23

Дискриминация хвойных и лиственных листьев деревьев и кустарников от декоративно-искусственных материалов методом оптической спектроскопии диффузного отражения света

© Ю.В. Мамелин, Г.Ф. Копытов, В.Ю. Бузько

Кубанский государственный университет (КубГУ), 350040 Краснодар, Россия

e-mail: mamelin@bk.ru

Поступила в редакцию 24.10.2019 г. В окончательной редакции 24.10.2019 г. Принята к публикации 05.11.2019 г.

Проведено сравнение спектров диффузного отражения света от зеленых хвойных и лиственных листьев деревьев и кустарников, произрастающих на территории Краснодарского края, со спектрами диффузного отражения света от зеленых синтетических декоративно-искусственных листьев и различных камуфляжных материалов. Предложено использовать вегетационные индексы "зелености" для дискриминации хвойных и лиственных листьев деревьев и кустарников от декоративно-искусственных материалов методом оптической спектроскопии диффузного отражения.

Ключевые слова: спектроскопия диффузного отражения света, коротковолновое ИК излучение, SWIR, NDVI, Северо-Западный Кавказ.

DOI: 10.21883/OS.2020.02.48981.288-19

Введение

В результате многолетнего опыта исследований в области дистанционного зондирования местности [1-5] мировым научным сообществом, включая С.F. Jordan, J.W. Rouse, C.J. Tucker, Y.J. Kaufman, D. Tanre, A.R. Huete, H. Liu, R.D. Jackson, были разработаны основные вегетационные индексы (VIs) [6-8] для качественной и количественной оценки растительного покрова. Вегетационные индексы представляют собой комбинации коэффициентов поверхностного отражения на двух или более длинах волн и предназначены для выделения определенного свойства растения. Использование узкополосных вегетационных индексов "зелености" (пагтоwband greenness) [9-12], рассчитываемых по значениям коэффициентов диффузионного отражения в узкой области инфракрасного склона (red edge), в сочетании с современными технологиями мультиспектральных и гиперспектральных камер позволяет осуществлять быстрый сбор данных для точечного земледелия [13] и оперативный мониторинг состояния сельскохозяйственных угодий [14] для повышения урожайности. Также в настоящие время, основываясь на вегетационных индексах, активно ведутся исследования спектральных сигнатур хвойных и лиственных деревьев, кустарников [15-18] и различных растений [19] с целью их классификации [20].

Исследование спектральных свойств листьев хвойных и лиственных деревьев и кустарников Краснодарского края до сих пор не было проведено. Целью данной работы является получение оптических характеристик диффузного отражения света от листьев лиственных и хвойных деревьев и кустарников Краснодарского края,

декоративно-искусственных листьев и зеленых камуфляжных тканей, а также их анализ и сравнение. Для достижения этой цели необходимо выполнить следующие залачи.

Исследовать в лабораторных условиях оптические характеристики диффузного отражения света в диапазоне длин волн от 350 до 900 nm от свежесобранных зеленых листьев хвойных и лиственных деревьев и кустарников Краснодарского края.

Исследовать оптические характеристики диффузного отражения света от зеленых декоративно-искусственных листьев и зеленых камуфляжных тканей в том же диапазоне длин волн.

Рассмотреть возможность отличать зеленые листья хвойных и лиственных деревьев и кустарников от декоративно-искусственных листьев с помощью методов машинного зрения, опирающихся на использование мультиспектральных камер или отражение света при подсветке лазерными светодиодами.

Материалы и оборудование

Для проведения исследования на территории Кубанского государственного университета были собраны следующие образцы листьев хвойных и лиственных пород деревьев и кустарников: ель голубая (*Picea pungens*), ель восточная (*Picea orientalis*), туя Стендиша (*Thuja standishii*), сосна горная (*Pinus mugo*), можжевельник казацкий (*Juniperus sabina*), клен остролистный (*Acer platanoides*), самшит колхидский (*Buxus colchica*), акация белая (*Robinia pseudoacacia*), шиповник со-

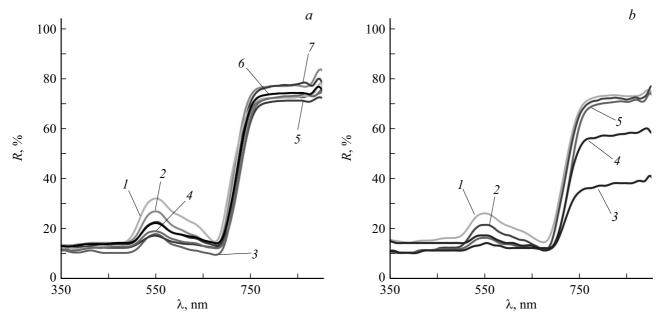


Рис. 1. Оптические спектры диффузного отражения свежих зеленых листьев. (а) Лиственные деревья: I — самшит колхидский (Buxus colchica), 2 — вишня обыкновенная "Краснодарская сладкая" (prunus cerasus "Krasnodarskaya sladkaya"), 3 — акация белая (Robinia pseudoacacia), 4 — шиповник собачий (Rosa canina), 5 — платан восточный (Platanus orientalis), 6 — ясень обыкновенный (Fraxinus excelsior), 7 — клен остролистный (Acer platanoides). (b) Хвойные деревья и кустарники: I — ель голубая (Picea pungens), 2 — ель восточная (Picea orientalis), 3 — туя Стендиша (Thuja standishii), 4 — сосна горная (Pinus mugo), 5 — можжевельник казацкий (Juniperus sabina).

бачий (Rosa canina), ясень обыкновенный (Fraxinus excelsior), платан восточный (Platanus orientalis), вишня обыкновенная "Краснодарская сладкая" (prunus cerasus "Krasnodarskaya sladkaya"). Эти представители являются типичными видами деревьев и кустарников на территории Краснодарском края [20]. Образцы листьев выбранных деревьев и кустарников были взяты с нижних частей кроны, по четыре образца одного вида, два из которых с теневой части кроны, а другие два — с освещенной части кроны.

Для сравнения спектральных характеристик зеленых листьев хвойных и лиственных деревьев и кустарников с характеристиками зеленых декоративно-искусственных материалов были исследованы спектры диффузного отражения различных зеленых камуфляжных тканей, а также зеленых декоративно-искусственных листьев клена, шиповника, вишни, самшита и ели, визуально неотличимых человеческим глазом от зеленых листьев хвойных и лиственных деревьев и кустарников с расстояния более 0.25 m.

Измерения спектров диффузного отражения натуральных и декоративно-искусственных листьев производились в лабораторных условиях с использованием спектрофотометра Hitachi U3900 с двухканальной интегрирующей сферой в спектральном диапазоне от 350 до 900 nm. Для чистоты эксперимента было получено по пять спектров диффузного отражения с каждого исследуемого образца, после чего производилось усреднение массивов данных в рамках одного исследуемого вида.

Результаты измерения и обсуждение

Полученные массивы спектров диффузного отражения зеленых листьев лиственных деревьев и кустарников Краснодарского края в диапазоне от 350 до 900 nm представлены на рис. 1, а. На рисунке видно, что свежие зеленые листья лиственных деревьев имеют относительно низкую отражательную способность в видимом спектре в пределах от 10 до 30%. Повышение отражательной способности в узком диапазоне длин волн от 520 до 600 nm обусловлено низкой поглощающей способностью хлорофиллов в этом спектральном диапазоне длин волн [21–23]. Отсутствие поглощающих пигментов в области от 700 nm и особенности физиологической структуры листьев [24] объясняют резкое повышение коэффициента диффузного отражения света от поверхности древесного листа на границе видимого и ближнего инфракрасного диапазона. Значение коэффициента отражательной способности у свежих зеленых листьев деревьев в области длин волн более 750 nm превышает 70% [25,26].

Отражательная способность листьев хвойных деревьев и кустарников представлена на рис. 1, b. Спектры оптического отражения для хвойных деревьев и кустарников схожи со спектрами отражения зеленых листьев лиственных деревьев и кустарников (рис. 1, a) в видимом диапазоне, но имеются выраженные различия в ближнем ИК диапазоне. В ближнем ИК диапазоне коэффициент оптического диффузного отражения для

таол	ица 1	 Вегетативные 	индексы	"зелености"	рассчитываемые	по данным	узких с	пектральных	30H (narrowband	greenness)	
												_

Nº	Наименование индекса	Формула расчета индекса, где $ ho_{xxx}$ — значение коэффициента отражательной способности на соответствующих длинах волн $(xxx$ — длина волны в nm)	Значение индекса
1	NDVI ₇₀₅ (red edge normalized difference vegetation index)	$NDVI_{705} = \frac{\rho_{750} - \rho_{705}}{\rho_{750} + \rho_{705}}$	Может принимать значения от -1 до 1, значения от 0.2 до 0.9 определяют уровень "зелености" растительности
2	mSR_{705} (modified red edge simple ratio index)	$mSR_{705} = \frac{\rho_{750} - \rho_{445}}{\rho_{705} - \rho_{445}}$	Может принимать значения от 0 до 30, значения от 2 до 8 определяют уровень "зелености" растительности
3	$mNDVI_{705}$ (modified red edge normalized difference vegetation index)	$mNDVI_{705} = \frac{\rho_{750} - \rho_{705}}{(\rho_{750} + \rho_{705} - (2\rho_{445}))}$	Может принимать значения от -1 до 1, значения от 0.2 до 0.7 определяют уровень "зелености" растительности

Таблица 2. Значение индексов "зелености" листьев хвойных и лиственных деревьев и кустарников, камуфляжных тканей, зеленых декоративно-искусственных листьев

No	Название образца	$NDVI_{705}$	mSR ₇₀₅	mNDVI ₇₀₅	
1	Ель голубая (Picea pungens)	0.368	3.311	0.536	
2	Ель восточная (Picea orientalis)	0.492	3.519	0.557	
3	Можжевельник казацкий (Juniperus sabina)	0.483	5.798	0.706	
4	Cocha горная (Pinus mugo)	0.476	9.575	0.811	
5	Туя Стендиша (Thuja standishii)	0.360	4.596	0.643	
6	Акация белая (Robinia pseudoacacia)	0.431	4.200	0.615	
7	Платан восточный (Platanus orientalis)	0.572	7.884	0.775	
8	Шиповник собачий (Rosa canina)	0.447	4.584	0.642	
9	Самшит колхидский (Buxus colchica)	0.300	2.332	0.400	
10	Вишня обыкновенная "Краснодарская сладкая"	0.300	2.332	0.400	
	(prunus cerasus "Krasnodarskaya sladkaya")				
11	Ясень обыкновенный (Fraxinus excelsior)	0.370	3.507	0.556	
12	Клен остролистный (Acer platanoides)	0.512	5.635	0.699	
	Образцы декоративно-искусс	гвенных листьев			
13	"Клен"	0.021	1.064	0.031	
14	"Шиповник"	0.034	1.130	0.061	
15	"Вишня"	0.028	1.132	0.062	
	Образцы зеленых камуфля	яжных тканей			
17	Образец 1	0.080	1.296	0.129	
18	Образец 2	0.050	1.153	0.071	

образцов листьев ели, сосны и можжевельника лежит в области значений от 55 до 70%, что на 10-25% меньше нижней [25,26] границы аналогичной характеристики листьев лиственных деревьев и кустарников. Связано это с тем, что листья лиственных и хвойных пород имеют различную физиологическую структуру [27,28]. Для листьев туи коэффициент диффузного отражения в

ближнем ИК диапазоне на 35% меньше нижней границы аналогичной характеристики для листьев лиственных деревьев и кустарников.

Спектры диффузного отражения различных зеленых камуфляжных тканей и зеленых декоративно-искусственных листьев представлены на рис. 2. На рисунке видно, что в области спектра от 500 до 600 nm у всех

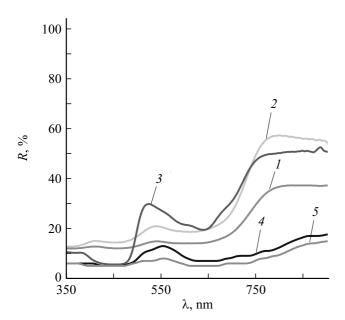


Рис. 2. Оптические спектры зеленых камуфляжных тканей и зеленых декоративно-искусственных листьев: 1 — образец камуфляжа № 1, 2 — образец камуфляжа № 2, 3 — "клен", *4* — "вишня", *5* — "шиповник".

исследуемых образцов наблюдается рост коэффициента отражательной способности. Наиболее высокий рост отражательной способности наблюдается у зеленого декоративно-искусственного листа клена и составляет примерно 25%. Рост коэффициента отражения остальных образцов не превышает 10%. В области длин волн от 650 до 750 nm на спектрах зеленого декоративноискусственного листа клена и образцах зеленых камуфляжных тканей имеется стремительный рост отражательной способности примерно в 2.5 раза, переходящий в плато. Спектры декоративно-искусственных листьев вишни и шиповника в ближней ИК области имеют плавное увеличение коэффициента отражательной способности до 20%.

На основе проведенного количественного анализа можно сделать вывод, что отражательная способность исследованных образцов свежих зеленых листьев обусловлена содержанием хлорофиллов [21-23] и микроструктурой листьев. Содержание в листьях хлорофиллов разных видов [21-23] определяет наличие пика отражательной способности для фотонов в видимой области спектра [21–23]. В то время как изменение степени рыхлости внешней поверхности листьев определяет вид спектра в инфракрасном диапазоне длин волн [21–23].

Анализируя спектры декоративно-искусственных материалов, можно сделать вывод, что в видимой спектральной области зеленые образцы исследованных камуфляжных тканей имеют вид спектра диффузного отражения, схожий со спектрами зеленых листьев лиственных и хвойных деревьев и кустарников. В ближней ИК области образцы исследованных камуфляжных тканей имеют вид спектра отражения, схожий со спектрами листьев хвойных пород деревьев.

При проведении сравнительного анализа спектров листьев хвойных и лиственных деревьев и кустарников и спектров различных зеленых камуфляжных тканей и зеленых декоративно-искусственных листьев воспользуемся рекомендованными вегетационными индексами "зелености" [7,8], которые рассчитываются по значениям коэффициентов отражения в узких спектральных диапазонах длин волн и представлены в табл. 1. Индексы данной группы обусловлены узкой областью инфракрасного склона спектральной кривой отражения от 690 до 750 nm, что позволяет обеспечить высокую эффективность детектирования небольших изменений уровня "зелености", состояния и содержания различных форм хлорофилла в растительности.

Вычисленные по формулам из табл. 1 значения вегетационных индексов для исследуемых образцов природных листьев, декоративно-искусственных листьев и камуфляжных тканей представлены в табл. 2. Из представленной таблицы видно, что рассчитанные значения вегетационных индексов для искусственных материалов, имитирующих зеленые листья деревьев и кустарников, многократно отличаются от значений аналогичных вегетационных индексов листьев хвойных и лиственных деревьев и кустарников. Исходя из этого можно сделать вывод, что применение предложенных ранее [6-8] индексов "зелености" позволяет по спектру диффузного отражения дискриминировать искусственные материалы, имитирующие зеленую растительность, на фоне естественных зеленых листьев лиственных и хвойных деревьев и кустарников.

Заключение

В работе впервые исследованы оптические характеристики диффузного отражения света от зеленых листьев хвойных и лиственных деревьев и кустарников Краснодарского края. Проведено сравнение спектров диффузного отражения света от зеленых листьев хвойных и лиственных деревьев и кустарников, произрастающих на территории Краснодарского края, со спектрами диффузного отражения света от зеленых синтетических декоративноискусственных листьев и камуфляжных материалов.

На основе накопленной информации проведен качественный и количественный анализ спектров, подтвердивший, что исследованные зеленые декоративноискусственные листья визуально неотличимы человеческим глазом от зеленых хвойных и лиственных листьев деревьев и кустарников Краснодарского края с расстояния более 0.25 m. Зеленые декоративно-искусственные и натуральные листья имеют схожую форму спектральной кривой коэффициента диффузного отражения света, а наибольшее сходство со спектрами отражения декоративно-искусственных листьев наблюдается для зеленых листьев лиственных пород деревьев и кустарников. Сравнительный анализ зеленых декоративно-искусственных листьев и зеленых листьев хвойных и лиственных деревьев и кустарников показал, что вегетационные индексы "зелености" различных декоративно-искусственных листьев имеют близкие нулю значения. Такие значения исключены для растительного покрова как в летний период, так и в зимний (для хвойных лесов).

На основе указанных фактов можно предположить, что использование вегетационных индексов позволит разработать алгоритмы и программы, способные при помощи дистанционного анализа диффузного рассеяния света с высокой достоверностью отличать зеленые листья хвойных и лиственных деревьев и кустарников Краснодарского края от зеленых декоративноискусственных листьев.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Финансирование работы

Статья подготовлена при финансовой поддержке государственного задания Министерства науки и высшего образования РФ "Разработка и адаптация систем управления компенсацией динамических отклоняющих воздействий на мобильные объекты, находящиеся в состоянии динамического равновесия" № 8.2321.2017/ПЧ.

Список литературы

- [1] Morris D.B., Kaye P.H.A. // Endeavour. 1973. V. 32. P. 117–121.
- [2] Gamon J.A., Qiu H.-L. // Handbook of Functional Plant Ecology, 1999. P. 805–846.
- [3] Asner G., Martin R. // Global Ecology and Conservation. 2016. V. 8. P. 212–219. doi 10.1016/j.gecco.2016.09.010
- [4] Curran P.J. // Remote Sensing of Environment. 1989. V. 30. N 3. P. 271–278.
- [5] Feret J.B., Asner G.P. // IEEE Transactions on Geoscience and Remote Sensing. 2013. V. 51. N 1. P. 73–84. doi 10.1109/TGRS.2012.2199323
- [6] Bannari A., Morin D., Bonn F., Huete A.R. // Remote Sensing Reviews. 1995. V. 13. N 1. P. 95–120. doi 10.1080/02757259509532298
- [7] Gilabert M.A, Gonzilez-Piqueras J., Martine B. // Theory and Application of Vegetation Indices. Optical Observation of Vegetation Properties and Characteristics. 2011. P. 1–43.
- [8] Xue J., Su B. // J. Sensors. 2017. doi 10.1155/2017/1353691
- [9] Maimaitiyiming M., Miller A.J., Sagan V. // Photogrammetric Engineering and Remote Sensing. 2016. V. 82. N 2. P. 51–62. doi 10.14358/PERS.82.2.51
- [10] Zhang C., Huazhong R., Qin Q., Ersoy O. // Remote Sensing Letters. 2017. V. 8. N 6. P. 576–585. doi 10.1080/2150704X.2017.1306135

- [11] Gil-Perez B., Zarco-Tejada P., Correa-Guimaraes A., Relea-Gangas E., Gracia L., Hernandez-Navarro S., Sanz Rena J., Berjón A., Martín-Gil J. // Vitis-Geilweilerhof. 2010. V. 49. N 4. P. 167–173.
- [12] Penuelas J., Filella I. // Trends in Plant Science. 1998. V. 3.
 N 4. P. 151-156. doi.org/10.1016/S1360-1385(98)01213-8
- [13] Candiago S., Remondino F., Giglio M., Dubbini M., Gattelli M. // Remote Sensing. 2015. V. 7. N 4. P. 4026—4047. doi 10.3390/rs70404026
- [14] Wahab I., Hall O., Jirstrom M. // Drones. 2018. V. 2. N 3.
 P. 1–28. doi 10.3390/drones2030028
- [15] Yang B., Knyazikhin Y., Lin Y., Yan K., Chen C., Park T., Choi S., Mottus V., Rautiainen M., Myneni R., Yan L. // Remote Sensing. 2016. V. 8. N 7. P. 1–17. doi 10.3390/rs8070563
- [16] Lukes P., Stenberg P., Rautiainen M., Mottus M., Vanhatalo K. // Remote Sensing Letters. 2013. V. 4. N 7. P. 667–676. doi.org/10.1080/2150704X.2013.782112
- [17] Mottus M., Hernandez-Clemente R., Perheentupa V., Markiet V. // Plant Methods. 2017. doi.org/10.1186/s13007-017-0184-4
- [18] Sun Z., Wu D., Lu Y., Lu S. // IEEE Transactions on Geoscience and Remote Sensing. 2019. V. 57. N 7. P. 4388–4406. doi 10.1109/TGRS.2019.2890998
- [19] Huang Cho-Ying, Wei Hsin-Lin., Rau Jiann-Yeou., Jhan Jyun-Ping // GIScience & Remote Sensing. 2018. V. 56. N 4. P. 605—623. doi 10.1080/15481603.2018.1550873
- [20] Hycza T., Sterenczak K., Bałazy R. // New Zealand Journal of Forestry Science. 2018. doi.org/10.1186/s40490-018-0123-9
- [21] Yacobi Y. // Israel Journal of Plant Sciences. 2012. V. 60.
 P. 243-251. doi 0.1560/IJPS.60.1-2.243
- [22] Petrovic S.M., Zvezdanovic J.B., Andelkovic T.D., Markovic D.Z. // Savremene Tehnologije. 2012. V. 1. N 1. P. 16–24.
- [23] Liew O.W., Chong P., Bingqing L., Asundi A. // Sensors. 2008.
 V. 8. N 10. P. 3205-3239. doi 10.3390/s8053205
- [24] *Karabulut M.* // J. Int. Environmental Application & Science. 2018. V. 13. N 4. P. 194–203.
- [25] Белов М.Л., Фесенко Ю.С., Городничев В.А., Кувшинов А.В. // Радиооптика. 2014. Т. 1. № 1. С. 1—17. doi.org/10.7463/rdopt.0316.0840843
- [26] Velichkova K., Krezhova D. // RAD Conference Proceedings. 2017. V. 2. P. 276–282.
- [27] Rautiainen M., Lukes P., Homolova L., Hovi A., Pisek J., Mottus V. // Remote Sensing. 2018. V. 10. N 2. P. 1–28. doi.org/10.3390/rs10020207
- [28] Hovi A., Raitio P., Rautiainen M. // Silva Fennica. 2017.
 V. 51. N 4. P. 7753-1-16. doi.org/10.14214/sf.7753