03,04

# Влияние химического состава кристаллов $\mathsf{TIIn}_{1-x}\mathsf{Er}_x\mathsf{S}_2\ (0\leq x\leq 0.01)$ на их диэлектрические характеристики и параметры локализованных состояний

© С.Н. Мустафаева<sup>1</sup>, М.М. Асадов<sup>2</sup>

1 Институт физики НАНА,

Баку, Азербайджан

<sup>2</sup> Институт катализа и неорганической химии им. М.Ф. Нагиева НАНА,

Баку, Азербайджан

E-mail: solmust@gmail.com

Поступила в Редакцию 17 июня 2019 г. В окончательной редакции 3 июля 2019 г. Принята к публикации 5 июля 2019 г.

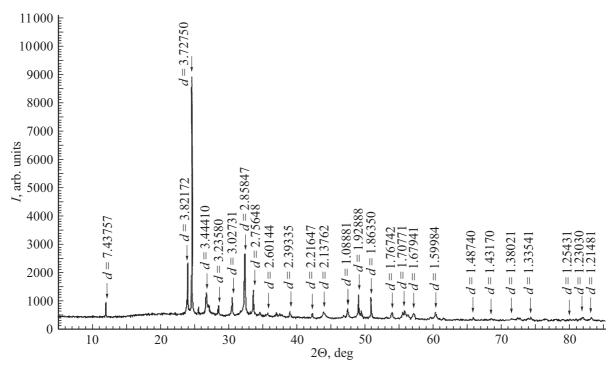
В полученых кристаллах  $TIIn_{1-x}Er_xS_2$  ( $0 \le x \le 0.01$ ) изучены частотные зависимости действительной ( $\varepsilon''$ ) и мнимой ( $\varepsilon''$ ) составляющих комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь ( $g\delta$ ) и ас-проводимости ( $\sigma_{ac}$ ) в области частот  $f=5\cdot 10^4-3.5\cdot 10^7$  Hz. Установлено, что в  $TIIn_{1-x}Er_xS_2$  имеет место релаксационная дисперсия  $\varepsilon'$  и  $\varepsilon''$ . Изучено влияние концентрации эрбия (Er) в кристаллах  $TIIn_{1-x}Er_xS_2$  на их диэлектрические коэффициенты. В области высоких частот ас-проводимость кристаллов  $TIIn_{1-x}Er_xS_2$  подчинялась закономерности  $\sigma_{ac} \sim f^{0.8}$ , характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены параметры локализованных в запрещенной зоне  $TIIn_{1-x}Er_xS_2$  состояний, а также влияние химического состава кристаллов на эти параметры.

**Ключевые слова:** сложные кристаллы  $TIIn_{1-x}Er_xS_2$ , частотная дисперсия, диэлектрические потери, прыжковый механизм переноса заряда, параметры локализованных состояний.

DOI: 10.21883/FTT.2019.11.48403.517

# 1. Введение

В последнее время тройные соединения  $TIB^{III}C_2^{VI}$  ( $B^{III}=In$ , Ga;  $C^{VI}=S$ , Se, Te) полупроводниковых материалов стали важной темой для исследователей, и исследования их свойств получили значительный импульс. Их оптические, структурные и электрические свойства [1] показывают, что они обладают потенциалом для использования в производстве оптоэлектронных устройств. Соединения  $TIB^{III}C_2^{VI}$  ( $B^{III}=In$ , Ga;  $C^{VI}=S$ , Se, Te) имеют различные полиморфные модификации.


Одним из представителей этого класса материалов является соединение  $TIInS_2$ , которое является слоистым полупроводником p-типа.  $TIInS_2$  состоит из элементов III и VI группы периодической системы элементов M кристалле  $TIInS_2$  ионно-ковалентные связи происходят между атомами, тогда как слабые ван-дер-ваальсовые связи создаются между последовательными двумерными слоями, которые перпендикулярны направлению (001). Согласно [2,3] пространственная группа  $C_{2h}^6$  характеризует кристаллическую симметрию  $TIInS_2$ , которая имеет моноклинную структуру при комнатной температуре.

Электрические и оптические свойства кристалла  $TIInS_2$  исследованы и описаны соответственно в литературе [4–9]. В частности, в недавней работе [8] в слоистых монокристаллах  $TIInS_2$  исследована фотопроводимость,

спектральное распределение фототока, зависимости времени жизни носителей заряда от интенсивности света, приложенного напряжения и температуры. Результаты получены в диапазоне температур  $77-300\,\mathrm{K}$ , интенсивностей возбуждения  $1000-7000\,\mathrm{люкc}$ , приложенного напряжения  $10-70\,\mathrm{V}$  и при длине волны фотонов  $400-570\,\mathrm{nm}$ . С использованием результатов измерений dc-фотопроводимости описана температурная зависимость ширины запрещенной зоны. Установлено, что процессы рекомбинации в  $TIInS_2$  являются мономолекулярными.

В [9] сообщается о результатах фотоэлектрического релаксационного спектроскопического исследования электрически активных дефектов в кристаллической структуре  $TIInS_2$ : La. Показано, что существуют состояния кристалла, которые отличаются величиной фотоотклика, изменяющейся в пределах четырех порядков. Это интерпретируется на основе различия в состоянии доменной структуры кристалла. Обсуждаются особенности регистрации термоэмиссии дефектов при наличии вклада фотовольтаической составляющей реакции кристалла на возбуждение светом.

В [10] сообщается о температурной зависимости свойств генерации второй гармоники (ГВГ) в слоистом  $TIInS_2$ . А в работе [11] сообщается о поляризационных свойствах сигнала ГВГ в  $TIInS_2$  ниже температуры сегнетоэлектрического фазового перехода. ГВГ в кристал-



**Рис. 1.** Рентгенограмма  $TIIn_{1-x}Er_xS_2$ , где x = 0.005.

лах  $TIInS_2$  изучалась в интервале температур  $77-300~\rm K$  с использованием системы конфокального лазерного микроскопа. Сигнал ГВГ наблюдался в низкотемпературной сегнетоэлектрической фазе. Исследованы также поляризационные свойства сигналов ГВГ в  $TIInS_2$  в диапазоне температур  $80-180~\rm K$ .

 $TIInS_2$  обладает также широким спектром других важных физических характеристик, таких как высокая фото- и рентгеночувствительность [12–18]. В [12,13] изучена прыжковая проводимость монокристаллов  $TIInS_2$  как на постоянном, так и на переменном токе. В [14] приведены результаты по изучению оптических свойств  $TIInS_2$ . В [15,16] приведены результаты изучения влияния  $\gamma$ -радиации на проводимость и диэлектрические характеристики монокристаллов  $TIInS_2$ . В [17,18] изучено влияние интеркалирования литием на электрические, фотоэлектрические и рентгендозиметрические свойства монокристаллов  $TIInS_2$ .

В процессе легирования полупроводников, как известно, физические свойства зависят в основном от того, какое положение занимает легирующая добавка в объеме кристаллической структуры полупроводника. А вопрос о путях замещения катионных позиций в низкоразмерных  $\mathrm{TIB^{III}C_2^{VI}}$  редкоземельными ионами с 4f-оболочками до конца не изучен. Поэтому детальное изучение свойств легированных 4f-ионами соединений  $\mathrm{TIB^{III}C_2^{VI}}$  остается актуальным. Кроме важных физических свойств  $\mathrm{TIB^{III}C_2^{VI}}$  обладают также набором интересных физико-химических свойств, обусловленных эффектами кристаллического поля за счет обменного взаимодействия d- и f-электронных подсистем.

Например, в [19,20] нами приведены результаты изучения электрических и диэлектрических свойств синтезированных монокристаллов  $TIGa_{1-x}Er_xS_2(Se_2)$ . Установлено, что частичное замещение в кристалле  $TIGaS_2(Se_2)$  галлия эрбием приводит к уменьшению диэлектрической проницаемости. Показано, что катионное замещение  $Ga^{3+}$  легирующими металлами в  $TIGaSe_2$  обусловлено тем, что в структуре кристалла исходные элементы находятся в  $TI^{1+}$ ,  $Ga^{3+}$ ,  $Se^{2-}$  степенях окисления.

Цель данной работы — изучение электрических и диэлектрических свойств полученных  $TIIn_{1-x}Er_xS_2$  (x=0; 0.001; 0.005 и 0.01) в переменных электрических полях радиочастотного диапазона; установление характера изменения свойств кристаллов  $TIIn_{1-x}Er_xS_2$  с увеличением концентрации введенного легирующего 4f-иона эрбия при изменении x в пределах 0-0.01.

### 2. Методическая часть

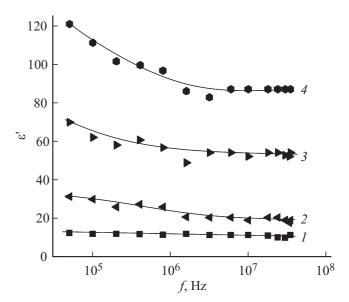
Оценка растворимости эрбия в объеме кристаллической решетки  $TIInS_2$  указывает на то, что ионный радиус легирующего  $Er^{3+}$  (1.03 Å) ближе к ионному радиусу  $In^{3+}$  (0.76 Å), чем к ионному радиусу  $TI^{1+}$  (1.64 Å). Т.е. в слоистом кристалле  $TIInS_2$  частичное замещение индия эрбием соответствует условию образования твердого раствора замещения.

В качестве исходных компонентов использовали особо чистые химические элементы Tl (Tl 00), In (In 00), S (осч 16-5) и Er (99.99%). TlInS<sub>2</sub> и образцы  $TlIn_{1-x}Er_xS_2$ 

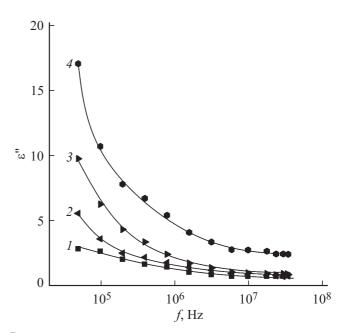
 $(x=0;\ 0.001;\ 0.005\ u\ 0.01)$  синтезировали из взятых в стехиометрических соотношениях химических элементов путем непосредственного их сплавления в вакуумированных до  $10^{-3}$  Ра кварцевых ампулах. Гомогенизацию синтезированных образцов производили в вакууме  $10^{-3}$  Ра. Завершенность синтеза поликристаллов  $TIIn_{1-x}Er_xS_2$ , их гомогенность и индивидуальность контролировали методами ДТА и РФА. РФА порошковых образцов  $TIIn_{1-x}Er_xS_2$  проводили на дифрактометре D8-ADVANCE в режиме  $0.5^\circ < 2\theta < 80^\circ$  ( $Cu_{K\alpha}$ -излучение;  $\lambda = 1.5418$  Å) при  $40\,\mathrm{kV}$  и  $40\,\mathrm{mA}$ .

Кристаллы  $TIIn_{1-x}Er_xS_2$  (x=0; 0.001; 0.005 и 0.01) со слоистой структурой легко скалывались по базисной плоскости. Провели РФА порошковых образцов кристаллов  $TIIn_{1-x}Er_xS_2$ . Установлено, что введенное количество Er (x=0.001; 0.005 и 0.01) слабо влияет на параметры кристаллической решетки матрицы  $TIInS_2$ . Полученные кристаллографические данные для  $TIIn_{1-x}Er_xS_2$  согласуются с литературными [21] для  $TIInS_2$ , ( $a=10.90\,\text{Å}$ ,  $b=10.94\,\text{Å}$ ,  $c=15.18\,\text{Å}$ ,  $\beta=100.21^\circ$ ).

В качестве примера на рис. 1 приведена типичная рентгенограмма образца на основе  $TIInS_2$ , содержащего 0.005 мол. доли эрбия ( $a=10.9116,\ b=10.9247,\ c=15.1649\ \text{Å},\ \beta=100.3227^\circ,\ V=1778.49\ \text{Å}^3,\ d=5.670\ \text{g/cm}^3$ , моноклинная сингония, пространственная группа A2/a).


Образцы  $TIIn_{1-x}Er_xS_2$  для электрических измерений готовили в виде плоских конденсаторов. В качестве электродов использовали серебряную пасту. Толщина кристаллических образцов из  $TIIn_{1-x}Er_xS_2$  составляла от 200 до  $1000\,\mu m$ .

Диэлектрические коэффициенты образцов  $TIIn_{1-x}Er_xS_2$  измеряли резонансным методом с помощью куметра TESLA BM 560. Диапазон частот переменного электрического поля составлял  $f=5\cdot 10^4-3.5\cdot 10^7$  Hz.


В процессе электрических измерений образцы  ${
m TIIn}_{1-x}{
m Er}_x{
m S}_2$  помещались в экранированную камеру. Все измерения проведены при 300 К. Амплитуда приложенного к образцам переменного электрического поля соответствовала омической области вольтамперной характеристики. Точность определения резонансных значений емкости и добротности ( $Q=1/\lg\delta$ ) измерительного контура ограничена ошибками, связанными со степенью разрешения отсчетов по приборам. Градуировка конденсатора имела точность  $\pm 0.1\,{\rm pF}$ . Воспроизводимость положения резонанса составляла по емкости  $\pm 0.2\,{\rm pF}$ , а по добротности  $\pm 1.0-1.5\,{\rm деления}$  шкалы. При этом наибольшие отклонения от средних значений составляли 3-4% для  $\epsilon'$  и 7% для  $\lg \delta$  [22].

# 3. Результаты и их обсуждение

На рис. 2 представлены частотные зависимости действительной составляющей комплексной диэлектрической проницаемости  $\varepsilon'$  кристаллов  $TIIn_{1-x}Er_xS_2$  (x=0;



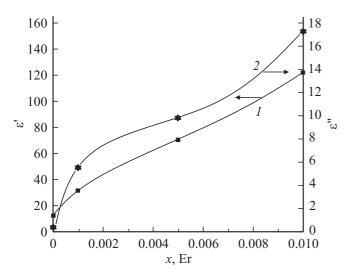
**Рис. 2.** Частотная дисперсия действительной составляющей комплексной диэлектрической проницаемости кристаллов  $TIIn_{1-x}Er_xS_2$ : x=0 (1); 0.001 (2); 0.005 (3) и 0.01 (4).  $T=300\,\mathrm{K}$ .



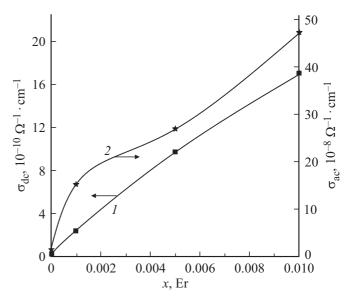
**Рис. 3.** Частотные зависимости мнимой составляющей комплексной диэлектрической проницаемости кристаллов  $TIIn_{1-x}Er_xS_2$ : x=0 (1); 0.001 (2); 0.005 (3) и 0.01 (4).  $T=300\,\mathrm{K}$ .

0.001; 0.005; 0.01). Как следует из этого рисунка в  $TIInS_2$  (кривая I) имеет место незначительная частотная дисперсия  $\varepsilon'$ . В  $TIIn_{1-x}Er_xS_2$  (x=0.001; 0.005; 0.01) с увеличением частоты от 50 кHz до 35 MHz значение  $\varepsilon'$  уменьшалось почти в 1.2—1.6 раз (кривые 2-4). Спад  $\varepsilon'$  наблюдался при сравнительно низких частотах ( $5\cdot 10^4-6\cdot 10^6$  Hz). В диапазоне частот

 $6\cdot 10^6 - 3.5\cdot 10^7\,\mathrm{Hz}$  величина  $\varepsilon'$  практически не зависела от частоты.


На рис. З приведены частотные зависимости мнимой составляющей комплексной диэлектрической проницаемости  $(\varepsilon'')$  Т $\ln_{1-x} \operatorname{Er}_x S_2$ . В отличие от величины  $\varepsilon'$ , значение  $\varepsilon''$  для составов x=0; 0.001; 0.005; 0.01 проявляло сильную частотную дисперсию. В "чистом" кристалле Т $\ln_{2}$  величина  $\varepsilon''$  с увеличением частоты вплоть до 35 MHz уменьшалась в 4 раза, а в Т $\ln_{1-x} \operatorname{Er}_x S_2$  (x=0.001; 0.005 и 0.01) значение  $\varepsilon''$  уменьшалась с частотой в 8-12 раз.

Важной характеристикой материала является частотная зависимость диэлектрических потерь, которая определяется не только структурой материала, но и наличием и составом примесей. В диэлектриках и сегнетоэлектриках диэлектрические потери обычно высоки в области мегагерцовых частот, что связывается с установлением доменной поляризации.


Экспериментально полученная частотная зависимость тангенса угла диэлектрических потерь (tg  $\delta=\epsilon''/\epsilon'$ ) в  $TIIn_{1-x}Er_xS_2$  во всей изученной области частот имела спадающий характер. Такой вид частотной зависимости в материалах соответствует механизму потерь на электропроводность [23].

Таким образом, приведенные на рис. 2 и 3 результаты отражают частотные зависимости диэлектрических коэффициентов  $TIIn_{1-x}Er_xS_2$ . Установили также зависимости этих коэффициентов для  $TIIn_{1-x}Er_xS_2$  от концентрации введенного эрбия.

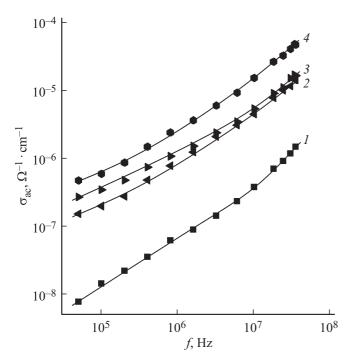
На рис. 4 показаны построенные нами концентрационные зависимости для  $\varepsilon'$  (кривая I) и  $\varepsilon''$  (кривая2). Обе зависимости приведены для случая, когда частота переменного электрического поля составляла  $f=5\cdot 10^4$  Hz. При более высоких частотах указанные зависимости ослабевали. Как видно из рис. 4 по мере возрастания



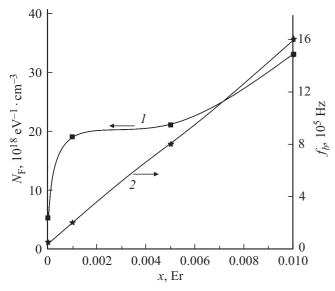
**Рис. 4.** Зависимости действительной (кривая I) и мнимой (кривая 2) составляющих комплексной диэлектрической проницаемости при  $f=5\cdot 10^4\,\mathrm{Hz}$  от состава кристаллов  $\mathrm{TIIn}_{1-x}\mathrm{Er}_x\mathrm{S}_2.$ 



**Рис. 5.** Зависимости проводимости на постоянном (кривая I) и переменном (кривая 2) токе при  $f = 5 \cdot 10^4 \, \mathrm{Hz}$  от состава кристаллов  $\mathrm{TIIn}_{1-x}\mathrm{Er}_x\mathrm{S}_2$ .


концентрации эрбия в кристаллах  $TIIn_{1-x}Er_xS_2$  значения  $\varepsilon'$  и  $\varepsilon''$  увеличивались. Так, значение  $\varepsilon'$  увеличивалось на порядок, а  $\varepsilon''$  — в 60 раз.

Нами изучена также проводимость кристаллов  $TIIn_{1-x}Er_xS_2$  в постоянном (dc-проводимость) и переменном (ас-проводимость) электрических полях. На рис. 5 приведены зависимости  $\sigma_{dc}$  (кривая I) и  $\sigma_{ac}$  (кривая 2) при  $f=5\cdot 10^4$  Hz от состава кристаллов  $TIIn_{1-x}Er_xS_2$ . Установлено, что с повышением концентрации эрбия в  $TIIn_{1-x}Er_xS_2$  проводимость образцов увеличивалась в обоих случаях, а точнее:  $\sigma_{dc}$  — в 80 раз,  $\sigma_{ac}$  — в 60 раз. Проводимость кристаллов  $TIIn_{1-x}Er_xS_2$  на переменном токе более чем на два порядка превышала проводимость на постоянном токе.


На рис. 6 представлены частотные зависимости проводимости кристаллов  $TIIn_{1-x}Er_xS_2$  различного состава. В  $TIInS_2$  (кривая I) в частотной области  $5 \cdot 10^4 - 10^7$  Hz имел место участок  $\sigma_{\rm ac} \sim f^{0.8}$ , а при  $f > 10^7$  Hz наблюдалась суперлинейная зависимость  $\sigma_{\rm ac} \sim f^{1.3}$ .

Характерной особенностью указанных зависимостей  $\sigma_{\rm ac}(f)$  для  ${\rm TIIn_{1-x}Er_xS_2}$  (x=0; 0.001; 0.005 и 0.01) является то, что при сравнительно низких частотах  $\sigma_{\rm ac}\sim f^{0.5}$ , а при высоких частотах  $\sigma_{\rm ac}\sim f^{0.8}$ . Зависимость  $\sigma_{\rm ac}\sim f^{0.8}$  характерна для механизма прыжковой проводимости по локализованным состояниям вблизи уровня Ферми [24,25]. Граничная частота ( $f_b$ .), начиная с которой проводимость кристаллов  ${\rm TIIn_{1-x}Er_xS_2}$  становится прыжковой, линейно смещается в сторону более высоких частот по мере возрастания концентрации эрбия в кристаллах (рис. 7, кривая 2).

Полученные нами зависимости  $\sigma_{\rm ac} \sim f^{0.8}$  в  ${
m TIIn}_{1-x}{
m Er}_x{
m S}_2$  свидетельствуют о прыжковом механизме переноса заряда по состояниям, локализованным в



**Рис. 6.** Частотно-зависимая ас-проводимость кристаллов  $TIIn_{1-x}Er_xS_2$ : x=0 (1); 0.001 (2); 0.005 (3) и 0.01 (4).  $T=300~\rm K$ .



**Рис. 7.** Зависимости плотности состояний вблизи уровня Ферми (кривая I) и граничной частоты начала прыжковой проводимости (кривая 2) от состава кристаллов  $TIIn_{1-x}Er_xS_2$ .

окрестности уровня Ферми [24]:

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 kT N_{\rm F}^2 a^5 f \left[ \ln \left( \frac{\nu_{\rm ph}}{f} \right) \right]^4, \tag{1}$$

где e — заряд электрона; k — постоянная Больцмана;  $N_{\rm F}$  — плотность состояний вблизи уровня Ферми;  $a=1/\alpha$  — радиус локализации;  $\alpha$  — постоянная спада

волновой функции локализованного носителя заряда  $\psi \sim \bar{e}^{\, ar}; \, \nu_{
m ph}$  — фононная частота.

Согласно формуле (1) ас-проводимость зависит от частоты как  $f\left[\ln(\nu_{\rm ph}/f)\right]^4$ , т. е. при  $f\gg\nu_{\rm ph}$  величина  $\sigma_{\rm ac}$  пропорциональна  $f^{0.8}$ .

Используя формулу (1) по экспериментально найденным значениям  $\sigma_{\rm ac}(f)$  вычислили плотность состояний на уровне Ферми. Вычисленные значения  $N_{\rm F}$  для  ${
m TIIn}_{1-x}{
m Er}_x{
m S}_2$  различного состава приведены на рис. 7 (кривая I). При вычислениях  $N_{\rm F}$  значение  $\nu_{\rm ph}$  взято равным  $10^{12}$  Hz, а за радиус локализации взято значение  $a=14\,{\rm \AA}$ , как для  ${
m TIInS}_2$  [13].

По теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по следующей формуле

$$R = \frac{1}{2\alpha} \ln \left( \frac{\nu_{\rm ph}}{f} \right). \tag{2}$$

Вычисленные по формуле (2) значения R для кристаллов  $TIIn_{1-x}Er_xS_2$  составляли 77—86 Å. Эти значения R в 5.5—6 раз превышают среднее расстояние между центрами локализации носителей заряда в  $TIIn_{1-x}Er_xS_2$ . Используя значения R по формуле

$$\tau^{-1} = \nu_{\rm ph} \exp(-2\alpha R) \tag{3}$$

определили среднее время прыжков в  $TIIn_{1-x}Er_xS_2$ :  $\tau=5.5\cdot 10^{-8}-2\cdot 10^{-7}$  s.

По формуле [24]

$$\Delta E = 3/2\pi R^3 \cdot N_{\rm F} \tag{4}$$

в  $TIIn_{1-x}Er_xS_2$  оценили энергетический разброс локализованных вблизи уровня Ферми состояний  $\Delta E=32-140\,\mathrm{meV}.$  А по формуле:

$$N_{\rm t} = N_{\rm F} \cdot \Delta E \tag{5}$$

определили концентрацию глубоких ловушек в  $TIIn_{1-x}Er_xS_2$ , ответственных за ас-проводимость  $N_t=$   $=7\cdot 10^{17}-10^{18}~{\rm cm}^{-3}$ . Установлено, что с увеличением концентрации эрбия в  $TIIn_{1-x}Er_xS_2$  плотность локализованных вблизи уровня Ферми состояний увеличивается с  $5.2\cdot 10^{18}$  до  $3.3\cdot 10^{19}~{\rm eV}^{-1}\cdot{\rm cm}^{-3}$ . Это происходит, по-видимому, за счет сужения энергетической полосы локализованных состояний. При этом концентрация носителей заряда на глубоких уровнях  $(N_t)$  в  $TIIn_{1-x}Er_xS_2$  увеличивалась незначительно.

#### 4. Заключение

Методом прямого синтеза из исходных химических элементов в вакууме получены слоистые кристаллы  $T I I n_{1-x} E r_x S_2$  (x=0; 0.001; 0.005 и 0.01). Изучение частотной дисперсии диэлектрических коэффициентов при  $f=5\cdot 10^4-3.5\cdot 10^7$  Hz и проводимости кристаллов  $T I I n_{1-x} E r_x S_2$  позволили установить релакса-

ционный характер дисперсии действительной и мнимой составляющих комплексной диэлектрической проницаемости. Также установлены природа диэлектрических потерь и прыжковый механизм переноса заряда. Оценили параметры локализованных состояний, такие как плотность состояний вблизи уровня Ферми  $(N_{\rm F} = 5.2 \cdot 10^{18} - 3.3 \cdot 10^{19} \,\mathrm{eV}^{-1} \cdot \mathrm{cm}^{-3})$  и их энергетический разброс ( $\Delta E = 32-140\,\mathrm{meV}$ ), среднее время  $(\tau = 5.5 \cdot 10^{-8} - 2 \cdot 10^{-7} \,\mathrm{s})$  и расстояние  $(R = 77 - 86 \,\mathrm{\AA})$ прыжков, а также концентрацию глубоких ловушек  $(N_{\rm t} = 7 \cdot 10^{17} - 10^{18} \, {\rm cm}^{-3})$ . Установлено, что по мере увеличения концентрации эрбия в кристаллах  $TIIn_{1-x}Er_xS_2$ действительная и мнимая составляющие их комплексной диэлектрической проницаемости, тангенс угла диэлектрических потерь, dc- и ас-проводимость увеличивались. С повышением концентрации введенного эрбия в  $TIIn_{1-x}Er_xS_2$  граничная частота, начиная с которой в изученных образцах кристаллов наблюдалась прыжковая проводимость, линейно смещалась в сторону высоких частот. Введение эрбия в  $TIIn_{1-x}Er_xS_2$  приводило к уменьшению среднего расстояния и времени прыжков, а также к увеличению плотности состояний, локализованных вблизи уровня Ферми.

# Финансирование работы

Работа выполнена при поддержке Фонда развития науки при Президенте Азербайджанской Республики (гранты № E-F-BGM-3-BRFTF-2+/2017-15/05/1-M-13 и № E-F-BGM-4-RFTF-1/2017-21/05/1-M-07) и SOCAR.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

#### Список литературы

- [1] Y. Shim, W. Okada, K. Wakita, N. Mamedov. J. Appl. Phys. 102, 1 (2007).
- [2] T.D. Ibragimov, I.I. Aslanov. Solid State Commun. 123, 339 (2002).
- [3] O.Z. Alekperov, G.B. Ibragimov, I.A. Axundov, A.I. Nadjafov, A.R. Fakix. Phys. Status Solidi C 6, 981 (2009).
- [4] M.M. El-Nahass, S.B. Youssef, H.A.M. Ali, A. Hassan. Eur. Phys. J. Appl. Phys. 55, 1 (2011).
- [5] O.O. Gomonnai, R.R. Rosul, P.P. Guranich, A.G. Slivka, I.Yu. Roman, M.Yu. Rigan. High Press. Res. 32, 39 (2012).
- [6] M. Isik, S. Delice, N.M. Gasanly. Acta Phys. Pol. A 126, 1299 (2014).
- [7] S. Delice, N.M. Gasanly. Physica B 499, 44 (2016).
- [8] I.M. Ashraf, A. Salem, M.J.A.L. Salah. Euro. J. Appl. Eng. Sci. Res. 6, 2, 34 (2018).
- [9] А.П. Одринский, М.-Н.Yu. Seyidov, R.A. Suleymanov, Т.Г. Мамедов, В.Б. Алиева. ФТТ 58, 4, 696 (2016)
- [10] Y. Araki, R. Asaba, K. Wakita, Y.G. Shim, K. Mimura, N. Mamedov. Phys. Status Solidi C 10, 1136 (2013).
- [11] K. Wakita, M. Hagiwara, R. Paucar, Y. Shim, K. Mimura, N. Mamedov. J. Phys. Conf. Ser. 619 (2015). 012006. doi:10.1088/1742-6596/619/1/012006

- [12] С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ **40**, *4*, 612 (1998).
- [13] С.Н. Мустафаева, М.М. Асадов, В.А. Рамазанзаде. ФТТ **38**, *1*, 14 (1996).
- [14] А.В. Короткий, А.У. Шелег, В.В. Шевцова, А.В. Мудрый, С.Н. Мустафаева. Журн. прикл. спектроскопии 79, 3, 418 (2012).
- [15] С.Н. Мустафаева, М.М. Асадов, А.А. Исмайлов. ФТТ **51**, *11*, 2140 (2009).
- [16] А.У. Шелег, В.Г. Гуртовой, В.В. Шевцова, С.Н. Мустафаева. ФТТ **54**, *9*, 1754 (2012).
- [17] S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov. Mater. Chem. Phys. **40**, *2*, 142 (1995).
- [18] С.Н. Мустафаева, М.М. Асадов, В.А. Рамазанзаде. Неорган. материалы **31**, *3*, 318 (1995).
- [19] С.Н. Мустафаева, М.М. Асадов, Э.М. Керимова, Н.З. Гасанов. Неорган. материалы **49**, *12*, 1271 (2013).
- [20] С.Н. Мустафаева, М.М. Асадов, Э.М. Керимова. ФТТ **55**, *12*, 2346 (2013).
- [21] А.У. Шелег, В.В. Шевцова, В.Г. Гуртовой, С.Н. Мустафаева. Поверхность. Рентг., синхр. нейтр. исслед. 11, 39 (2013).
- [22] С.Н. Мустафаева. Журн. радиоэлектроники. 5, 1 (2008).
- [23] В.В. Пасынков, В.С. Сорокин. Материалы электронной техники. Высш. шк., М. (1986). 368 с.
- [24] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1974). 472 с.
- [25] Ю.И. Равич, С.А. Немов. ФТП 36, 1, 3 (2002).

Редактор Т.Н. Василевская