (DBMBF<sub>2</sub>) на уровни акцеп-



**Рис. 4.** Нормированные спектры возбуждения люминесценции пленки ПС (*I*), допированной 0.2 wt.% AntAcBF<sub>2</sub> ( $\lambda_{\rm per} = 500\,{\rm nm}$ ), люминесценции пленок ПС (*2*), ПК (*3*) и ПММА (*4*), допированных 0.2 wt.% DBMBF<sub>2</sub> ( $\lambda_{\rm Bo36} = 365\,{\rm nm}$ ).

тора (AntAcBF<sub>2</sub>) свидетельствует факт существенного уменьшения KB композиции при возбуждении в полосе акцептора (13.81% — возбуждение донора; 5.14% — возбуждение акцептора) (таблица). При измерении KB в полосе эмиссии акцептора (500 nm) наблюдается аналогичная картина (8.97% — возбуждение донора; 4.65% — возбуждение акцептора) (таблица). Следует отметить, что ПК также характеризуется наличием фенильных колец в своей структуре, однако по причине большей жесткости цепей ПК образование эксиплексов с DBMBF<sub>2</sub> невозможно.

Кроме того, из рис. 4, на котором представлены спектры возбуждения люминесценции пленки  $\Pi C$ , допированной 0.2 wt.% AntAcBF $_2$ , и люминесценции пленок  $\Pi C$ ,  $\Pi K$  и  $\Pi MMA$ , допированных 0.2 wt.% DBMBF $_2$ , видно, что в  $\Pi C$ -матрице перекрывание полос люминесценции DBMBF $_2$  и возбуждения люминесценции AntAcBF $_2$  происходит в большей степени, чем в  $\Pi K$  и  $\Pi MMA$ . Это приводит к лучшему переносу энергии от донора  $(DBMBF_2)$  к акцептору  $(AntAcBF_2)$  в  $\Pi C$ -матрице.

#### Выводы

Проведено исследование влияния природы полимерной матрицы на спектральные свойства полимерных люминесцентных композиций, допированных смесью люминофоров AntAcBF2 и DBMBF2. Выявлена роль ПС в повышении эффективности передачи энергии от донора (DBMBF2) к акцептору (AntAcBF2), которая связана с образованием эксиплексов DBMBF2 с фенильными кольцами ПС, характеризующейся большей интенсивностью по сравнению с мономерной люминесценцией. Формирование эксиплексов в ПС-композиции приводит к существенному увеличению КВ по сравнению с композициями на основе матриц ПК и ПММА. Люминесцентные композиции на основе ПС могут быть предложены для создания ЛСК.

#### Финансирование работы

Исследование проведено при финансовой поддержке "Стипендии Гензо Шимадзу".

## Список литературы

- Fathi M., Abderrezek M., Djahli F. // Optik. 2017. V. 148.
   P. 14. doi 10.1016/j.ijleo.2017.08.127
- [2] Zarcone R., Brocato M., Bernardoni P., Vincenzi D. // Energy Procedia. 2016. V. 91. P. 887. doi 10.1016/j.egypro.2016.06.255
- [3] Klampaftis E., Ross D., McIntosh K.R., Richards B.S. // Sol. Energy Mater Sol. Cells. 2009. V. 93. N 8. P. 1182. doi 10.1016/j.solmat.2009.02.020
- [4] *Мирочник А.Г., Федоренко Е.В., Шлык Д.Х.* // Изв. АН. Сер. хим. 2016. № 3. С. 806; *Mirochnik A.G., Fedorenko E.V., Shlyk D.Kh.* // Russ. Chem. Bull., Int. Ed., 2016. V. 65. N 3. P. 806.

- [5] *Карасев В.Е., Мирочник А.Г., Федоренко Е.В.* Фотофизика и фотохимия b-дикетонатов дифторида бора. Владивосток: Дальнаука, 2006. 162 с.
- [6] Chen P.-Z., Niu L.-Y., Chen Y.-Z., Yang Q.-Z. // Coord. Chem. Rev. 2017. V. 350. P. 196. doi 10.1016/j.ccr.2017.06.026
- [7] Серова В.Н. Оптические и другие материалы на основе прозрачных полимеров. Казань: КГТУ, 2010. 540 с.
- [8] Хребтов А.А., Федоренко Е.В., Лим Л.А., Реутов В.А. // Опт. и спектр. 2018. Т. 124. № 1. С. 71. doi 10.21883/OS.2018.01.45360.186-17; Khrebtov A.A., Fedorenko E.V., Lim L.A., Reutov V.A. // Opt. Spectrosc. 2018. V. 124. N 1. P. 68. doi 10.1134/S0030400X18010095
- [9] Khrebtov A.A., Fedorenko E.V., Reutov V.A. // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 262. P. 12022. doi 10.1088/1757-899X/262/1/012022
- [10] *Карасев В.Е., Коротких О.А.* // Журн. неорган. химии. 1986. Т. 31. № 4. С. 869.
- [11] Fedorenko E.V., Bukvetskii B.V., Mirochnik A.G., Shlyk D.H., Tkacheva M.V., Karpenko A.A. // JOL. 2010. V. 130. № 5. P. 756. doi 10.1016/j.jlumin.2009.11.027.
- [12] Fedorenko E.V., Mirochnik A.G., Lvov I.B., Vovna V.I. // Spectrochim. Acta Mol. Biomol. Spectrosc. 2014. V. 120. P. 119. doi 10.1016/j.saa.2013.10.016.
- [13] Chow Y. L., Wang S.-S., Johansson C.I., Liu Z.-L. // J. Am. Chem. Soc. 1996. V. 118. P. 11725. doi 10.1021/ja9610444
- [14] Chow Y.L., Johansson C.I., Liu Z.-L. // J. Phys. Chem. 1996.
   V. 100. P. 13381. doi 10.1021/jp961000h
- [15] Chow Y.L., Johansson C.I. // J. Phys. Chem. 1995. V. 99.
   P. 17558. doi 10.1021/j100049a015
- [16] Valat P., Wintgens V., Chow Y.L., Kossanyi J. // Can. J. Chem. 1995. V. 73. N 11. P. 1902. doi 10.1139/v95-235