05,11

Физические свойства фрустрированного квазиодномерного магнетика $NaCuFe_2(VO_4)_3$ и влияние химического давления при замещении натрия литием

© Т.В. Дрокина 1 , Г.А. Петраковский 1 , О.А. Баюков 1 , М.С. Молокеев 1,2 , А.М. Воротынов 1 , С.И. Попков 1,2 , Д.А. Великанов 1

 1 Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН,

Красноярск, Россия

² Сибирский федеральный университет,

Красноярск, Россия

E-mail: tvd@iph.krasn.ru

Поступила в Редакцию 24 сентября 2019 г. В окончательной редакции 24 сентября 2019 г. Принята к публикации 24 сентября 2019 г.

Приведены результаты исследования структурных, тепловых, статических магнитных и резонансных свойств низкоразмерного соединения $NaCuFe_2(VO_4)_3$, синтезированного методом твердофазного синтеза. В области температур $110-300\,\mathrm{K}$ в X-диапазоне зафиксирован электронный парамагнитный резонанс, характеризующийся g-фактором, равным 2.008. Исследованы магнитные свойства образца, характеризуемого высоким уровнем фрустраций, в парамагнитном, антиферромагнитном и неупорядоченном состояниях. Обнаружен сдвиг температуры Нееля в сторону высоких температур под воздействием внешнего магнитного поля. Обсуждаются причины появления неупорядоченного магнетизма в $NaCuFe_2(VO_4)_3$.

Выявлены особенности влияния замещения лития натрием на физические свойства системы ACuFe $_2$ (VO $_4$) $_3$ (A= Na, Li). Показано, что под воздействием химического давления происходит трансформация параметров кристаллической решетки, расстояний между магнитными ионами, размера кристаллитов, приводящая к изменению физических свойств.

Ключевые слова: многокомпонентные ванадаты, структурные особенности, магнитные свойства, фазовые переходы, химическое давление.

DOI: 10.21883/FTT.2020.02.48876.593

1. Введение

Синтез и изучение свойств сложных оксидных соединений, содержащих 3d-переходные металлы, в том числе многокомпонентных ванадатов, привлекает внимание исследователей физики конденсированного состояния изза особенностей их кристаллической структуры, допускающей возможность существования конкурирующих магнитных взаимодействий, приводящих к фрустрации магнитных моментов [1-4]. Фрустрированные магнитные системы проявляют особые свойства с разнообразием магнитных структур (в том числе, сложные спирали с элементами геликоида и циклоиды) и переходов между ними, что обусловлено вырождением по энергии основного состояния и высокой чувствительностью к различного рода возмущениям [5-10].

Известно, что свойства конденсированных систем могут изменяться не только под влиянием внешних воздействий, таких как температура, магнитные и электрические поля, давление, но и в результате химического давления, обусловленного катионными или анионными замещениями. Изучение влияния внешних воздействий и химического давления на свойства материалов остается одной из актуальных задач в современной физике,

открывающих перспективы новых практических применений.

Суммируя публикации по исследованию свойств ванадатов с общей формулой $A\mathrm{CuFe_2(VO_4)_3}$ (A — одновалентные щелочные металлы), отметим, что говардэвансит $\mathrm{NaCuFe_2(VO_4)_3}$ был обнаружен в восьмидесятые годы двадцатого столетия среди минералов, найденных вблизи вулкана Исалько в Сальвадоре, состав и кристаллическая структура природного материала впервые изучены в работе [11].

Структура синтезированного соединения $LiCuFe_2(VO_4)_3$ была решена в работе [12]. Результаты исследования структурных, статических магнитных и резонансных свойств магнетика LiCuFe₂(VO₄)₃, полученного методом твердофазного синтеза, приведены в [4]. При низких температурах обнаружен дальний магнитный порядок в магнитной подсистеме образца, характеризуемый цепочечной спиновой структурой с преимущественно антиферромагнитным обменным взаимодействием и высоким уровнем фрустраций. В рамках модели косвенной связи выполнена оценка параметров обменных взаимодействий в шестиподрешеточном представлении магнетика. Показано, что LiCuFe₂(VO₄)₃ является антиферромагнетиком с сильными внутрицепочечными и фрустрирующими межцепочечными обменными взаимодействиями.

О наличии магнитодиэлектрического эффекта в $LiCuFe_2(VO_4)_3$ сообщалось в [13], обнаружено, что приложение внешнего магнитного поля приводит к увеличению диэлектрической проницаемости.

Электрические свойства соединений $LiCuFe_2(VO_4)_3$ и $NaCuFe_2(VO_4)_3$ в зависимости от частоты и температуры изучены в [14,15]. В работе [15] методом импедансной спектроскопии в частотном диапазоне $300\,Hz-5\,MHz$ и области температур $523-673\,K$ показано, что наблюдаются сигналы от фаз как объемных зерен, так и от границ зерен поликристаллического материала. Последнее не обнаружено в соединении с литием [14]. Авторы пришли к выводу, что электрический транспорт обусловлен передвижением катионов Na^+ (Li^+) вдоль канала [001], и $LiCuFe_2(VO_4)_3$ является лучшим проводником по сравнению с $NaCuFe_2(VO_4)_3$.

Соединения ACuFe $_2(VO_4)_3$ (A=Na,Li), обладающие рядом особенностей, в том числе, наличием квазиодномерности магнитной подсистемы, конкурирующих магнитных взаимодействий, привлекли внимание исследователей [2], изучивших электрические, магнитные свойства и их взаимосвязь. Авторы сообщают о трансформации магнитной подсистемы соединений ACuFe $_2(VO_4)_3$ при двух критических температурах, приводят результаты исследования диэлектрических свойств материалов, подтверждающих свойства мультиферроика в ванадате $LiCuFe_2(VO_4)_3$.

В настоящей статье, расширяя изучение свойств многокомпонентного ванадата $NaCuFe_2(VO_4)_3$, приведены результаты рентгеноструктурных, тепловых, магнитных и резонансных исследований. В парамагнитной области в X-диапазоне зафиксирован электронный парамагнитный резонанс, характеризующийся g—фактором, равным 2.008. Обнаружено влияние магнитного поля на температуру фазового перехода из парамагнитного в магнитоупорядоченное состояние. Обсуждаются причины формирования неупорядоченного магнетизма в $NaCuFe_2(VO_4)_3$. Проведен сравнительный анализ свойств оксидов $ACuFe_2(VO_4)_3$ (A = Na, Li) с целью исследования влияния химического давления, вызванного катионным замешением.

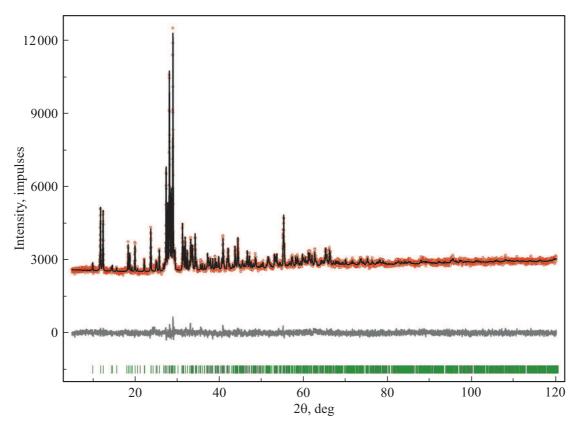
2. Синтез образцов и техника эксперимента

Образцы $NaCuFe_2(VO_4)_3$ приготовлены методом твердофазного синтеза. Состав шихты формировался из смеси оксидов Fe_2O_3 , Na_2CO_3 , CuO и V_2O_5 , взятых в соответствии со стехиометрией соединения. Отжиги таблеток, изготовленных из шихты, проводились на воздухе при температурах 650 и 680°C в течение 24 h. Условия синтеза образцов $LiCuFe_2(VO_4)_3$, также использованных в данном исследовании, описаны в [4]. Химический и

фазовый состав полученных образцов исследовался методом рентгеноструктурного анализа. Состояние железа в образцах контролировалось методом гамма-резонанса.

Порошковая рентгенограмма оксида $NaCuFe_2(VO_4)_3$ отснята при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker (прибор Красноярского центра коллективного пользования CO PAH), используя линейный детектор VANTEC и CuK_{α} -излучение. Шаг сканирования по углу 2θ равен 0.016° , экспозиция 0.6 s на шаг.

Спектры электронного парамагнитного резонанса (ЭПР) в NaCuFe $_2$ (VO $_4$) $_3$ получены на спектрометре Bruker Elexsys E580 в X-диапазоне и интервале температур $110-300\,\mathrm{K}$. При записи спектров использованы следующие параметры: мощность СВЧ — $0.63\,\mathrm{mW}$, амплитуда модуляции — $0.7\,\mathrm{G}$, частота модуляции — $100\,\mathrm{kHz}$, ширина развертки магнитного поля — $5000\,\mathrm{G}$, время развертки — $40\,\mathrm{s}$.


Спектры ядерного гамма-резонанса регистрировались на спектрометре МС-1104Eм Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН при комнатной температуре с источником $\mathrm{Co}^{57}(\mathrm{Cr})$ на порошках толщиной $5-10\,\mathrm{mg/cm^2}$ по естественному содержанию железа. Величины химических сдвигов приведены относительно α -Fe.

Измерения температурной зависимости теплоемкости проведены на установке для измерения физических свойств PPMS-6000 "Quantum Design" в режиме охлаждения образца в отсутствии магнитного поля в диапазоне температур $2-300~{\rm K}$ и магнитных полей до $9~{\rm T}$.

Статические магнитные характеристики образцов измерены в двух режимах (охлаждение образца в отсутствии магнитного поля (ZFC) и в магнитном поле (FC) на СКВИД-магнитометре оригинальной конструкции Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН [16] в интервале температур $4-300\,\mathrm{K}$ в магнитном поле $H=0.001-0.05\,\mathrm{T}$, а также на установке для измерения физических свойств MPMS-XL "Quantum Design" в интервале температур $2-300\,\mathrm{K}$ в магнитном поле $500\,\mathrm{Oe}$.

3. Экспериментальные результаты

Порошковая рентгенограмма соединения $NaCuFe_2(VO_4)_3$, полученная при комнатной температуре, приведена на рис. 1. Согласно данным рентгеноструктурного анализа, синтезированы однофазные поликристаллические образцы, на рентгенограмме не рефлексов, обнаружено соответствующих примесей. Так как структура соединения NaCuFe₂(VO₄)₃ была ранее решена [11], то она использована в качестве исходной модели уточнения Ритвельда в программе HTOPAS 4.2 [17]. Отметим, что уточнение шло стабильно и дало низкие факторы недостоверности (табл. 1, рис. 1). Координаты атомов в кристаллической

Рис. 1. Рентгенограмма поликристаллического соединения $NaCuFe_2(VO_4)_3$ при температуре $T=300\,\mathrm{K}.$

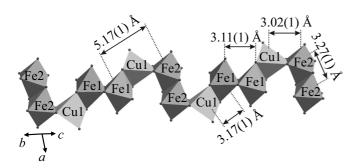

Таблица 1. Основные параметры рентгеновского эксперимента, проведенного при комнатной температуре, и результаты уточнения кристаллической структуры соединения $NaCuFe_2(VO_4)_3$

Таблица 2. Координаты атомов, изотропные тепловые параметры $B_{\rm iso}\,({\rm \AA}^2)$ и заселенность позиций кристаллической структуры соединения NaCuFe $_2({
m VO}_4)_3$ при температуре $T=300\,{
m K}$

Пр. гр.	P-1
	8.2063(2)
•	
b, Å	9.7938(3)
c, Å	6.6581(2)
$lpha,^\circ$	103.855(2)
$eta,^\circ$	102.042(2)
$\gamma, ^{\circ}$	106.936(1)
V , $Å^3$	474.16(3)
2θ интервал	5-120
Число рефлексов	1430
Число уточняемых параметров	94
$R_{ m wp}, \%$	2.16
$R_{ m p},\%$	1.69
$R_{ m B}, \%$	0.72
χ^2	1.17

Примечание. $a,b,c,~\alpha,\beta,\gamma$ — параметры ячейки; V — объем ячейки; факторы недостоверности: $R_{\rm wp}$ — весовой профильный, $R_{\rm p}$ — профильный, $R_{\rm B}$ — интегральный; χ^2 — качество подгонки.

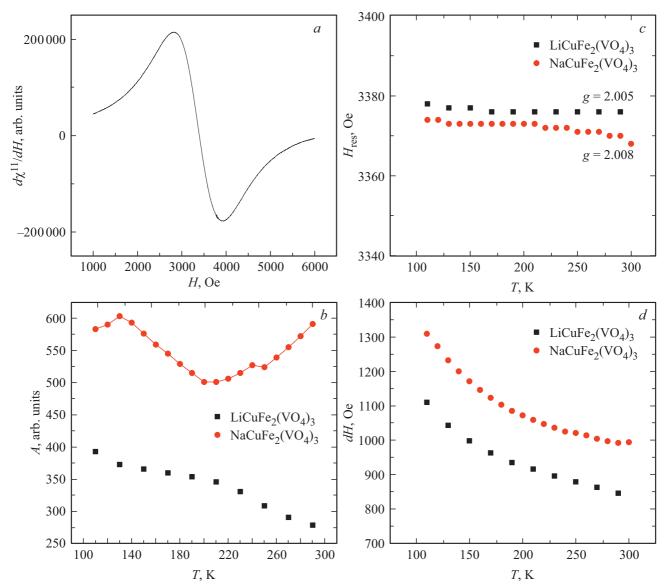
	x	у	z	$B_{ m ISO}$	Заселен-
Cu1	0.7852(10)	0.7989(8)	0.7792(11)	1.0(3)	1
Fe1	0.5520(11)	0.3911(9)	0.1146(16)	0.2(3)	1
Fe2	0.2934(10)	0.9920(9)	0.4625(15)	0.2(2)	1
V1	0.4055(14)	0.6667(10)	0.3815(17)	2.0(3)	1
V2	0.8382(12)	0.7367(10)	0.2697(15)	1.9(3)	1
V3	0.7695(11)	0.1241(10)	0.0896(15)	0.6(3)	1
Na1	0	0.5	0.5	2.0(8)	1
Na2	0.004(7)	0.540(6)	-0.022(9)	2.0(11)	0.5
O1	0.430(3)	0.854(3)	0.425(4)	2	1
O2	0.482(4)	0.371(3)	0.376(6)	2	1
О3	0.815(3)	0.555(3)	0.285(4)	2	1
O4	0.228(4)	1.165(3)	0.501(5)	2	1
O5	0.301(4)	-0.002(3)	0.182(5)	2	1
O6	0.467(4)	0.586(3)	0.180(5)	2	1
Ο7	0.745(4)	0.750(3)	0.013(5)	2	1
O8	0.054(4)	0.826(3)	0.303(4)	2	1
Ο9	0.174(4)	0.573(4)	0.329(4)	2	1
O10	1.001(4)	0.249(3)	0.226(4)	2	1
O11	0.727(4)	0.037(4)	0.270(5)	2	1
O12	0.648(4)	0.244(4)	0.071(5)	2	1

Рис. 2. Фрагмент кристаллической структуры. Цепочка магнитных ионов . . . $-Fe^{3+}(2)-Fe^{3+}(2)-Cu^{2+}-Fe^{3+}(1)-Fe^{3+}(1)-Cu^{2+}-Fe^{3+}(2)-Fe^{3+}(2)-\dots$ в структуре NaCuFe₂(VO₄)₃ с характерными межатомными расстояниями.

структуре $NaCuFe_2(VO_4)_3$ и тепловые параметры рентгеновского эксперимента представлены в табл. 2.

Соединение NaCuFe₂(VO₄)₃, как и LiCuFe₂(VO₄)₃ [11,4], при комнатной температуре описывается триклинной пространственной группой симметрии P-1 с двумя формульными единицами (Z=2) на элементарную ячейку. Его зарядовый состав Na⁺Cu²⁺Fe₂³⁺(V⁵⁺O₄)₃. Синтезированное соединение NaCuFe₂(VO₄)₃ имеет параметры элементарной ячейки (табл. 1), близкие к параметрам, определенным для природного минерала говардэвансита [11]: a=8.198(2) Å, b=9.773(1) Å, c=6.6510(8) Å, $\alpha=103.82(1)^{\circ}$, $\beta=101.99(1)^{\circ}$, $\gamma=106.74(1)^{\circ}$, V=473.1 Å³.

Кристаллическая структура сложных изоструктурных оксидов ACuFe $_2$ (VO $_4$) $_3$ (A = Na, Li) состоит из следующих компонент: октаэдров железа $Fe(1)O_6$ и $Fe(2)O_6$, тетраэдров ванадия $V(1)O_4$, $V(2)O_4$ и $V(3)O_4$, тригональных бипирамид CuO₅. Ионы железа Fe³⁺ занимают две кристаллографически неэквивалентные позиции в элементарной ячейке Fe(1) и Fe(2). Два октаэдра $Fe(1)O_6$, а также два октаэдра $Fe(2)O_6$, имеющие общее ребро, формируют димерные структурные образования. Димеры имеют общие ребра с полиэдрами CuO₅, и выстраиваются в цепочки, вытянутые вдоль направления b-c (рис. 2). Димеры окружены тетраэдрами VO₄, формируя $Fe(1)_2V_8$ и $Fe(2)_2V_{10}$ образования, создающие трехмерную структуру — каркас $[Fe_4V_6O_{24}]_{\infty}$. В пустотах каркаса находятся ионы A^+ (A = Na, Li). Образования $A(1)O_6$ и $A(2)O_{10}$, связанные через общую грань, образуют бесконечные зигзагообразные цепочки, вытянутые вдоль кристаллографического направления b-c. Особенности кристаллической структуры системы $ACuFe_2(VO_4)_3$ с магнитными ионами железа $Fe^{3+}(1)$, $Fe^{3+}(2)$ и меди Cu^{2+} дают предпосылки к возникновению конкурирующих магнитных взаимодействий с фрустрациями, что позволяет предположить нетривиальную спин-конфигурационную структуру.


Ионные радиусы одновалентных ионов натрия Na^+ и лития Li^+ равны $0.98\,\mathrm{\AA}$ и $0.68\,\mathrm{\AA}$ соответственно [18]. Химическое давление, вызванное катионным

замещением лития натрием в ACuFe $_2$ (VO $_4$) $_3$ привело к изменению, во-первых, параметров решетки (параметры решетки для $LiCuFe_2$ (VO $_4$) $_3$ [4]: a=8.1489(2) Å, b=9.8047(2) Å, c=6.6341(1) Å, $\alpha=103.811(2)^\circ$, $\beta=102.370(2)^\circ$, $\gamma=106.975(2)^\circ$, V=468.74(2) Å $_3$ 0 и, во-вторых, расстояний между магнитными ионами (табл. 1,3). Отметим, что данные изменения имеют анизотропный характер, о чем свидетельствуют увеличение параметров решетки a, c, V и уменьшение параметра b, увеличение расстояний между магнитными ионами $Fe^{3+}(1)-Cu(1)^{2+}-Fe^{3+}(2)$, $Fe^{3+}(2)-Fe^{3+}(2)$, $Cu(1)^{2+}-Fe^{3+}(1)$ и уменьшение расстояний между магнитными ионами $Fe^{3+}(1)-Fe^{3+}(1)$ и уменьшение расстояний между магнитными ионами $Fe^{3+}(1)-Fe^{3+}(1)$ и $Fe^{3+}(1)-Fe^{3+}(2)$.

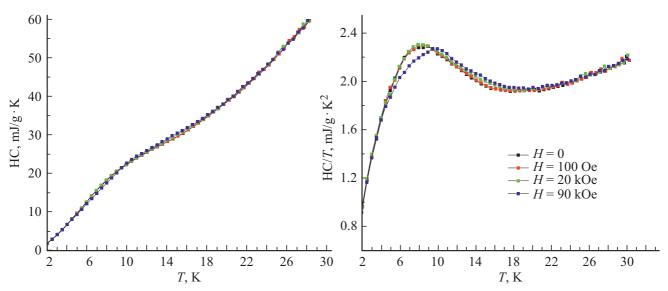
Известно, что микроскопические объекты (кристаллиты и межзеренные границы) внутри массивных материалов могут оказывать существенное влияние на их свойства. Используя рентгенографию, проведена оценка размеров кристаллитов в системе $A\mathrm{CuFe_2(VO_4)_3}$ ($A=\mathrm{Na,\ Li}$). В образце, содержащем натрий, средний размер кристаллитов составляет $120(2)\,\mathrm{nm}$, в соединении с литием — $83(1)\,\mathrm{nm}$. Таким образом, размер зерна в данных поликристаллах зависит от химического состава и занимает положение на верхней границе наноразмерных объектов ($\sim 100\,\mathrm{nm}$).

Для характеризации соединения $NaCuFe_2(VO_4)_3$ и выявления особенностей, вызванных химическим давлением, обусловленным катионным замещением немагнитных ионов, проведено исследование электронного парамагнитного резонанса (ЭПР) в интервале температур $110-300\,\mathrm{K}$. Наблюдалась одиночная линия лоренцевой формы (рис. 3,a). Первая производная сигнала ЭПР поглощения характеризуется при комнатной температуре следующими параметрами: ширина линии $\Delta H = 994\,\mathrm{Oe},\,\mathrm{g}$ -фактор $\mathrm{g} = 2.008$. Для сравнения приведены результаты исследования резонансных характеристик $\mathrm{LiCuFe_2(VO_4)_3}$ [4]: $\Delta H = 846\,\mathrm{Oe},\,\mathrm{g} = 2.005$.

Результаты исследования температурных зависимостей интенсивности сигнала магнитного резонанса (определена как произведение амплитуды сигнала на квадрат ширины линии), ширины ΔH , резонансного поля $H_{\rm res}$ наблюдаемой линии производной ЭПРпоглощения для $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$ приведены на рис. 3, b, d. Видно, что резонансное поле в интервале температур 110-300 К для обоих образцов практически не изменяется (рис. 3, c). При понижении температуры наблюдается монотонное увеличение ширины линий ΔH , связанное как с увеличением разброса локальных полей на магнитных ионах, так и с увеличением времени релаксации. При этом величина ΔH для $LiCuFe_2(VO_4)_3$, примерно, на 15% меньше, чем для $NaCuFe_2(VO_4)_3$ во всем исследуемом диапазоне температур. Это может быть обусловлено химическим давлением, возникающим вследствие замещения одного одновалентного элемента (Li) другим (Na), приводящим к существенному увеличению расстояния между ионами

Рис. 3. Спектр ЭПР соединения $NaCuFe_2(VO_4)_3$ в X-диапазоне при комнатной температуре (a). Температурные зависимости параметров ЭПР-сигнала для образцов $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$: амплитуды (b), резонансного поля (c), ширины линии (d).

Fe(2)-Fe(2) (табл. 3) и, как следствие, к уменьшению обменного взаимодействия между ними.


Тепловые свойства порошкового образца $NaCuFe_2(VO_4)_3$ исследовались в температурном диапазоне $2{-}300~\rm K$ и в магнитных полях до 90 kOe. На рис. 4 показаны температурные зависимости теплоемкости HC

(слева) и величины HC/T (справа) для значений магнитного поля H=0, $100\,\mathrm{Oe}$, $20\,\mathrm{kOe}$, $90\,\mathrm{kOe}$. Установлено, что зависимость величины HC/T от температуры T в NaCuFe₂(VO₄)₃ имеет аномальный характер. В нулевом внешнем магнитном поле максимум широкой аномалии на кривой HC(T)/T наблюдается при температуре

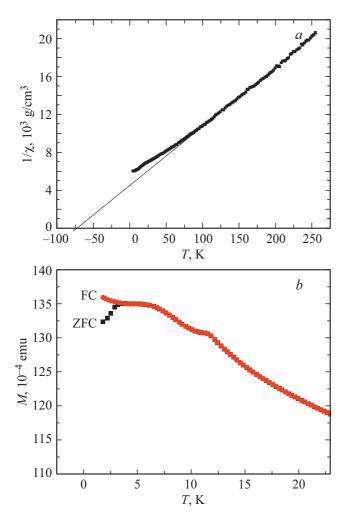
Таблица 3. Расстояния между магнитными ионами в соединениях NaCuFe₂(VO₄)₃ и LiCuFe₂(VO₄)₃

Соединение	$d_{\mathrm{Fe}(1)-\mathrm{Fe}(1)}, \ \mathrm{\AA}$	$d_{\mathrm{Fe}(2)-\mathrm{Fe}(2)}, \ \mathrm{\AA}$	$d_{\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(2)}, \text{ Å}$	$d_{\mathrm{Cu}(1)-\mathrm{Fe}(1)}, \ \mathrm{\mathring{A}}$	$d_{\mathrm{Cu}(1)-\mathrm{Fe}(2)}, \ \mathrm{\AA}$
NaCuFe ₂ (VO ₄) ₃ LiCuFe ₂ (VO ₄) ₃	3.11(1) 3.156(9)	3.27(1) 3.112(7)	5.17(1) 5.114(8)	3.17(1) 3.121(8)	3.02(1) 3.074(8)
Δd	-0.05	0.16	0.06	0.05	-0.05

Примечание. $\Delta d = d_{\mathrm{NaCuFe_2(VO_4)_3}} - d_{\mathrm{LiCuFe_2(VO_4)_3}}$

Рис. 4. Температурные зависимости теплоемкости HC (слева) и HC/T (справа) для различных значений магнитного поля H: H = 0, $100 \, \mathrm{Oe}$, $20 \, \mathrm{kOe}$, $90 \, \mathrm{kOe}$ в $\mathrm{NaCuFe_2(VO_4)_3}$ (масса образца $m = 21.42 \, \mathrm{mg}$).

 $T\approx 8.5~{\rm K}$ и свидетельствует о фазовом превращении в образце. Приложение постоянного магнитного поля до величины $H=20~{\rm kOe}$ не изменяет качественно вид температурной зависимости теплоемкости, однако при более высоких полях наблюдается смещение максимума кривой HC(T)/T в сторону высоких температур (рис. 4, $H=90~{\rm kOe}$, сдвиг температуры $\Delta T\approx T_{H=90~{\rm kOe}}-T_{H=0}=1-1.5~{\rm K}$). Вероятнее всего, это обусловлено особенностями отклика магнитной подсистемы ${\rm NaCuFe_2(VO_4)_3}$ на внешнее магнитное поле, возможно, происходит укрупнение спиновых образований внутри кристаллитов, а также изменение в спиновой структуре межзеренного слоя.


Результаты измерений магнитных характеристик $NaCuFe_2(VO_4)_3$ представлены на рис. 5 и обнаруживают нетривиальное поведение магнитной подсистемы.

Температурная зависимость величины обратной статической магнитной восприимчивости $1/\chi(T)$, измеренной в магнитном поле $H = 500 \, \mathrm{Oe}$ (масса образца $m = 0.015 \,\mathrm{g}$) приведена на рис. 5, a. Согласно экспериментальным данным восприимчивость NaCuFe₂(VO₄)₃ в области высоких температур $(T > 75 \, \mathrm{K})$ подчиняется закону Кюри-Вейсса с параметрами: константой Кюри-Вейсса С = 0.016 К и асимптотической температурой Нееля ($\theta = -75 \, \text{K}$, показывающей доминирование антиферромагнитных обменных взаимодействий в парамагнитной области. При высоких температурах парамагнетик NaCuFe₂(VO₄)₃ имеет эффективный магнитный момент ($\mu_{\mathrm{eff(calc)}} = 8.4\mu_{\mathrm{B}}$ на формульную единицу, значение которого практически совпадает с расчетным значением $\mu_{\mathrm{eff(calc)}} = 8.5\mu_{\mathrm{B}} \; (\mu_{\mathrm{eff(calc)}}^{\mathrm{Fe3+}} = 5.91\mu_{\mathrm{B}}$ и $\mu_{\rm eff(calc)}^{\rm Cu2} = 1.73 \mu_{\rm B}$). Оценка уровня магнитных фрустраций f в NaCuFe₂(VO₄)₃, используя соотношение $f = |\theta|/T_{\rm N}$, дает довольно высокое значение f = 9.4

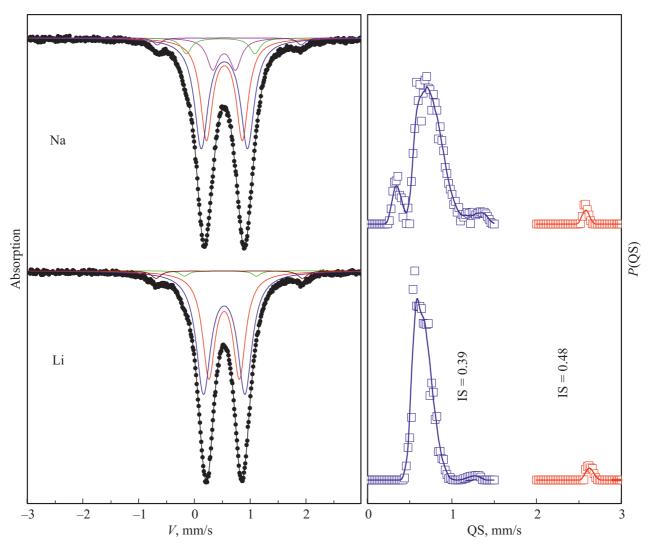
(отметим, что для нефрустрированного антиферромагнетика типичное значение f = 2-4.5 [19]).

На рис. 5, в представлена температурная зависимость магнитного момента M(T) NaCuFe₂(VO₄)₃, измеренная на образце с массой $m=0.165\,\mathrm{g}$ в магнитном поле $H = 500 \, \mathrm{Oe}$ при разных условиях охлаждения образца (охлаждение без магнитного поля (режим Zero Field Cooling, ZFC) и охлаждение в магнитном поле $H = 500 \,\mathrm{Oe}$ (режим Field Cooling, FC)). Из рисунка следует, что зависимость магнитного момента от температуры в области низких температур носит аномальный характер, а при температурах ниже температуры необратимости $T_n \approx 3.5 \, \mathrm{K}$ зависит от магнитной предыстории образца. При охлаждении образца в нулевом магнитном поле (режим ZFC) с увеличением температуры величина магнитного момента возрастает, достигает широкого максимума при $T_{\text{max}} \approx 5 \, \text{K}$ и затем убывает. Одной из основных причин наличия широкого максимума при $T_{\rm max} \approx 5 \, {
m K}$ на температурной зависимости магнитного момента в режиме ZFC может быть низкомерность магнитной подсистемы.

При охлаждении образца в магнитном поле (режим FC) в области низких температур с увеличением температуры величина магнитного момента уменьшается до температуры ~ 3.5 K, при дальнейшем увеличении температуры кривые в режимах ZFC и FC полностью совпадают. Известно, что различие между значениями магнитного момента M(FC) и M(ZFC) наблюдается в системах магнитных наночастиц [20,21], в макроскопических магнетиках с элементами неупорядоченности (фрустрацией обменных связей, топологическим беспорядком, дефектами структуры) [19,20]. Отметим, что расхождение между ZFC и FC зависимостями магнитного момента от температуры (рис. 5, b), наблюдаемое в NaCuFe₂(VO₄)₃, не обнаружено в соединении с

Рис. 5. *а.* Температурная зависимость обратной магнитной восприимчивости соединения NaCuFe₂(VO₄)₃, измеренная в магнитном поле $H=500\,\mathrm{Oe}$, масса образца $m=0.015\,\mathrm{g}$. b. Температурная зависимость магнитного момента NaCuFe₂(VO₄)₃, измеренная в магнитном поле $H=500\,\mathrm{Oe}$ при разных условиях охлаждения образца (без магнитного поля (ZFC) и в магнитном поле $H=500\,\mathrm{Oe}$ (FC)), масса образца $m=0.165\,\mathrm{g}$.

литием [2,4]. По-видимому, усиление неоднородности, которое может быть обусловлено появлением дополнительных дефектов в образцах, содержащих более крупный ион натрия, приводит к неупорядоченному магнетизму. К этому вопросу вернемся ниже при рассмотрении результатов исследования образцов методом гамма-резонанса.


С ростом температуры в окрестности $T\sim 11\,\mathrm{K}$ на температурной зависимости магнитного момента M(T) в NaCuFe₂(VO₄)₃ наблюдается еще одна особенность. Наличие двух аномалий на кривой M(T) согласуется с ранее опубликованными результатами [2]. За аномалию в окрестности температуры 11 К отвечает формирование дальнего магнитного порядка в многоподрешеточном магнетике NaCuFe₂(VO₄)₃. Под действием температуры

при температурах выше температуры Нееля $T_{\rm N} \approx 11\,{\rm K}$ происходит разрушение спонтанного упорядочения в подрешетках, сопровождающееся появлением аномалии не только на температурной зависимости магнитного момента, но и на температурной зависимости теплоемкости (рис. 4). Можно заметить, что значения температуры Нееля, определенные по максимуму на зависимостях магнитной восприимчивости ($T_{\rm N} \approx 11\,{\rm K}$) и величины HC(T)/T $(T_{\rm N}\approx 8.5\,{\rm K})$ и соответствующие фазовому переходу из упорядоченного магнитного состояния в парамагнитную фазу, отличаются, что может быть связано с размытием аномалий физических свойств из-за неоднородного распределения атомов железа по неэквивалентным кристаллографическим позициям. Это предположение согласуется с результатами исследования особенностей поведения аномальных физических свойств в области фазовых переходов в среде с неоднородным распределением катионов [22].

С целью уточнения структурных особенностей, определения неэквивалентных позиций, валентного состояния и координационного окружения ионов железа в соединениях $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$ проведено исследование методом гамма-резонанса на ядрах 57 Fe. Мессбауэровские спектры NaCuFe₂(VO₄)₃ и $LiCuFe_2(VO_4)_3$, измеренные при комнатной температуре, показаны на рис. 6 (слева). Спектры образцов в парамагнитной области температур представляют собой сумму нескольких квадрупольных дублетов. Для выявления неэквивалентных позиций и состояний железа определено распределение квадрупольных расщеплений P(QS) в экспериментальных спектрах. Для этого сумма двух групп затравочных дублетов с отличающимися величинами химсдвигов и естественной шириной линий подгонялась к экспериментальному спектру. При этом варьировались два значения химсдвига, характеризующие две группы дублетов, а также амплитуды линий дублетов. Распределения P(QS), полученные в результате такой подгонки, показаны на рис. 6 (справа). Пики и особенности на P(QS) свидетельствуют о возможных неэквивалентных позициях железа в данных материалах. На рис. 6 (справа) приведены значения химсдвигов двух групп дублетов, полученные в результате такой подгонки. Информация, извлеченная из распределений P(QS), использована для построения модельных спектров, которые подогнаны к экспериментальным спектрам при варьировании всех параметров сверхтонкой структуры. Результат подгонки сведен в табл. 4.

Анализ экспериментальных спектров показывает, что содержащееся в $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$ железо находится в трехвалентном высокоспиновом (S=5/2) состоянии и октаэдрическом окружении по кислороду.

Результат расшифровки спектра $LiCuFe_2(VO_4)_3$ показывает, что это соединение содержит четыре неэквивалентные позиции железа. Две из них имеют большую относительную заселенность, 41% и 55%. Две оставшиеся позиции имеют минимальную заселенность, по 2%,

Рис. 6. Мессбауэровские спектры поликристаллических соединений $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$ при температуре T=300~K (слева) (цветными линиями показаны компоненты спектров, параметры которых приведены в табл. 4) и вероятности квадрупольных расщеплений для двух значений химсдвига (справа).

Таблица 4. Мёссбауэровские параметры $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$ при комнатной температуре

	IS, мм/с ±0.005	QS, мм/с ±0.01	W, мм/с ±0.01	А, дол.% ±0.03	$ V_{zz} , e/Å^3$	Позиция	$\langle r \rangle$, Å
Li	0.380	0.55	0.27	0.41	0.186	Fe1(6)	2.058
	0.381	0.75	0.31	0.55	0.214	Fe2(6)	1.989
	0.315	1.29	0.18	0.02	0.438	Li1(6)	2.230
	0.472	2.63	0.20	0.02	0.565	Cu(5)	2.030
Na	0.380 0.385	0.41 0.64	0.25 0.26	0.11 0.37	0.200	Fe1'(6) Fe1"(6)	2.074
	0.385	0.83	0.29	0.45	0.191	Fe2(6)	1.982
	0.317	1.23	0.22	0.05	0.335	Na1(6)	2.303
	0.471	2.58	0.18	0.02	0.592	Cu(5)	2.035

 Π р и ме ч а н и е. IS — изомерный химический сдвиг относительно α -Fe; QS — квадрупольное расщепление; W — ширина линий поглощения; A — долевая заселенность позиции железом, V_{zz} — градиент электрического поля, $\langle r \rangle$ — среднее межионное расстояние в координационном полиздре.

сравнимую с ошибкой эксперимента. Тем не менее, их отчетливо видно на мессбауэровских спектрах и на распределении P(QS) (рис. 6). Для кристаллографической привязки неэквивалентных позиций железа мы использовали пропорциональность квадрупольного расщепления градиенту электрического поля. Для этого вычислили величину главной компоненты градиента |V_{zz}|, создаваемого координационным кислородным полиэдром, окружающем катионы, присутствующие в структуре $LiCuFe_2(VO_4)_3$, используя рентгеновские данные о координатах атомов в этом материале. В столбце "Позиция" табл. 4 указана идентификация кристаллографической позиции в соответствии с корреляцией $QS \sim V_{zz}$. Анализируя относительные заселенности позиций железа, очевидно, что в позиции Cu и Li вошли катионы железа, покинувшие кристаллографические позиции Fe1.

В NaCuFe₂(VO₄)₃ обнаружены пять неэквивалентных позиций железа. Анализируя корреляцию квадрупольного расщепления и градиента электрического поля для различных кристаллографических позиций, с большой степенью вероятности приходим к выводу, что кати-позиций Fe1 на две позиции Fe1' и Fe1", имеющие различную степень искажения. Заселенности этих позиций относятся как 1:4. Рентгеновская дифракция не позволила надежно разделить эти вклады ввиду хаотического распределения позиций по кристаллу, поэтому получены лишь усредненные координаты для кристаллографической подрешетки Fe1. В NaCuFe₂(VO₄)₃ также наблюдается миграция атомов железа в "чужие" позиции, но в отличие от Li-образца, она в основном происходит из позиций Fe2 в позиции Na1. Кроме того, замещение Li на Na сопровождается увеличением межионных расстояний в полиэдре Na1(6) и, в меньшей мере, в полиэдре Fe1(6).

Таким образом, анализируя результаты исследования эффекта Мессбауэра в системе $A\mathrm{CuFe_2(VO_4)_3}$, важным в контексте данной работы является появление дополнительных позиций железа в $\mathrm{NaCuFe_2(VO_4)_3}$ в сравнении с $\mathrm{LiCuFe_2(VO_4)_3}$, то есть имеет место больший беспорядок в распределении катионов железа в образце с натрием.

За магнетизм в NaCuFe₂(VO₄)₃ ответственны ионы железа Fe^{3+} (электронная конфигурация $3d^5$, спин S=5/2) и ионы Cu^{2+} (электронная конфигурация $3d^9$, спин S=1/2). Сосуществование в магнитной подсистеме изучаемого окисного соединения железа $Fe^{3+}(1)$ и $Fe^{3+}(2)$, находящегося в двух неэквивалентных кристаллографических позициях и образующих структурные элементы — димеры, расщепление кристаллографических позиций Fe^{1} и Fe^{1}

то, что цепочки с магнитоактивными ионами разделены немагнитными образованиями VO_4 , в результате, как показывают оценки обменных взаимодействий [4, 2], межцепочечное обменное взаимодействие слабее обмена внутри цепочки.

Обменное взаимодействие в цепочках магнитных ионов системы $A\mathrm{CuFe_2(VO_4)_3}$ ($A=\mathrm{Na,Li}$), осуществляемое за счет сверхобмена между ближайшими магнитными моментами, зависит от расстояний между ними и углов обменной связи. Нарушения в кристаллической структуре, обусловленные внедрением более крупного иона натрия вместо лития, приводят не только к изменению соотношения между $A\Phi\mathrm{M-u}$ $\Phi\mathrm{M-sknagamu}$ в суммарное обменное взаимодействие, но и к нарушению периодичности их изменений, приводя в области низких температур в $\mathrm{NaCuFe_2(VO_4)_3}$ к неупорядоченному магнетизму.

Особенности топологии обменных взаимодействий, их конкуренция способствуют, по-видимому, и образованию нетривиальной спиновой архитектуры в области температур с дальним магнитным порядком фрустрированной системы $ACuFe_2(VO_4)_3$ (A = Na, Li). Известно, что единственным прямым методом определения магнитной структуры соединений является магнитная нейтронография. В настоящее время нет данных о магнитных структурах и переходах между ними в системе ACuFe₂(VO₄)₃. Нами предпринимались попытки проведения экспериментов по рассеянию нейтронов с длиной волны $\lambda = 1.488 \, \text{Å}$ в области низких температур (от 1.5 K) на дифрактометре WAND (Oak Ridge National Laboratory, США). Однако исследование магнетиков $NaCuFe_2(VO_4)_3$ и $LiCuFe_2(VO_4)_3$ методом упругого рассеяния нейтронов, к сожалению, не позволило определить тип магнитного упорядочения.

4. Заключение

Соединение $NaCuFe_2(VO_4)_3$ синтезировано методом твердотельной реакции и проведено исследование структурных, резонансных, тепловых и магнитных статических свойств. Сравнение свойств соединений $ACuFe_2(VO_4)_3$ (A=Na, Li) позволяет выделить характерные особенности, присущие образцу с натрием, и обнаружить влияние химического давления, вызванного катионным замещением атомов лития атомами натрия.

Из результатов рентгеноструктурного эксперимента следует, что при комнатной температуре поливанадат $NaCuFe_2(VO_4)_3$ характеризуется триклинной пространственной группой симметрии P-1. Возникающее в результате замещения лития натрием в системе $ACuFe_2(VO_4)_3$ химическое давление не нарушает симметрию кристаллической решетки, но приводит к анизотропному изменению параметров кристаллической решетки, расстояний между магнитоактивными ионами, образующими отделенные друг от друга цепочки, а также влияет на размер кристаллитов.

Результаты исследования образцов методом эффекта Мёссбауэра показали, что входящее в ACuFe₂(VO₄)₃ железо находится в трехвалентном высокоспиновом (S = 5/2) состоянии и октаэдрическом окружении по кислороду. При уточнении структурных особенностей обнаружено, что существенная разница ионных радиусов лития и натрия приводит при замещении к усилению искажения кислородного октаэдра вокруг катиона железа в $NaCuFe_2(VO_4)_3$ по сравнению с $LiCuFe_2(VO_4)_3$, вызывая разделение кристаллографической позиции Fe1 на две позиции, отличающиеся степенью искажения локального окружения, и, приводя к увеличению числа неэквивалентных позиций железа. Кроме того, в NaCuFe₂(VO₄)₃ обнаружена заметная миграция железа из позиций Fe2(6) в позиции Na1(6). Таким образом, реальная кристаллическая структура NaCuFe₂(VO₄)₃ представляется менее упорядоченной по сравнению со структурой $LiCuFe_2(VO_4)_3$.

В ходе проведенной работы также установлено, что в области температур 110-300 К характерные параметры ЭПР спектров образцов с литием и натрием имеют схожие температурные зависимости. Значения д-фактора близкие к 2 для обоих соединений свидетельствуют о том, что основной вклад в формирование сигнала магнитного резонанса вносят трехвалентные S-ионы железа. Обнаружено увеличение ширины линии магнитного резонанса для образцов с ионами натрия по сравнению с литием, что, по-видимому, связано с уменьшением величины обменного взаимодействия между ионами Fe(2)-Fe(2) вследствие существенного изменения расстояния между ними, а также появлением дополнительных неэквивалентных позиций ионов железа Fe1' и Fe1" с различной степенью искажения кислородного окружения.

В магнетике $NaCuFe_2(VO_4)_3$ с обменным взаимодействием сильным внутри цепочки и слабым между цепочками в области низких температур конкуренция обменных взаимодействий разного знака и величины приводит к фрустрированному магнитному состоянию, что является одной из причин сложного поведения магнитной подсистемы. Обнаружено немонотонное смещение аномалии, проявляемой на температурной зависимости теплоемкости NaCuFe₂(VO₄)₃ и отвечающей за формирование дальнего магнитного порядка, в сторону высоких температур при приложении внешнего магнитного поля. Наблюдаемое при температурах ниже 3.5 К расхождение температурных зависимостей магнитного момента в режимах ZFC и FC в $NaCuFe_2(VO_4)_3$ связано с неоднородным распределением катионов железа по неэквивалентным кристаллографическим позициям, обнаруженных в рентгеновских и, более детально, в гаммарезонансных исследованиях.

Полученные результаты исследования демонстрируют влияние катионного замещения на физические свойства и возможность управления ими путем изменения химического давления в многокомпонентных ванадатах с общей формулой $ACuFe_2(VO_4)_3$.

Благодарности

Авторы выражают благодарность администрации Oak Ridge National Laboratory, США за предоставленную возможность проведения исследований методом нейтронной дифракции, а также Matthias D. Frontzek за выполнение измерений.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] N. Guskos, G. Zolnierkiewicz, J. Typek, R. Szymczak, A. Guskos, P. Berczynski, A. Blonska-Tabero. Mater. Sci. Poland **31**, 601(2013).
- [2] A.V. Koshelev, K.V. Zakharov, L.V. Shvanskaya, A.A. Shakin, D.A. Chareev, S. Kamusella, H.-H. Klauss, K. Molla, B. Rahaman, T. Saha-Dasgupta, A.P. Pyatakov, O.S. Volkova, A.N. Vasiliev. Phys. Rev. Appl. 10, 034008 (2018).
- [3] M.A. Lafontaine, J.M. Grenéche, Y. Laligant, G. Férey. J. Solid State Chem. **108**, 1-10, (1994).
- [4] Т.В. Дрокина, Г.А. Петраковский, О.А. Баюков, А.М. Воротынов, Д.А. Великанов, М.С. Молокеев. ФТТ 58, 1913 (2016).
- [5] Ю.А. Изюмов. Дифракция нейтронов на длиннопериодических структурах. Энергоатомиздат, М. (1987). 200 с.
- [6] С.С. Сосин, Л.А. Прозорова, А.И. Смирнов. УФН 175, 92 (2005).
- 7] R.S. Gekht. Zh. Eksp. Teor. Fiz. **102**, 1968 (1992).
- [8] А.К. Муртазаев, М.К. Рамазанов, М.К. Бадиев. ФТТ **52**, 1557 (2010).
- [9] Р.С. Гехт, И.Н. Бондаренко. ЖЭТФ 113, 2209 (1998).
- [10] Р.С. Гехт, И.Н. Бондаренко. ЖЭТФ 111, 627 (1997).
- [11] J.M. Hughes, J.W. Drexler, C.F. Campana, M.L. Malinconico. Am. Mineralogist **73**, 181 (1988).
- [12] A.A. Belik. Mater. Res. Bull. 34, 1973 (1999).
- [13] Т.В. Дрокина, Г.А. Петраковский, А.Л. Фрейдман, М.С. Молокеев, Е.Г. Резина. Магнитодиэлектрический оксидный керамический материал. Патент РФ № 2592867 от 27.07.2016.
- [14] S. Kamoun, F. Hlel, M. Gargouri. Ionics 20, 1103 (2014).
- [15] S. Kamoun, M. Gargouri. Ionics 21, 765 (2014).
- [16] Д.А. Великанов. Вестн. СибГАУ 2, 48, 176 (2013).
- [17] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- [18] Н.С. Ахметов. Общая и неорганическая химия. Высш. шк., ИЦ "Академия", М. (2001). 743 с.
- [19] J.A. Mydosh. Spin-Glasses: An Experimental Introduction, Taylor and Francis. N. Y. (1993). 256 p.
- [20] С.П. Губин, Ю.А. Кокшаров, Г.Б. Хомутов, Г.Ю. Юрков. Успехи химии **74**, 539 (2005).
- [21] Н.В. Мушников. Магнетизм и магнитные переходы. УрФУ, Екатеринбург (2017). 167 с.
- [22] Е.А. Михалева, И.Н. Флеров, В.С. Бондарев, М.В. Горев, А.Д. Васильев, Т.Н. Давыдова. ФТТ **53**, 478 (2013).

Редактор Т.Н. Василевская