13

Влияние энергии ионной стимуляции на удельное электросопротивление углеродных пленок, полученных методом импульсно-плазменного осаждения в атмосфере азота

© И.А. Завидовский, О.А. Стрелецкий, О.Ю. Нищак, А.А. Хайдаров

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

E-mail: ia.zavidovskii@physics.msu.ru

Поступила в Редакцию 26 марта 2019 г. В окончательной редакции 2 июля 2019 г. Принята к публикации 2 июля 2019 г.

Исследованы тонкие углеродные пленки, полученные методом импульсно-плазменного ионностимулированного распыления графита в атмосфере смеси аргона и азота. Результаты спектроскопии характеристических потерь энергии электронов и электронной дифракции свидетельствуют о росте графитовой составляющей при увеличении энергии ионной стимуляции. Применение ионной стимуляции в процессе напыления пленок позволяет управлять их удельным сопротивлением, изменяя его от 10^5 до 10^2 Ω · cm.

Ключевые слова: ионно-плазменное осаждение, тонкие пленки, аморфный углерод, просвечивающая электронная микроскопия, спектроскопия характеристических потерь энергии электронов, удельное сопротивление.

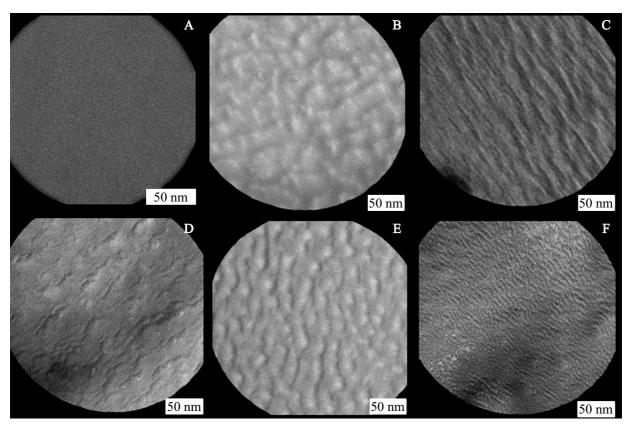
DOI: 10.21883/FTT.2019.11.48436.435

1. Введение

Углеродные пленки вызывают интерес исследователей благодаря возможности их применения в различных областях науки и техники, например, углеродные покрытия могут быть использованы для уменьшения трения [1], создания гидрофобной поверхности [2], улучшения биосовместимости медицинских изделий [3] и в других приложениях.

Благодаря способности углерода находиться в состоянии с различной гибридизацией $(sp^1, sp^2 \ u \ sp^3)$, соответствующие структуре карбина, графита и алмаза), свойства углеродных материалов в значительной степени зависят от их фазового состава: доли различных связей [4], наличия субструкур в составе образца [5,6]. Изменение условий осаждения (рабочая атмосфера, мощность разряда, стимуляция ионами, подача смещения на подложку и др.) позволяет модифицировать структуру пленок и подобрать режим, в котором покрытие будет обладать желаемыми характеристиками. Таким образом, создание тонких углеродных пленок, оптимальных для использования в конкретном направлении, требует детального анализа структуры образцов, полученных при различных параметрах напыления.

Возможность использования углеродных пленок в различных электрофизических приложениях обусловлена тем, что их удельное электросопротивление может изменяться в диапазоне от 10^2 до $10^{14}\,\Omega\cdot {\rm cm}$ [7]. В то же время, допирование углеродных пленок атомами различных металлов может уменьшить эту величину до $10^{-5}\,\Omega\cdot {\rm cm}$. Нанесение допированных углеродных пленок может осуществляться различными методами: с помощью сочетания процесса химического осаждения в


газовой фазе и распыления металлической мишени [8], высокочастотным магнетронным распылением мишеней карбидов [9,10], совместным распылением графитовой и металлической магнетронных мишеней [11]. Однако недостатком допирования металлами может являться ухудшение коэффициента износа [8], критической нагрузки и твердости [10] или увеличение коэффициента трения таких покрытий [9].

Изменение электропроводности углеродных пленок возможно также при помощи внедрения в их структуру других донорных и акцепторных атомов [12–14].

Особый интерес, возросший в связи с развитием технологий анализа поверхности [15], представляет модификация углеродных покрытий при помощи азота. Современные методы анализа позволяют установить вклад азота в формирование фаз с sp^2 и sp^3 -гибридизацией, который может приводить к существенному преобразованию структуры пленки и изменению ее электрофизических свойств [16,17].

Азотированные углеродные пленки находят свое применение в биологической визуализации, солнечной энергетике, в качестве функциональных покрытий и др. [18–20].

В настоящей работе приводится исследование тонких углеродных пленок, полученных методом импульсноплазменного осаждения в атмосфере смеси аргона и азота при различных энергиях стимуляции ионным пучком. Структурные свойства полученных углеродных пленок были исследованы методами просвечивающей электронной микроскопии (ПЭМ) и спектроскопии характеристических потерь энергии электронов (СХПЭЭ). Удельное сопротивление пленок измерялось четырехзондовым методом.

Рис. 1. Текстура образцов в зависимости от энергии стимуляции (без стимуляции — A, $200 \,\mathrm{eV} - B$, $300 \,\mathrm{eV} - C$, $400 \,\mathrm{eV} - D$, $600 \,\mathrm{eV} - E$, $800 \,\mathrm{eV} - F$).

2. Получение образцов и методы их исследования

Исследуемые образцы изготавливались методом импульсно-плазменного ионно-стимулированного распыления графита. Напыление осуществлялось в атмосфере смеси аргона и азота при давлении 10^{-3} Torr. Относительная концентрация азота в рабочей атмосфере не изменялась и составляла 25%. Время импульса разряда составляло порядка 1 ms, частота следования импульсов — 1 Hz, мощность разряда — 1 kW. В качестве подложек использовались кремниевые и титановые пластины, а также кристаллы поваренной соли. Температура подложек во время процесса осаждения не превышала 50°C В ходе процесса напыления при помощи холловского ионного источника осуществлялась стимуляция роста пленок ионами азота и аргона различных энергий (от 200 до 700 eV) и фиксированном токе. Контроль толщины в ходе напыления был реализован при помощи пьезоэлектрического датчика. Толщина всех образцов составляла порядка 50 nm.

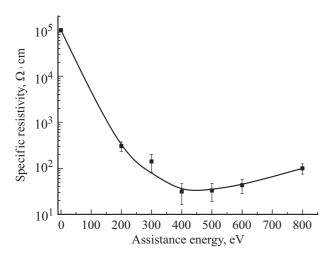
Образцы были исследованы методами просвечивающей электронной микроскопии, электронной дифракции и спектроскопии характеристических потерь энергии электронов при помощи комплекса LEO 912 AB с ускоряющим напряжением 120 keV.

Удельное сопротивление пленок было измерено четырехзондовым методом. Измерения были проведены с помощью системы Jandel RMS-EL-Z.

3. Экспериментальные результаты

3.1. Текстура образцов

Изображения структуры пленок, полученные при помощи ПЭМ, приведены на рис. 1.


Все образцы, кроме нанесенного без ионной стимуляции, имеют неоднородную текстуру, изменяющуюся в зависимости от энергии ассистирующих ионов.

В работах [21,22] для углеродных пленок наблюдалось образование схожего рельефа. Причиной его возникновения являлась ионная стимуляция или обработка структур ионным пучком, направленным, как и в нашем случае, под углом к поверхности пленки.

3.2. Удельное электросопротивление пленок

Изменение удельного сопротивления углеродных пленок в зависимости от энергии стимуляции представлено на рис. 2.

Ионная стимуляция приводит к значительному уменьшению удельного электросопротивления исследуемых

Рис. 2. Зависимость удельного электросопротивления образцов от энергии ионной стимуляции.

образцов. При этом для углеродной пленки, нанесенной при энергии стимулирующих ионов 400 eV, наблюдается минимум сопротивления. Минимальное значение удельного сопротивления составляет $30\,\Omega\cdot$ cm.

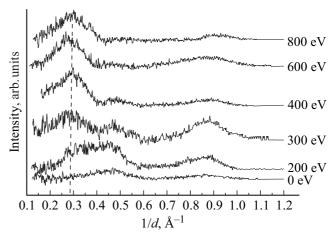
Для объяснения зависимости электросопротивления исследуемых образцов от энергии стимуляции были проведены исследования их структуры.

3.3. Электронная дифракция

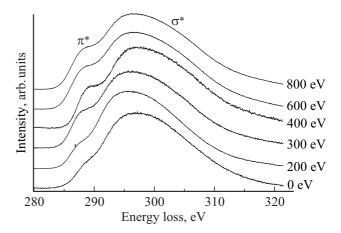
На рис. 3 представлены результаты фотометрирования дифракционных картин образцов, нанесенных при различной энергии стимуляции.

Дифракционная картина образца, напыленного без ионной стимуляции, характерна для аморфных углеродных структур [23–25]. На ней наблюдается два широких максимума с межплоскостными расстояниями 2.06 Å и 1.15 Å. Линия 2.06 Å характерна для аморфных алмазоподобных пленок, ее сильное уширение характеризует большую степень разупорядоченности структуры.

При введении ионной стимуляции в процесс напыления на дифракционных картинах полученных образцов появляется дополнительная линия вблизи 3.35 Å, положение которой соответствует межплоскостному расстоянию в графите [23]. С ростом энергии стимулирующих ионов происходит увеличение относительной интенсивности данной линии, которое связано с ростом доли графитовой компоненты в структуре пленки. Таким образом, ионная стимуляция в атмосфере азота приводит к появлению в структуре пленок графитовых нанокластеров, влияющих на их электрофизические свойства.


3.4. Спектроскопия характеристических потерь энергии электронов

Для более детального анализа изменения структуры образцов были исследованы спектры, отвечающие потерям на возбуждение электронов с остовного уровня


углерода. Вычитание фона было проведено при помощи метода Тугарда [26,27]. При этом полученные спектры (рис. 4) имеют два характерных максимума, отвечающих переходу электронов с К-оболочки атома углерода на уровни энергии, соответствующие π^* - и σ^* -подзонам.

Для спектров характеристических потерь энергии электронов интенсивность данных линий свидетельствует о количестве π - и σ -связей [28]. Согласно [29], π^* -пик в районе низких энергий можно аппроксимировать гауссовой составляющей, а отношение ее площади к площади σ^* -пика пропорционально соотношению π - и σ -связей в структуре. Данное соотношение для исследуемых образцов в зависимости от энергии стимуляции приведено на рис. 5.

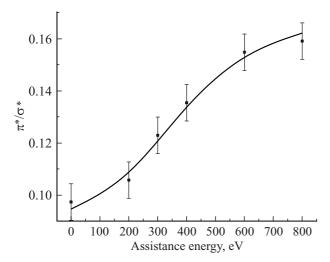

Полученные данные свидетельствуют о росте интенсивности линии, отвечающей переходу электронов на свободные π -орбитали по отношению к линии, соответствующей переходу на σ -орбитали атома углерода. Увеличение данного параметра для пленок аморфного углерода соответствует возрастанию

Рис. 3. Дифрактограммы пленок, изготовленных в атмосфере смеси аргона и азота при различной энергии стимуляции.

Рис. 4. Спектры характеристических потерь энергии электронов с остовного уровня углерода.

Рис. 5. Зависимость отношения интенсивностей π^* - и σ^* -пиков СХПЭЭ.

доли sp^2 -гибридизованных атомов по отношению к sp^3 -гибридизованным атомам в структуре пленки [30].

Данная зависимость, коррелирующая с данными электронной дифракции, свидетельствует о росте графитовой компоненты при увеличении энергии стимулирующих ионов.

3.5. Особенности проводимости пленок

Таким образом, введение ионного ассистирования в процесс напыления приводит к эффективному встраиванию азота в структуру, уменьшающему электросопротивление с 10^5 до $10^2\,\Omega\cdot$ сm. Данные электронной дифракции позволяют связать это с образованием в углеродной пленке компоненты с низким электросопротивлением — графитовых нанокластеров.

В работе [31] показано, что на сопротивление двухкомпонентных композитов влияет как сопротивление их составляющих, так и их соотношение. Однако полученная в настоящей работе зависимость не позволяет полностью описать проводимость полученных нами образцов, поскольку не учитывает явления рассеяния, которые происходят на границе раздела фаз и дают, согласно [32], существенный вклад в сопротивление тонких пленок. Уменьшение размера кристаллитов, как правило, происходящее при увеличении энергии стимулирующих ионов, увеличивает поверхность границы раздела фаз и приводит к возрастанию электросопротивления [33,34].

Исходя из вышесказанного, при образовании графитовых нанокластеров в условиях ионной стимуляции происходит протекание двух конкурирующих процессов: с одной стороны, с ростом энергии стимуляции увеличивается доля графитовой фазы в структуре пленок, а с другой — уменьшается размер графитовых кластеров, что и обуславливает появление минимума сопротивления пленок при энергии 400 eV.

4. Заключение

В работе представлены результаты исследования тонких углеродных пленок, полученных в атмосфере смеси аргона и азота методом импульсно-плазменного ионно-ассистированного распыления графита. Удельное электросопротивление пленок составило $10-10^2\,\Omega\cdot {\rm cm}$, что на 3-4 порядка меньше сопротивления пленок, изготовленных без ионной стимуляции. Ионная стимуляция приводит к образованию графитовых нанокластеров, доля которых возрастает с увеличением энергии ассистирования. При энергии стимуляции $400\,{\rm eV}$ наблюдается минимум удельного электросопротивления, что можно объяснить одновременным протеканием двух конкурирующих процессов: увеличением доли графитовой фазы в структуре пленок и уменьшением размера графитовых кластеров с ростом энергии стимуляции.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. He, S. Zheng, J. Pu, G. Zhang, L. Hu. Tribology Int. 82, 20 (2015). DOI: 10.1016/j.triboint.2014.09.017
- [2] R. Rincón, A. Hendaoui, J. de Matos, M. Chaker. J. Appl. Phys. 119 22, 223303 (2016). DOI: 10.1063/1.4953684
- [3] T.T. Liao, T.F. Zhang, S.S. Li, Q.Y. Deng, B.J. Wu, Y.Z. Zhang, Y.J. Zhou, Y.B. Guo, Y.X. Leng, N. Huang. Mater. Sci. Eng. C. 69, 75 (2016). DOI: 10.1016/j.msec.2016.07.064
- [4] R. Paul, S.N. Das, S. Dalui, R.N. Gayen, R.K. Roy, R. Bhar,
 A.K. Pal. J. Phys. D 41 5, 055309 (2008).
 DOI: 10.1088/0022-3727/41/5/055309
- [5] A. Varma, V. Palshin, E.I. Meletis. Surface Coatings Technology 148 2-3, 305 (2001).
 DOI: 10.1016/s0257-8972(01)01350-0
- [6] A. Hu, I. Alkhesho, H. Zhou, W.W. Duley. Diamond Related Mater. 16 1, 149 (2007). DOI: 10.1016/j.diamond.2006.04.008
- [7] A. Grill, V. Patel, S. Cohen. Diamond Related Mater. 3, 281 (1994).
- [8] H. Dimigen, H. Hübsch, R. Memming. Appl. Phys. Lett. 50, 1056 (1987).
- [9] M. Wang, K. Schmidt, K. Reichelt. J. Mater. Res. 7, 6 (1992).
- [10] C. Bauer, H. Leiste, M. Stüber, S. Ulrich, H. Holleck. Diamond Related Mater. 11 3-6, 1139 (2018).
 DOI: 10.1016/s0925-9635(01)00714-2
- [11] C.P. Klages, R. Memming. Mater. Sci. Forum 52–53, 609 (1989).
- [12] S. Liza, J. Hieda, H. Akasaka, Ohtake, N., Tsutsumi, Y., Nagai,
 A., T. Hanawa. Sci. Technology Adv. Mater. 18 1, 76 (2017).
 DOI: 10.1080/14686996.2016.1262196
- [13] R. Dey, S. Dolai, S. Hussain, R. Bhar, A.K. Pal. Diamond and Related Materials, 82, 70 (2018). DOI: 10.1016/j.diamond.2018.01.002
- [14] J. Lanigan, H.M. Freeman, C. Wang, M.B. Ward, A. Morina, A. Neville, R. Brydson. RSC Adv. 7 69, 43600 (2017). DOI: 10.1039/c7ra08959g

- [15] L. Perini, C. Durante, M. Favaro, V. Perazzolo, S. Agnoli, O. Schneider, G. Granozzi, A. Gennaro. ACS Appl. Mater. Interfaces 7 2, 1170 (2015). DOI: 10.1021/am506916y
- [16] W. Zhang, Y. Xia, J. Ju, L. Wang, Z. Fang, M. Zhang. Solid State Commun. 126 3, 163 (2003). DOI: 10.1016/s0038-1098(02)00673-7
- [17] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson.
 Diamond Related Mater. 7 2-5, 656 (1998).
 DOI: 10.1016/s0925-9635(97)00296-3
- [18] J. Liu, H. Wang, M. Antonietti. Chem. Soc. Rev. 45, 2308 (2016).
- [19] L. Jia, H. Wang, D. Dhawale, C. Anand, M.A. Wahab, Q. Ji, K. Arigab, A. Vinuab. Chem. Commun. 50 45, 5976 (2014). DOI: 10.1039/c4cc02042a
- [20] E. Cutiongco, D. Li, Y. Chung. J. Tribology 118, 543 (1996).
- [21] L.K. Cheah, X. Shi, J.R. Shi, E.J. Liu, S.R.P. Silva. J. Non-Cryst. Solids 242 1, 40 (1998).
 DOI: 10.1016/s0022-3093(98)00787-x
- [22] A. Stanishevsky. Thin Solid Films, 398—399, 560 (2001).DOI: 10.1016/s0040-6090(01)01318-9
- [23] Q. Wang, C. Wang, Z. Wang, J. Zhang, D. He. Appl. Phys. Lett. 91 14, 141902 (2007). DOI: 10.1063/1.2794017
- [24] A.A. Voevodin, J.G. Jones, J.S. Zabinski, Z. Czigány, L. Hultman. J. Appl. Phys. 92 9, 4980 (2002). DOI: 10.1063/1.1509106
- [25] J. Neidhardt, L. Hultman, Z. Czigány. Carbon. 42, 2729 (2004). DOI: 10.1016/j.carbon.2004.06.011
- [26] S. Tougaard. Surf. Sci. 464 2-3, 233 (2000). DOI: 10.1016/s0039-6028(00)00684-1
- [27] S. Tougaard. Surf. Sci. 216 3, 343 (1989).
 DOI: 10.1016/0039-6028(89)90380-4
- [28] J. Kulik, G.D. Lempert, E. Grossman, D. Marton, J.W. Rabalais, Y. Lifshitz. Phys. Rev. B 52 22, 15812 (1995). DOI: 10.1103/physrevb.52.15812
- [29] A.C. Ferrari, A. Libassi, B.K. Tanner, V. Stolojan, J. Yuan, L.M. Brown, S.E. Rodil, B. Kleinsorge, J. Robertson. Phys. Rev. B 62 16, 11089 (2000). DOI: 10.1103/physrevb.62.11089
- [30] D.L. Pappas, K.L. Saenger, J. Bruley, W. Krakow, J.J. Cuomo,
 T. Gu, R.W. Collins. J. Appl. Phys. 7111, 5675 (1992).
 DOI: 10.1063/1.350501
- [31] D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham. J. Am. Ceram. Soc. 73 8, 2187 (1990). DOI: 10.1111/j.1151-2916.1990.tb07576.x
- [32] A.F. Mayadas, M. Shatzkes. Phys. Rev. B **1** *4*, 1382 (1970). DOI: 10.1103/physrevb.1.1382
- [33] R.A. Roy, J.J. Cuomo, D.S. Yee. J. Vac. Sci. Technology A 6 3, 1621 (1988). DOI: 10.1116/1.575339,
- [34] J.J. Cuomo, S.M. Rossnagel, H.R. Kaufman. Handbook of Ion Beam Processing Technology: Principles, Deposition, Film Modification and Synthesis. Noyes Publications, Westwood, New Jersey, USA. (1989). 457 p. ISBN 0-8155-1199-X

Редактор К.В. Емцев