19,11

Высокотемпературная теплоемкость и термическое расширение $FeTa_2O_6$

© Р.И. Гуляева, С.А. Петрова, В.М. Чумарев, А.Н. Мансурова

Институт металлургии УрО РАН,

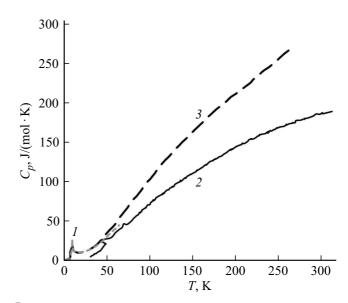
Екатеринбург, Россия

E-mail: pcmlab@mail.ru, gulroza@mail.ru, danaus@mail.ru

Поступила в Редакцию 18 апреля 2019 г. В окончательной редакции 15 мая 2019 г. Принята к публикации 16 мая 2019 г.

Теплоемкость синтезированного танталата железа $FeTa_2O_6$ измерена в температурном диапазоне $323-1103\,\mathrm{K}$ методом отношений на термоанализаторе совмещенной термогравиметрии и сканирующей калориметрии. Определены температуры фазовых переходов. Методом высокотемпературной рентгеновской дифракции изучены структурные изменения и термическое расширение оксида в интервале $300-1173\,\mathrm{K}$. Температурные зависимости параметров элементарной ячейки аппроксимированы полиномами третьей степени. Из полученных данных рассчитаны значения коэффициентов термического расширения и оценены факторы анизотропии.

Ключевые слова: танталат железа, теплоемкость, термическое расширение.


DOI: 10.21883/FTT.2019.10.48281.459

1. Введение

Ферротапиолит (FeTa₂O₆) — природный минерал, относящийся к группе соединений с общей формулой $A^{2+}B_2^{5+}O_6$ с тетрагональной структурой. Танталит (Fe,Mn)(Nb,Ta)₂O₆ — наиболее распространенный танталсодержащий минерал тетрагональной модификации со структурой трирутила. Авторы [1–3] указывают на существование в танталите твердых растворов со структурами рутила (FeNb₂O₆, MnNb₂O₆ и MnTa₂O₆) и трирутила (FeTa₂O₆). Например, образование твердого раствора FeNb₂O₆ с колумбитовой структурой в NbO₂ с трирутиловой структурой подтверждено в работе [4]. Фазовые отношения в оксидной системе Fe—Ta—О при 1473 К в зависимости от парциального давления кислорода рассмотрены в работах [5,6].

Магнитные свойства и теплоемкость поликристаллических образцов FeTa₂O₆ в низкотемпературных диапазонах были измерены при 2-60 К в работах [7-9] и при 2-300 К в статье [10]. Исследование антиферромагнитных свойств и теплоемкости монокристаллического образца FeTa₂O₆ было выполнено в области температур 2-250 К [11,12]. Согласно литературным данным, оксид FeTa₂O₆ имеет температуру антиферромагнитного упорядочения при $T_{\rm N} \approx 8\,{\rm K}$. Изменения теплоемкости FeTa₂O₆ в низкотемпературной области по данным из различных литературных источников представлены на рис. 1. Данные о температурных зависимостях теплоемкости поликристаллического и монокристаллического образцов [7–12] ограничиваются температурным диапазоном 2-313 К. Экспериментальные значения теплоемкости монокристаллического оксида [11] располагаются значительно выше данных работы [10] что, по-видимому, является результатом отличия методик измерения и

свойств образцов. Исходя из результатов исследований термического расширения и магнетокалорических эффектов монокристаллического образца, сделано заключение о существовании небольшого структурного перехода $FeTa_2O_6$ в ромбоэдрическую форму при температурах, ниже T_N [12]. Данных по измерению высокотемпературной теплоемкости, термического расширения и других сведений о фазовых переходах $FeTa_2O_6$ нами не выявлено. Имеются лишь данные о термическом расширении образцов природного колумбита в температурном диапазоне 298-1173 K [13].

Рис. 1. Литературные данные о температурных зависимостях молярной теплоемкости поликристаллических (1,2) и монокристаллического (3) образцов FeTa_2O_6 : 1-[8], 2-[10], 3-[11].

17 1985

Целью настоящей работы явилось измерение высокотемпературной теплоемкости и термического расширения $FeTa_2O_6$ при нагревании.

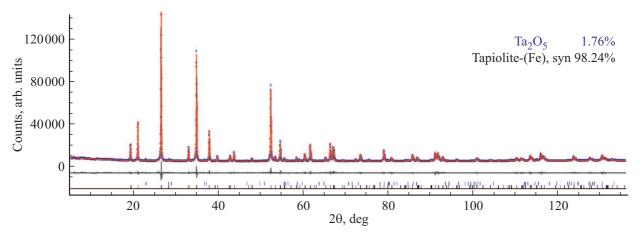
2. Эксперимент

Синтез оксида $FeTa_2O_6$ из спрессованной (100 MPa) порошковой смеси FeO (99.2%) и Ta_2O_5 (99.9%) выполнен нагревом при 1473 K в течение 12 h в потоке гелия (99.995% He). Оксид железа (II) получен путем нагрева спрессованной смеси Fe_2O_3 (марка "ч") и Fe (карбонильное) в течение $360\,h$ при $973\,K$ в герметизированной кварцевой ампуле, а оксид Ta_2O_5 — окислением танталового порошка металлургического сорта "Б" (99.5% Ta, 0.3%~O,~0.2%~N) при двукратном нагреве (1373 K) на воздухе в течение $4\,h$.

Фазовый состав и кристаллическую структуру синтезированного образца определяли по данным рентгеновской дифракции, полученным на дифрактометре D8 ADVANCE, с использованием программного пакета DIFFRAC Plus: EVA [14] и базы данных Международного центра дифракционных данных (ICDD) PDF4 [15]. Расчет параметров элементарных ячеек (ПЭЯ) проводили методом наименьших квадратов в программе Celref [16]. Количественный фазовый состав оценили методом полнопрофильного анализа по Ритвельду [17] с использованием программы TOPAS [18].

Высокотемпературные исследования термического расширения образца методом рентгеновской дифракции проводили на дифрактометре D8 ADVANCE ($Cu-K_{\alpha}$ излучение, 34 kV, 40 mA, позиционно-чувствительный детектор VÅNTEC-1, β фильтр), оснащенном высокотемпературной камерой XRK900 (Anton Paar), на платиновой подложке в вакууме ($P=10^{-6}$ bar). Скорость нагрева составляла $0.5~{\rm K}\cdot{\rm s}^{-1}$, шаг — $50~{\rm K}$, интервал температур — $300-1173~{\rm K}$. Полнопрофильное уточнение структуры ${\rm FeTa_2O_6}$ проводили по методу Ритвельда [17]. Для количественной характеристики расширения ${\rm FeTa_2O_6}$ при нагреве рассчитаны значения коэффициентов термического расширения (${\rm KTP}$) в исследованном температурном интервале и оценены структурные изменения [19,20].

Эксперименты по измерению теплоемкости оксида проведены на термоанализаторе совмещенной термогравиметрии и калориметрии NETZSCH STA 449C Jupiter с использованием специального сенсора — ДСК- C_p в платиновых тиглях с крышками. Теплоемкость FeTa $_2$ O $_6$ определена методом отношений, согласно стандарту ASTM [21]. Измерения теплоемкости проведены в динамическом режиме при нагреве со скоростью $10 \, {\rm K \cdot min^{-1}}$ в токе аргона (99.998% Ar, 50 ml · min $^{-1}$) в температурных диапазонах $323-547 \, {\rm K}$, $496-906 \, {\rm K}$, $821-1203 \, {\rm K}$ и в изотермических режимах нагрева в течение 15 и $10 \, {\rm min}$ до и после динамического сегмента, соответственно. В качестве стандарта использован образец сертифицированного монокристалла синтетическо-


го сапфира Национального бюро стандартов (National Bureau of Standards — NBS) массой 55.81 mg, высотой 0.5 mm и диаметром 6.0 mm. Масса порошкообразного образца $FeTa_2O_6$ составила 70.72 mg. Методика измерения теплоемкости включала в себя измерения тепловых потоков DSC пустых тиглей (базовая линия), эталона (сапфира), а также исследуемого образца. Измерения сопровождались получением воспроизводимых данных тепловых потоков DSC базовой линии и сапфира. При определении численных значений теплоемкости использованы стандартные функции и настройки программного пакета NETZSCH Proteus Thermal Analysis [22]. Такая методика измерений высокотемпературной теплоемкости была применена ранее в работах [23–25].

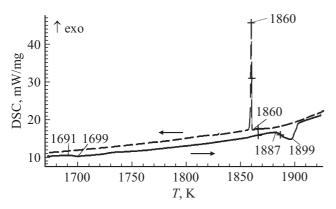
Температуры фазовых превращений определены при двукратном нагревании в диапазоне $303-1923~\rm K$ и охлаждении образца до $1673~\rm K$ со скоростью $10~\rm K \cdot min^{-1}$ на термоанализаторе NETZSCH STA 449 F3 Jupiter с использованием ДСК сенсора. Опыты проведены в тиглях из сплава платины с крышками и подложками из Al_2O_3 при нагревании в потоке аргона высокой чистоты (99.998% Ar). Масса порошкообразного образца $FeTa_2O_6$ составила $17.93~\rm mg$.

3. Результаты и обсуждение

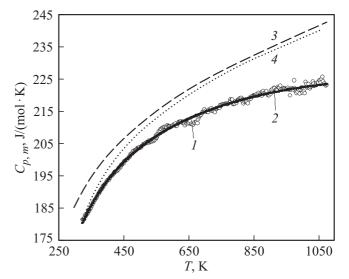
По результатам рентгенофазового анализа дифрактограмма синтезированного образца FeTa₂O₆ (рис. 2) содержала отражения типичные для тапиолита (PDF 01-085-0072 [15]) и незначительное количество оксида тантала (V) (PDF 04-018-7031 [15]). Уточнение параметров элементарной ячейки показало, что FeTa₂O₆ имел кристаллическую решетку тетрагональной сингонии (пр.гр. P42/mnm (136), Z=2) с параметрами элементарной ячейки (ПЭЯ): a = 4.7539(1) Å; c = 9.2016(1) Å; $V = 207.954(6) \,\text{Å}^3$, близкими к справочным (PDF) 01-085-0072). Полнопрофильный анализ дифрактограммы по методу Ритвельда показал, что количество пентаоксида, содержащегося в образце, не превышало 2%. Результат полнопрофильного уточнения (дифрактограмма образца, расчетный спектр, разностная кривая и штрихдиаграммы обеих фаз) приведены на рис. 2.

Для определения фазовых превращений в оксиде выполнен термический анализ синтезированного оксида путем двукратного нагрева в потоке аргона. Согласно термограмме образца $FeTa_2O_6$ (рис. 3), на кривой DSC при повторном нагреве в диапазоне 303-1923 К зарегистрирован слабый эндотермический эффект с температурами начала при 1691 ± 5 К и максимума при 1699 К, вероятно, обусловленный, разупорядочением оксида, что требует дополнительного изучения. Кроме этого при нагреве определен эндотермический эффект с температурами начала и максимума при 1887 ± 5 К и 1899 К, а при охлаждении — температура начала эффекта составила 1860 К. Полученные эффекты, обусловленные плавлением $FeTa_2O_6$ при нагреве и кристаллизацией

Рис. 2. Дифрактограмма образца $FeTa_2O_6$ при комнатной температуре с результатами полнопрофильного анализа: экспериментальный (точки) и расчетный (линия) профили, разностная кривая и штрих-диаграммы присутствующих фаз (вверху — Ta_2O_5 , внизу — $FeTa_2O_6$).


при охлаждении, указывают на склонность оксида к переохлаждению. Других эффектов при охлаждении до 1673 К не выявлено. Следует отметить, что масса образца в ходе эксперимента практически не изменялась.

Результаты измерений теплоемкости $FeTa_2O_6$ в температурных диапазонах $323-547\,\mathrm{K}$, $496-906\,\mathrm{K}$, $821-1073\,\mathrm{K}$ представлены в виде совмещенной температурной зависимости (рис. 4, табл. 1). Экспериментальные данные величин молярной теплоемкости аппроксимированы с использованием функций программного комплекса HSC-6.1 [26] уравнением


$$C_{p,m} = 197.40 + 47.83 \cdot 10^{-3} \,\mathrm{T} - 31.78 \cdot 10^{5} \,\mathrm{T}^{-2}$$

- 19.72 \cdot 10^{-6} \,\text{T}^{2}. (1)

При аппроксимации экспериментальных данных ошибка была менее $\pm 1.3\%$. Рассчитанная по уравнению (2) величина $C_{p,m}$ (298.15) FeTa₂O₆ составила $174.16 \pm 1.74\,\mathrm{J\cdot mol}^{-1}\cdot\mathrm{K}^{-1}$.

Экспериментальные результаты температурной зависимости молярной теплоемкости $FeTa_2O_6$ приведены

Рис. 3. Термограмма $FeTa_2O_6$ при нагреве и охлаждении со скоростью $10 \text{ K} \cdot \text{min}^{-1}$ в потоке аргона.

Рис. 4. Температурные зависимости молярной теплоемкости $\operatorname{FeTa_2O_6}$: I — экспериментальные данные; 2 — аппроксимация экспериментальных данных уравнением (1); 3 — расчет по правилу Неймана—Коппа; 4 — расчет по эмпирическому уравнению (2).

(рис. 4) в сравнении с зависимостью, рассчитанной по правилу Неймана—Коппа, основанного на аддитивном сложении значений молярных теплоемкостей простых оксидов [27]. Данные теплоемкостей оксидов FeO и ${\rm Ta_2O_5}$ в интервале температур 298—1100 К заимствованы из базы данных HSC-6.1 [26]. Рассчитанные по правилу Неймана—Коппа величины теплоемкостей превышают экспериментальные данные во всем измеренном температурном интервале. Расчетная по методу Неймана—Коппа величина $C_{p,m}$ (298.15) составила 184.86 J \cdot mol $^{-1}$ · K $^{-1}$. Величина $C_{p,m}$ (298.15), оцененная исходя из литературных данных [10], равна 184.56 J \cdot mol $^{-1}$ · K $^{-1}$. Отличия экспериментальных ве-

<i>T</i> , K	$C_{p,m}$, $J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$H^0(T) - H^0(323.15)$, kJ·mol ⁻¹	$S^{0}(T) - S^{0}(323.15), J \cdot \text{mol}^{-1} \cdot K^{-1}$	$\Phi^0(T)$, $J \cdot \text{mol}^{-1} \cdot K^{-1}$
323.15	181.5	_	_	_
373.15	189.5	9.26	26.64	1.78
423.15	196.0	18.92	50.93	6.19
473.15	201.9	28.87	73.15	12.08
523.15	205.4	39.05	93.58	18.96
573.15	210.1	49.40	112.5	26.31
623.15	211.7	59.91	130.0	33.86
673.15	211.5	70.53	146.5	41.72
723.15	215.1	81.27	161.8	49.42
773.15	217.4	92.09	176.3	57.19
823.15	217.8	103.0	190.0	64.87
873.15	219.7	114.0	202.9	72.38
923.15	222.5	125.0	215.2	79.81
973.15	224.6	136.1	226.9	87.08
1023.15	222.4	147.2	238.0	94.16
1073.15	223.1	158.3	248.6	101.07

Таблица 1. Экспериментальные значения молярной теплоемкости и расчетные величины $H^0(T)-H^0(323.15)$, $S^0(T)-S^0(323.15)$ и $\Phi^0(T)$ оксида FeTa₂O₆ в зависимости от температуры

Таблица 2. Коэффициенты полинома $a(c,V)=p_0+p_1T+p_2T^2+p_3T^3$ зависимостей параметров элементарной ячейки (ПЭЯ) ${\rm FeTa}_2{\rm O}_6$ от температуры в интервале $323-1173\,{\rm K}$

REП	Коэффициенты полиномов, Å			R^2	
	p_0	$p_1T\cdot 10^{-3}$	$p_2T^2 \cdot 10^{-6}$	$p_3T^3 \cdot 10^{-9}$	K
a c V	4.74716(65) 9.1868(11) 207.027(74)	0.0241(30) 0.0378(48) 2.97(34)	-0.0101(42) 0.0439(69) 0.10(48)	0.0083(19) -0.0111(30) 0.50(21)	0.99977 0.99995 0.99989

 Π р и м е ч а н и е. R^2 — фактор достоверности. Цифры в скобках обозначают погрешность двух последних знаков числа.

личин молярной теплоемкости $FeTa_2O_6$ и литературных данных, по-видимому, связаны с условиями синтеза образцов и методиками измерения теплоемкости.

Коэффициенты A,B и C нормализованного уравнения температурной зависимости теплоемкости оксида ${\rm FeTa}_2{\rm O}_6$

$$C_{p,m} = A + B \cdot 10^{-3} \,\mathrm{T} + C \cdot 10^5 \,\mathrm{T}^{-2},$$
 (2)

находили согласно работам [28,29] по формулам:

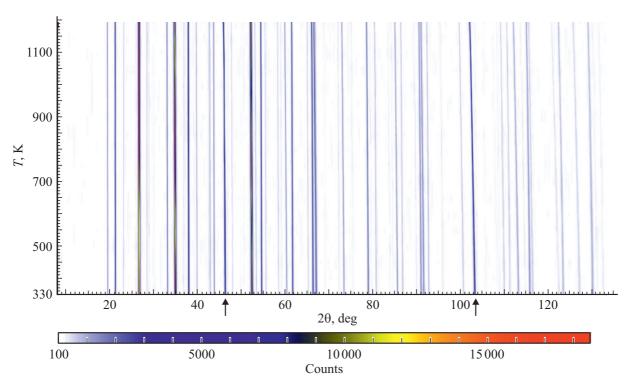
$$A = [T_{\Pi\Pi} \cdot 10^{-3} (C_{p,m}(298.15) + 4.7n)$$

$$- 1.25n \cdot 10^{5} T_{\Pi\Pi}^{-2} - 9.05n] / (T_{\Pi\Pi} \cdot 10^{-3} - 0.298), \quad (3)$$

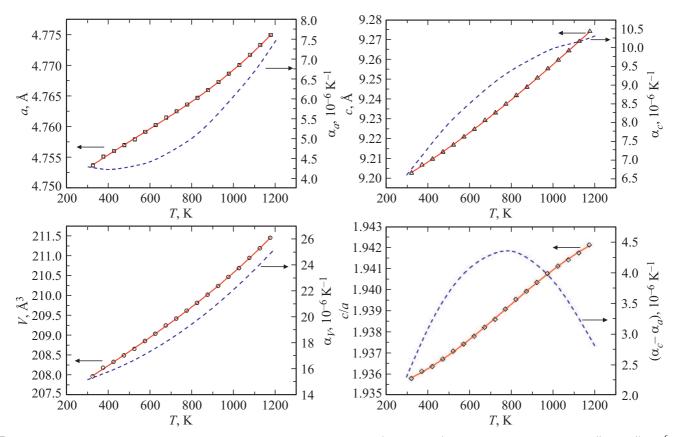
$$B = (25.6n + 4.2n \cdot 10^{5} T_{\Pi\Pi}^{-2}$$

$$- C_{p,m}(298.15)) / (T_{\Pi\Pi} \cdot 10^{-3} - 0.298), \quad (4)$$

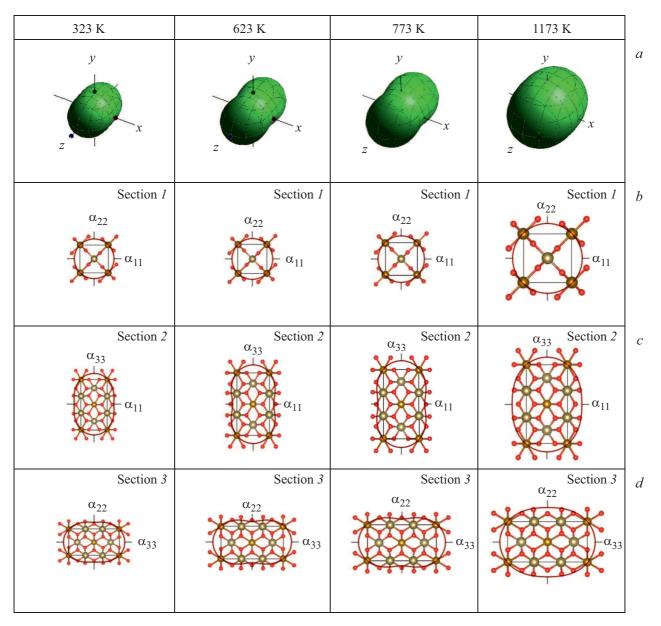
где n — количество атомов в молекуле, $T_{\text{пл}}$ — экспериментальная температура плавления оксида (K), $C_{p,m}(298.15)$ — молярная теплоемкость оксида, полученная из экспериментальных данных (J · mol $^{-1}$ · K $^{-1}$).


C = -4.2n.

Рассчитанная по уравнениям (2)-(5) температурная зависимость теплоемкости оксида $FeTa_2O_6$ (рис. 4) несколько отличается от экспериментальных данных, а в области более высоких температур близка к результатам, полученным по правилу Неймана—Коппа.


Исходя из температурной зависимости молярной теплоемкости, рассчитаны величины изменения энтальпии $H^0(T)-H^0(323.15)$, энтропии $S^0(T)-S^0(323.15)$ и приведенной энергии Гиббса $\Phi^0(T)$ по известным уравнениям. Полученные значения $H^0(T)-H^0(323.15)$, $S^0(T)-S^0(323.15)$ и $\Phi^0(T)$ представлены в табл. 1.

Данные высокотемпературной рентгенографии подтвердили отсутствие фазовых превращений при нагреве оксида ${\rm FeTa_2O_6}$ в интервале температур $300-1173~{\rm K}$ (рис. 5). Температурные зависимости параметров элементарной ячейки, описанные полиномами третьей степени (рис. 6, табл. 2), свидетельствуют о возрастании их значений с ростом температуры. Отношение параметров c/a во всем температурном интервале возрастает по зависимости, описанной выражением


$$c/a = 0.0652 - 4.1518 \cdot 10^{-5} T + 0.2146 \cdot \ln T$$

 $+ 18.362/T^{0.5} - 21.111 \ln T/T$ (6)

Рис. 5. X-Z проекция 3D изображения дифрактограмм $FeTa_2O_6$, снятых последовательно при повышении температуры в интервале температур 300-1173 К. Стрелками показаны отражения от платиновой подложки.

Рис. 6. Температурные зависимости параметров элементарной ячейки (a, c, V, c/a), фактора анизотропии $A = (|\alpha_c - \alpha_a|) \cdot 10^6$ и соответствующих коэффициентов термического расширения $FeTa_2O_6$.

Рис. 7. Фигуры коэффициентов тензора термического расширения $FeTa_2O_6$ при 323, 623, 773 и 1173 К: a — трехмерные; b–d — двумерные проекции.

(фактор достоверности $R^2=0.9998$), что указывает на анизотропное расширение оксида. При этом кривая температурной зависимости c/a имеет небольшой перегиб в области 750 K (рис. 6).

На основе данных ПЭЯ рассчитаны коэффициенты термического расширения (α) при нагреве [20,30] (табл. 3). Исходя из расчетов, КТР всех параметров элементарной ячейки FeTa_2O_6 с повышением температуры от 300 до 1200 K возрастают в пределах значений: $\alpha_a = \alpha_b$ от $4.27 \cdot 10^{-6}$ до $7.52 \cdot 10^{-6}$ K $^{-1}$, α_c от $6.64 \cdot 10^{-6}$ до $10.26 \cdot 10^{-6}$ K $^{-1}$ и α_V от $15.18 \cdot 10^{-6}$ до $25.31 \cdot 10^{-6}$ K $^{-1}$. Полученные данные показали, что величины α_c превышают значения α_a и, следовательно, α_b во всем исследованном интервале температур.

Значения КТР при $300\,\mathrm{K}$ хорошо согласуются с результатами [12], полученными методом дилатометрии для монокристаллического образца $\mathrm{FeTa_2O_6}$ в области низких температур.

Для количественной оценки анизотропии термического расширения (A) использовали формализм Шнайдера—Эберхарда [31], примененный в работе [13] для природных колумбитов, в виде выражения $A=(|\alpha_c-\alpha_a|)\cdot 10^6$. Полученные данные подтверждают анизотропное расширение оксида ${\rm FeTa}_2{\rm O}_6$, наиболее проявляющееся при температурах $700-800\,{\rm K}$ (табл. 3). Наименьшая анизотропия образца выявлена в области как низких $(300-350\,{\rm K})$, так и повышенных температур $(1200\,{\rm K})$. Трехмерные и двумерные фигуры тензоров термической

Таблица 3. Значения коэффициентов термического расширения параметров элементарной ячейки и фактора анизотропии $FeTa_2O_6$ при нагреве

<i>T</i> , K	Коэффициенты термического расширения $\cdot 10^6,~{ m K}^{-1}$			A, K^{-1}
	$\alpha_a = \alpha_b$	$lpha_c$	$lpha_V$	
300	4.27(21)	6.64(17)	15.18(29)	4.74
400	4.22(12)	7.333(10)	15.77(19)	6.23
500	4.264(55)	7.955(46)	16.48(13)	7.38
600	4.417(40)	8.503(33)	17.34(12)	8.17
700	4.675(50)	8.978(42)	18.33(13)	8.61
800	5.037(50)	9.380(42)	19.45(13)	8.69
900	5.503(39)	9.709(33)	20.71(12)	8.41
1000	6.073(56)	9.965(47)	22.11(13)	7.78
1100	6.75(12)	10.149(10)	23.64(19)	6.80
1200	7.52(21)	10.26(18)	25.31(29)	5.48

Примечание. $\alpha_a, \alpha_b, \alpha_c, \alpha_V$ — КТР соответствующего параметра, A — фактор анизотропии: $A=(|\alpha_c-\alpha_a|)\cdot 10^6$.

Таблица 4. Изменение межатомных расстояний при нагревании $FeTa_2O_6$

Связь	Межатомные расстояния (Å) при температурах				
	323 K	623 K	773 K	1173 K	
Ta-O1	2.047(5)	2.053(5)	2.062(5)	2.056(5)	
Ta-O2(1)	1.984(5)	1.983(5)	1.989(5)	1.999(5)	
Ta-O2(2)	1.965(6)	1.975(6)	1.978(6)	1.984(6)	
Fe-O1	2.032(7)	2.033(7)	2.021(7)	2.046(7)	
Fe-O2	2.147(6)	2.149(6)	2.144(6)	2.145(6)	

деформации $FeTa_2O_6$ при избранных температурах, полученные с использованием программного пакета [20], наглядно иллюстрируют (рис. 7), что термическое расширение тетрагонального оксида происходит больше вдоль оси c, чем по осям a и b. В области температур несколько превышающих $600\,\mathrm{K}$ деформация кристаллической решетки оксида осложняется небольшим сжатием в плоскости a-b, что и вызывает повышение анизотропии.

Отличительной чертой природных и синтетических тапиолитов является наличие упорядоченных и неупорядоченных структур [2]. Кристаллическая решетка тапиолита состоит из искаженных октаэдров, образующих прямые цепи, параллельные плоскости (001). В упорядоченной структуре внутри эти цепей имеется последовательность укладки ... A-B-B-A-B-B ..., где A представляет собой Fe^{2+} и B-Ta. Примыкающие цепи связаны общими углами октаэдров.

Исследуемый образец является достаточно хорошо упорядоченным и при нагревании в исследованном интервале температур порядок укладки остается практически неизменным. Расчет межатомных расстояний (табл. 4) подтвердил асимметричное расположение мо-

стиковых атомов кислорода [32]. С повышением температуры межатомные расстояния, в основном, возрастают, однако при этом имеется тенденция к уменьшению отношений Fe-O2/Fe-O1, Ta-O1/Ta-O2(1), Ta-O2(1)/Ta-O2(2) и Ta-O1/Fe-O1.

Полученные данные по теплоемкости и термическому расширению могут быть использованы для расчета величин изохорной теплоемкости C_V по уравнению [33]

$$C_V = C_p - (V\alpha_V^2/k)T, \tag{7}$$

где V — мольный объем, k — изотермическая сжимаемость, величина которой для $FeTa_2O_6$ нуждается в определении.

4. Заключение

Синтезированный методом твердофазного спекания образец танталата железа $\operatorname{FeTa_2O_6}$ имел кристаллическую решетку тетрагональной сингонии пространственной группы P42/mnm и параметрами элементарной ячейки: $a=4.7539(1)\,\text{Å};~c=9.2016(1)\,\text{Å};~V=207.954(6)\,\text{Å}^3.$ Согласно результатам термического анализа начало эндотермического эффекта, относящегося к плавлению оксида $\operatorname{FeTa_2O_6}$, наблюдали при $1887\pm5\,\text{K}$.

Результаты измерений теплоемкости $FeTa_2O_6$ в диапазоне 323-1073 К представлены в виде совмещенной температурной зависимости. Экспериментальные величины молярной теплоемкости $FeTa_2O_6$ аппроксимированы уравнением: $C_{p,m}=197.40+47.83\cdot 10^{-3}\,T-31.78\cdot 10^5\,T^{-2}-19.72\cdot 10^{-6}\,T^2$. Исходя из температурной зависимости молярной теплоемкости, рассчитаны величины изменения энтальпии, энтропии и приведенной энергии Гиббса.

Термическое расширение $FeTa_2O_6$ в области температур 300-1173 К является анизотропным и проявляется больше вдоль оси c, чем по осям a и b. Рассчитанные значения коэффициентов термического расширения α_c превышают α_a и α_b во всем температурном интервале. Анизотропия термического расширения оксида наиболее выражена в диапазоне 600-800 К.

Финансирование работы

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-29-24051_мк) с использованием оборудования центра коллективного пользования "Урал-М" Института металлургии УрО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.J. Kinast, L.I. Zawislak, J.B.M. da Cunha, V. Antonietti, M.A.Z. de Vasconcellos, C.A. dos Santos. J. Solid State Chem. 163, 218 (2002).
- [2] M.A. Wise, P. Černý. Can. Mineral. 34, 631 (1996).
- [3] M. Zema, S.C. Tarantino. A. Giorgiani. Mineralog. Mag. 70, 3, 319 (2006).
- [4] В.П. Марьевич, В.М. Чумарев, С.А. Красиков. Неорган. материалы **29**, *12*, 1656 (1993).
- [5] A.C. Turnock. J. Am. Ceram. Soc. 48, 5, 258 (1965).
- [6] K. Kitayama. J. Solid State Chem. **64**, 162 (1986).
- [7] S.M. Eicher, J.E. Greedan, K.J. Lushington. J. Solid State Chem. 62, 220 (1986).
- [8] L.I. Zawislak, G.L.F. Fraga, J.B. Marimon da Cunha, D. Schmitt, A.S. Carriço, C.A. dos Santos. J. Phys: Condens. Matter. 9, 2295 (1997).
- [9] R.K. Kremer, J.E. Greedan, E. Gmelin, W. Dai, M.A. White, S.M. Eicher, K.J. Lushington. J. Phys. Colloque 49, C8-1495 (1988).
- [10] M.A. White, G.J. Neshvad. Chem. Thermodynam. 23, 455 (1991).
- [11] E.M.L. Chung, M.R. Lees, G.J. McIntyre, C. Wilkinson, G. Balakrishnan, J.P. Hague, D. Visser, D.J. McK. Paul. J. Phys: Condens. Matter. 16, 7837 (2004).
- [12] A.B. Christian, A.T. Schye, K.O. White, J.J. Neumeier. J. Phys.: Condens. Matter. 30, 19, 195803 (2018).
- [13] S.C. Tarantino, M. Zema, M. Pistorino, M.C. Domeneghetti. Phys. Chem. Minerals 30, 590 (2003).
- [14] DIFFRAC^{Plus}: Eva Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany (2008).
- [15] Powder Diffraction File PDF4+ ICDD Release 2016.
- [16] J. Laugier, B. Bochu. LMGP-Suite of Programs for the interpretation of *X*-ray Experiments. ENSP. Grenoble: Lab. Materiaux genie Phys. 2003.
- [17] H.M. Rietveld. J. Appl. Crystallogr. 2, 65 (1969).
- [18] DIFFRAC^{Plus}: TOPAS Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany 2008.
- [19] Руководство по рентгеновскому исследованию минералов / Под ред. В.А. Франк-Каменецкого. Недра. Л. (1975). 399 с.
- [20] Р.С. Бубнова, В.А. Фирсова, С.Н. Волков, С.К. Филатов. Физика и химия стекла 44, 1, 48 (2018).
- [21] ASTM E1269. Specific Heat Capacity by Differential Scanning Calorimeter. Annual Book of ASTM Standards. V. 14.02.
- [22] NETZSCH Proteus Software. Thermal Analysis. Version 4.8.3.
- [23] A.N. Mansurova, R.I. Gulyaeva, V.M. Chumarev, V.P. Mar'evich. J. Therm. Anal. Calorim. **101**, 45 (2010).
- [24] A.N. Mansurova, R.I. Gulyaeva, V.M. Chumarev, S.A. Petrova. J. Alloys Compd. 695, 2483 (2017).
- [25] Л.Т. Денисова, Л.Г. Чумилина, В.М. Денисов, В.В. Рябов. ФТТ 59, 2299 (2017).
- [26] Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database HSC. Version 6.2.8 / http://hsc-chemistry.net/index.html.
- [27] J. Leitner, P. Vonka, D. Sedmidubský, P. Svoboda. Thermochim. Acta 497, 1-2, 7 (2010).
- [28] O. Kubaschewski, H. Ünal. High Temperatures High Pressures 9, 361 (1977).

- [29] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Streje, P. Abrman. Thermochim. Acta 395, 1–2, 27 (2003).
- [30] С.К. Филатов. Высокотемпературная кристаллохимия. Недра, Л. (1990). 288 с.
- [31] H. Schneider, V.A. Eberhard. J. Am. Ceram. Soc. 73, 2073 (1990).
- [32] E. Peters, Hk. Müller-Buschbaum. Z. Naturforsch. 50b, 712 (1995).
- [33] Л.А. Резницкий. Калориметрия твердого тела. Изд-во МГУ, М. (1981) 184 с.

Редактор Т.Н. Василевская