07,11,14,19

Исследование кинетики фазового перехода I рода в тетракозане $C_{24}H_{50}$ методом ИК-Фурье спектроскопии

© В.А. Марихин¹, С.А. Гурьева¹, Л.П. Мясникова¹, Б.З. Волчек², Д.А. Медведева²

Санкт-Петербург, Россия

Санкт-Петербург, Россия

E-mail: v.marikhin@mail.ioffe.ru

Поступила в Редакцию 6 мая 2019 г. В окончательной редакции 6 мая 2019 г. Принята к публикации 7 мая 2019 г.

Методом ИК-Фурье спектроскопии изучена кинетика развития структурного фазового перехода I рода в монодисперсных образцах тетракозана $C_{24}H_{50}$. Исследовались температурные зависимости частот и интенсивностей маятниковых (в области $\nu \sim 720\,\mathrm{cm}^{-1}$) и деформационных (в области $\nu \sim 1470\,\mathrm{cm}^{-1}$) мод колебаний CH_2 -групп в метиленовых транс-последовательностях в кристаллических сердечниках элементарных ламелей. Показано, что твердофазный переход I рода развивается по гетерогенному механизму в узком температурном интервале $\Delta T \sim 2\,\mathrm{K}$ в соответствие с теорией размытых фазовых переходов I рода и обусловлен изменением симметрии кристаллографических ячеек.

Ключевые слова: н-алканы, фазовые переходы, теория размытых фазовых переходов, ИК-спектроскопия.

DOI: 10.21883/FTT.2019.10.48256.470

1. Введение

Известно [1-3], что в циклах нагревание—охлаждение различных длинноцепочечных молекулярных кристаллов (ДМК) (н-алканы, н-алканоспирты, моно- и дикарбоновые кислоты и др.) наблюдаются 2 типа температурных фазовых переходов:

- 1) твердофазный (структурный) переход I рода (ФП-1) при температуре, заметно ниже температуры плавления T_m , и
- 2) переход II рода ($\Phi\Pi$ -2) типа порядок—беспорядок, связанный с плавлением кристаллов при T_m .

Методом ДСК показано [2,3], что в ДМК фазовый переход ФП-1 происходит в достаточно узких температурных интервалах ΔT , но отличных от нуля, как это должно быть в случае идеальных монокристаллов [4]. Подобные переходы с $\Delta T \geq 1$ К получили название размытых фазовых переходов I рода и обозначаются как Λ -переходы [5,6]. Для описания размытых Φ П-1 предложена теория самосогласованного поля [6].

Тот факт, что переход в ДМК становится размытым, означает, что изменение фазового состояния кристалла происходит не внезапно во всем объеме (как, например, гомогенный переход в металлах при плавлении, то есть при $\Delta T \sim 0$ K), а по гетерогенному механизму путем возникновения флуктуационных нанозародышей новой фазы объемом ω на дефектах различной природы.

Постепенное увеличение объема новой фазы осуществляется дискретно за счет продвижения возникшей межфазной границы при добавлении на нее новых устойчивых нанозародышей объемом ω .

Методом ДСК нами показано [2,3], что объемы подобных специфических нанозародышей составляют $\omega \sim 100-200~{\rm nm^3}$ и могут содержать до нескольких сотен молекул рассматриваемых ДМК.

Рентгенодифракционные исследования начального и конечного состояний при ФП-1 показали [7,8], что происходит изменение кристаллографической симметрии элементарных ячеек в кристаллических сердечниках ламелей ДМК, однако, в этих работах не исследовалась кинетика структурных трансформаций при фазовых переходах.

Экспериментальные данные о типе симметрии элементарных кристаллографических ячеек можно получить также при анализе ИК-спектров поглощения, поскольку частоты ряда фундаментальных колебательных мод от протяженных метиленовых транс-последовательностей в кристаллических сердечниках ламелей зависят от симметрии ячеек [9–11]. Кроме того, существует возможность получения интенсивных ИК-Фурье спектров с высоким разрешением от ДМК за короткие промежутки времени.

В данной работе исследуется кинетика развития фазового перехода I рода в тетракозане $C_{24}H_{50}$.

Н-алканы с общей формулой $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{CH_3}$ являются простейшими представителями семейства ДМК. В настоящее время имеется обширная и надежная база литературных данных о строении и свойствах н-алканов с $17 \le n \le 40$. Проведены наиболее детальные теоретические и экспериментальные исследования ИК-спектров поглощения н-алканов во всех доступных в настоящее время диапазонах ИК-излучения, что представляется важным для корректной интерпретации

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

² Институт высокомолекулярных соединений РАН,

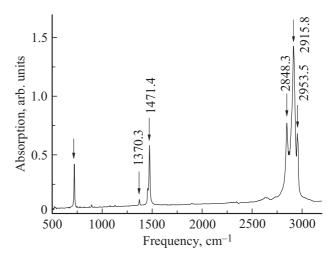
получаемых экспериментальных данных [11,12]. Кроме того, в настоящее время возможно проведение исследований на коммерчески доступных н-алканах с очень высокой степенью химической чистоты и, как следствие, монодисперсностью молекулярной массы (99.9%). Отсутствие структурных и конформационных дефектов представляет также значительный интерес для решения многих дискуссионных вопросов физики полимеров, в частности, развития количественных моделей описания фазовых переходов.

2. Экспериментальная часть

Исследовались образцы монодисперсного (чистотой 99.9%) тетракозана $C_{24}H_{50}$ фирмы Sigma—Aldrich. Съемка спектров поглощения в области $400-5000~{\rm cm}^{-1}$ проводилась на ИК-Фурье спектрометре IFS-88 фирмы Bruker (Германия), число сканов составляло 30. Точность измерения положения максимумов полос поглощения составляла $\Delta \nu = 0.01~{\rm cm}^{-1}$. Компьютерное разложение сложных ИК-спектров из перекрывающихся полос поглощения проводилось с использованием программы, написанной В.Ф. Дроботько (ДонФТИ) в пакете МАТLAB.

Образцы необходимой толщины готовились путем нанесения продуктов синтеза — пластинчатых хлопьев тетракозана на пластины NaCl, их плавления и последующего медленного охлаждения до получения равновесной кристаллической структуры.

Изучение температурных изменений ИК-спетров осуществлялись при использовании специальных температурных приставок в интервале от $0\,\mathrm{K}$ до $300\,\mathrm{K}$. Измерение температуры проводилось с точностью $\Delta T = \pm 0.05\,\mathrm{K}$ с помощью дифференциальной термопары хромель—копель.


Измерения спектров ИК-поглощения проводились ступенчато при пошаговом увеличении температуры на $\Delta T=2\,\mathrm{K}$ в области от T_{room} до температуры, отстоящей на $2\,\mathrm{K}$ от температуры $\Phi\Pi$ -1. Далее, в области $\Phi\Pi$ -1, измерения проводились при пошаговом увеличении температуры $\Delta T=0.1\,\mathrm{K}$ и выдерживании образца при каждой температуре измерения в течение $10\,\mathrm{min}$ до достижения равновесного состояния при данной температуре.

Для устранения возможного искажения спектров проводилось вычитание спектров атмосферной влаги и ${\rm CO_2}$ по специальным программам.

3. Результаты и их обсуждение

На рис. 1 представлен ИК-Фурье спектр закристаллизованных при медленном охлаждении до Тгоот тонких поликристаллических пленок тетракозана в области от $\nu=500\,\mathrm{cm}^{-1}$ до $\nu=3300\,\mathrm{cm}^{-1}$.

В спектре наблюдаются интенсивные характеристические полосы поглощения, соответствующие различным модам колебаний метиленовых групп CH_2 в транспоследовательностях, колебаниям концевых метильных

Рис. 1. ИК-Фурье спектр тетракозана $C_{24}H_{50}$ в области $500-3500\,\mathrm{cm}^{-1}$.

групп CH_3 и валентным C-H колебаниям в молекулах тетракозана $C_{24}H_{50}$. Частоты всех наблюдаемых полос поглощения соответствуют литературным данным [11,12].

В работах [9,10,13–15] показано, что имеется хорошая корреляция между положением полос поглощения в области маятниковых ($\nu \sim 720\,\mathrm{cm}^{-1}$) и деформационных ($\nu \sim 1470\,\mathrm{cm}^{-1}$) колебаний СН₂-групп и типом кристаллической субъячейки, образованной из метиленовых транс-последовательностей. Эта корреляция определяется потенциальной энергией молекул в равновесном поле кристалла, которая в н-алканах обусловлена преимущественно ван-дер-ваальсовыми взаимодействиями между молекулами.

Показано [16], что наиболее плотная упаковка метиленовых транс-последовательностей характерна для триклинных субъячеек, поскольку в этом случае возможны смещения молекул друг относительно друга вдоль всех векторов ячейки, что и обеспечивает наиболее сильные ван-дер-ваальсовы взаимодействия между молекулами тетракозана.

Повышение потенциальной энергии взаимодействия в триклинных ячейках приводит к заметному сдвигу полос маятниковых и деформационных колебаний CH_2 -групп в сторону меньших частот по сравнению с расчетными значениями частот для индивидуальных молекул н-алканов или экспериментальных значений частот этих колебаний в расплавах или растворах [9,13–15] (ν (CH_2 rocking) $\sim 720-722\,\mathrm{cm}^{-1}$, ν (CH_2 bending) $\sim 1467\,\mathrm{cm}^{-1}$).

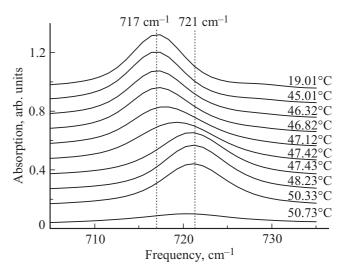
В триклинной субъячейке плоскости транс-зигзагов молекул тетракозана параллельны друг другу. Следовательно, в триклинной субъячейке содержится одна эффективная центросимметричная молекула, включающая две метиленовые группы. Симметрия ИК-колебаний в таком случае будет приблизительно такой же, как и для индивидуальной транс-молекулы с симметрией C_{2h} . Поэтому для каждого фундаментального колебания, в том

числе для маятниковых и деформационных колебаний, в ИК-спектрах будет наблюдаться только одна компонента (отсутствует Давыдовское расщепление, характерное для орторомбической субъячейки) [12].

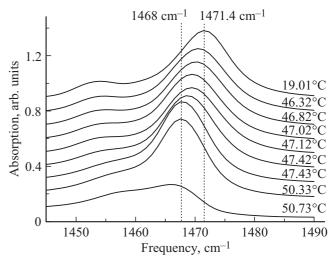
Наличие в ИК-спектре (рис. 1) интенсивных характеристических полос при $\nu \sim 717\,\mathrm{cm}^{-1}$ (маятниковые колебания) и $\nu \sim 1471\,\mathrm{cm}^{-1}$ (деформационные колебания) позволяет утверждать, что в исследуемых нами образцах тетракозана, полученных при охлаждении расплава до T_{room} , образовались ламелярные нанокристаллы, в сердечниках которых метиленовые последовательности образуют субъячейки триклинной симметрии [13–15].

Наиболее интенсивные полосы в области $2800-3000\,\mathrm{cm^{-1}}$ соответствуют симметричным и асимметричным валентным колебаниям С-H-связей в трансметиленовых последовательностях: $\nu_{\mathrm{C-H}}^{s}=2848\,\mathrm{cm^{-1}}$ и $\nu_{\mathrm{C-H}}^{as}=2916\,\mathrm{cm^{-1}}$, соответственно. В области $\nu\sim2950-2960\,\mathrm{cm^{-1}}$ наблюдается также ряд полос, соответствующих С-H валентным колебаниям в концевых метильных группах (будут обсуждаться в последующей статье).

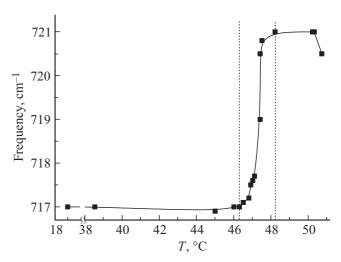
В работе получен большой массив ИК-спектров в исследуемом диапазоне температур от $T=19^{\circ}\mathrm{C}$ до T_m при ступенчатом повышении температуры (см. "Экспериментальную часть").


На рис. 2 и 3 представлены серии выборочных спектров, демонстрирующие существенные температурные трансформации спектров в области маятниковых (рис. 2) и деформационных (рис. 3) колебаний.

На основании этих данных построены температурные зависимости положения максимумов полос поглощения для маятниковых (рис. 4) и деформационных (рис. 5) колебаний CH_2 -групп в триклинных субъячейках тетракозана.


Из рис. 2 и 4 следует, что частота маятниковых колебаний в исходной триклинной субъячейке $\nu \sim 717~{\rm cm}^{-1}$ остается практически неизменной вплоть до температуры $T=46.3^{\circ}{\rm C}$ (319.3 K) и лишь затем наблюдается постепенное увеличение частоты до $\nu \sim 721~{\rm cm}^{-1}$ в узком температурном интервале ΔT от T=46.3 до $T=48.2^{\circ}{\rm C}$ (промежуточные значения: $\nu \sim 717.2$; 717.5; 717.7; 719.0; 720.5; 720.8; 721.0 cm $^{-1}$).

Показано [9,15,17,18], что частота $\nu=721\,\mathrm{cm}^{-1}$ характерна для субъячеек н-алканов с гексагональной симметрией, впервые рассмотренных в [19]. В этом случае рассматривают плотную упаковку макромолекул, аппроксимируемых эффективными цилиндрическими стержнями, поскольку допускается вращение плоских цепей относительно их оси.


Вследствие некоррелированных осцилляций с ограниченной амплитудой относительно среднего положения с минимальным смещением осей молекул, возникает статистическая разориентация взаимного расположения плоскостей молекул в матрице кристаллической сердцевины ламелей. При этом сохраняются ван-дер-ваальсовы контакты между соседями, что обеспечивает (в основностьющей в основностьющей

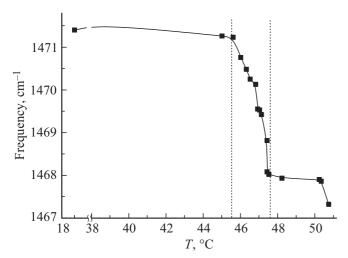

Рис. 2. Температурные изменения ИК-спектра тетракозана в области маятниковых колебаний СН₂-групп.

Рис. 3. Температурные изменения ИК-спектра тетракозана в области деформационных колебаний CH_2 групп.

Рис. 4. Температурные изменения частоты маятниковых колебаний CH_2 -групп в тетракозане.

Рис. 5. Температурные изменения частоты деформационных колебаний CH_2 -групп в тетракозане.

ном, за счет сил притяжения) сохранение образца в твердой фазе.

Известно [16,19], что твердофазный переход I рода сопровождается переходом транс-зигзагов в кристаллическом сердечнике ламелей из наклонного положения относительно базовых плоскостей из концевых метильных СН₃-групп в триклинных субъячейках в вертикальное расположение в гексагональных ячейках.

Как следует из наших ИК-спектроскопических данных для н-алкана $C_{24}H_{50}$, этот переход осуществляется в температурной области твердофазного перехода I рода достаточно плавно, поскольку мы наблюдаем (рис. 4) непрерывное изменение частоты маятниковых колебаний CH_2 -групп от $\nu=717\,\mathrm{cm}^{-1}$ до $\nu=721\,\mathrm{cm}^{-1}$.

Плавное изменение частоты мы объясняем постепенным ослаблением ван-дер-ваальсова взаимодействия между отдельными молекулами вследствие теплового расширения.

В работе [20] при изучении фазовых переходов методом ИК-Фурье спектроскопии в тридекановой кислоте $\mathrm{CH_3}(\mathrm{CH_2})_{11}\mathrm{COOH}$ мы также наблюдали переход из триклинной субъячейки в гексагональную в области ФП-1 в узком температурном интервале $\Delta T \leq 1\,\mathrm{K}$. Однако в этом случае переход сопровождался более резким изменением частоты маятниковых колебаний $\mathrm{CH_2}$ -групп от $\nu = 716\,\mathrm{cm^{-1}}$ до $\nu = 721\,\mathrm{cm^{-1}}$, в отличие от более плавного изменения частоты, которое мы наблюдаем в н-алкане.

Известно [1], что в монокарбоновых кислотах на одной из поверхностей ламелей между карбоксильными группами образуются существенно более сильные (по сравнению с ван-дер-ваальсовыми) водородные связи, которые в определенной степени выполняют роль "механических зажимов", препятствующих увеличению подвижности транс-зигзагов молекул в кристаллических сердечниках при нагревании молекулярных кристаллов. По этой причине температуры плавления карбоновых

кислот заметно превышают T_m для н-алканов с одинаковой длиной метиленовых последовательностей [1].

Мы полагаем, что именно наличие "зажимов" — водородных связей в тридекановой кислоте (в отличие от н-алканов) препятствует постепенному увеличению межмолекулярных расстояний в триклинных субъячейках при нагревании, и как следствие, приводит к более резким изменениям частот маятников и деформационных колебаний в области фазового перехода I рода.

Анализ поведения полос деформационных колебаний ${\rm CH_2}$ -групп в области $1450-1490\,{\rm cm^{-1}}$ (рис. 3, 5) показывает аналогичный маятниковым колебаниям характер изменения ИК-спектра в области ФП-1 — при увеличении температуры полоса $\nu=1471.4\,{\rm cm^{-1}}$, характерная для триклинной субъячейки, трансформируется в полосу $\nu=1468\,{\rm cm^{-1}}$, свидетельствующую о возникновении гексагональной субъячейки н-алканов [9,15,17,18].

При этом также наблюдается постепенный характер изменения частоты и этой моды колебаний — отчетливо регистрируются значения $v_{\rm CH_2}^{\rm деформ}=1471.4,\ 1470.8,\ 1470.5,\ 1470.2,\ 1469.6,\ 1469.4,\ 1468.8,\ 1468.0\ {\rm cm}^{-1}$ примерно в том же самом узком температурном диапазоне ΔT от T=45.5 до T=47.5°C.

Выявленная нами кинетика развития фазового перехода I рода свидетельствует о зарождении нанозародышей новой фазы с гексагональным типом субъячейки в кристаллической сердцевине исходных ламелей с триклинными субъячейками и о постепенном увеличении числа новых зародышей по мере развития фазового перехода в узком температурном интервале $\Delta T \sim 1~{\rm K}$ в соответствии с теорией размытых фазовых переходов I рода [6].

При дальнейшем повышении температуры от $T\sim47.5^{\circ}\mathrm{C}$ до $T\leq50^{\circ}\mathrm{C}$ [область между ФП-1 и ФП-2 (плавление тетракозана)] значение $\nu=1468~\mathrm{cm^{-1}}$ сохраняется, что свидетельствует о нахождении тетракозана в гексагональной фазе. Лишь при температуре несколько выше $T_m\sim52^{\circ}\mathrm{C}$ (рис. 5) происходит изменение частоты деформационных колебаний до $\nu=1467~\mathrm{cm^{-1}}$, которая характерна для изолированных цепей н-алканов, находящихся в жидком состоянии или растворах [9,15]. При этом одиночные полосы становятся существенно более широкими и асимметричными (рис. 3), что связано, естественно, с увеличением вращательной способности молекул и возникновением конформационных дефектов различного типа: кинков GTG^- , концевых дефектов T_mG^- , дефектов GG, GTTG и др.

Каждому из рассматриваемых типов конформационных дефектов соответствуют определенные полосы поглощения в области $\nu=1200-1450\,\mathrm{cm}^{-1}$ [21], которые мы также наблюдали в наших ИК-Фурье спектрах при повышенных температурах (эти данные будут представлены в следующей статье).

Значения наблюдаемых нами частот $\nu=720\,\mathrm{cm^{-1}}$ для маятниковых и $\nu=1467\,\mathrm{cm^{-1}}$ деформационных колебаний для тетракозана в расплаве соответствуют литературным данным для н-алканов с варьируемым числом

 ${
m CH_2}$ -групп, находящихся в различных фазовых состояниях — жидком при малых n=6-15, расплавах или растворах вплоть до n=34 [11,12,15,21]. Во всех случаях частоты маятниковых и деформационных колебаний оказываются около $\nu=720~{
m cm^{-1}}$ и $\nu=1467~{
m cm^{-1}}$, соответственно. Это означает, что в этих состояниях эффективный потенциал межмолекулярного взаимодействия оказывается примерно одинаковым и ослабленным по сравнению с потенциалом для различных типов исходных кристаллических субъячеек (триклинных, моноклинных, орторомбических), которые образуются при кристаллизации н-алканов в зависимости от n числа C-C-связей.

4. Заключение

Методом ИК-Фурье спектроскопии изучена кинетика развития твердофазного структурного перехода I рода в монодисперсных образцах тетракозана $C_{24}H_{50}$. Показано, что в узком температурном интервале $\Delta T \sim 2~{\rm K}$ происходит возникновение по флуктуационному механизму нанозародышей объемом $\omega \sim 100-200~{\rm nm}^3$ новой (гексагональной) фазы и постепенное распространение новой фазы на весь объем исходной (триклинной) фазы за счет продвижения межфазной границы путем добавления на нее новых устойчивых нанозародышей объемом ω в соответствии с теорией размытых фазовых переходов I рода.

Финансирование работы

Работа выполнена при финансовой поддержке Программы Президиума РАН № 32 "Наноструктуры: физика, химия, биология, основы технологий".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D.M. Small. The Physical Chemistry of Lipids. Plenum Press, N.Y.—London (1986). 665 p.
- [2] В.М. Егоров, В.А. Марихин, Л.П. Мясникова. Высокомолекуляр. соединения А 49, 2182 (2007).
- [3] В.М. Егоров, В.А. Марихин, Л.П. Мясникова. ФТТ **55**, 975 (2013).
- [4] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Наука, М. (1976). 584 с.
- [5] Б.Н. Ролов, В.Э. Юркевич. Физика размытых фазовых переходов. Изд-во Ростов. ун-та, Ростов (1983). 350 с.
- [6] Г.А. Малыгин. УФН 171, 187 (2001).
- [7] T. Yamamoto, K. Nozaki, T. Hara. Phys. Chem. 92, 631 (1990).
- [8] R. Popovitz-Biro, Y.L. Wang, Y. Majewski, E. Shavit, L. Leiserowitz, M. Lahav. Am. Chem. Soc. 116, 1179 (1994).
- [9] R.G. Snyder. Mol. Spectr. 7, 116 (1961).

- [10] G. Zerby, R. Magni, M. Gussoni, K.H. Moritz, A. Bigotto, S. Dirlikov. Chem. Phys. 7, 3175 (1981).
- [11] Y.C. Koenig. Spectroscopy of Polymers. Am. Chem. Soc., Washington (1992). 324 p.
- [12] P.C. Painter, M.M. Coleman, Y.C. Koenig. The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials. John Wiley & Sons, N.Y. (1982). 580 p.
- [13] R.G. Snyder. Mol. Spectr. 4, 411 (1960).
- [14] R.F. Holland, I.R. Nielsen. Mol. Spectr. 8, 383 (1962).
- [15] D. Chapman. Chem. Soc. 4489 (1957).
- [16] А.И. Китайгородский. Молекулярные кристаллы. Наука, М. (1971). 424 с.
- [17] H.L. Casal. Can. J. Chem. 61, 1736 (1983).
- [18] H.L. Casal, H.H. Mantsch, D.G. Cameron. Chem. Phys. 77, 2825 (1982).
- [19] A. Muller. Proc. Royal Soc. L. A 138, 5 (1932).
- [20] В.А. Марихин, Л.П. Мясникова, Е.И. Радованова, Б.З. Волчек, Д.А. Медведева. ФТТ 59, 322 (2017).
- [21] R.G. Snyder. Chem. Phys. 47, 1316 (1967).

Редактор К.В. Емцев