11,05

Структурные особенности фосфатов $Ca_{9-x}M_x$ Dy(PO_4) $_7$ ($M=\mathsf{Zn}^{2+},\,\mathsf{Mg}^{2+}$)

© И.В. Никифоров, Д.В. Дейнеко [¶], И.Ф. Дускаев

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

Поступила в Редакцию 30 декабря 2019 г. В окончательной редакции 30 декабря 2019 г. Принята к публикации 10 января 2020 г.

Получены твердые растворы фосфатов на основе семейства витлокита $Ca_{9-x}M_xDy(PO_4)_7$ ($M=Zn^{2+}$, Mg^{2+}). Образцы исследованы комплексом методов, таких как рентгенофазовый анализ, генерация второй оптической гармоники, люминесцентная спектроскопия. Установлено, что в ряду твердых растворов по мере замещения $Ca^{2+} \to M^{2+}$ наблюдается изменение симметрии элементарной ячейки $R3c \to R\bar{3}c$, определена концентрационная зависимость. Методом диэлектрической спектроскопии установлены фазовые переходы сегнето- и антисегнетоэлектрического типа, их температурное положение. Синтезированные образцы демонстрируют интенсивную люминесценцию при возбуждении излучением с длиной волны 350 нм с результирующим излучением в белой области цветовых координат.

Ключевые слова: фазовые переходы, фосфаты, люминесцентная спектроскопия, витлокит, генерация второй оптической гармоники, диэлектрическая спектроскопия.

DOI: 10.21883/FTT.2020.05.49243.19M

1. Введение

Семейство фосфатов со структурой минерала витлокита $Ca_9(Fe_{0.63}Mg_{0.37})H_{0.37}(PO_4)_7$ [1] и изоструктурного ему β -Ca₃(PO₄)₂ кристаллизуется в пространственных группах (пр. гр.), принадлежащих дифракционному классу R3. Интерес к данным веществам обусловливают его стабильные и интенсивные мультифункциональные свойства, такие как люминесцентные, нелинейно-оптические, сегнетоэлектрические. Данное семейство было значительно расширено посредством синтеза различных катион- [2-4] и анион-замещенных [5,6] представителей. Такие замещения проводятся с целью модификации свойств, однако ведут к трансформации элементарной ячейки. Базовая структура β -Ca₃(PO₄)₂ характеризуется полярной пр. гр. R3c (C_{3v}). Ранее было установлено, что при нагревании выше температуры Кюри $T_{\rm c}$ сегнетоэлектрика [7] происходит фазовый переход $R3c \to R3m$, который сопровождается вырождением сегнетоэлектрических свойств. В то же время вырождение сегнетоэлектрических свойств происходит и при замещении иона Ca^{2+} в структуре β - $Ca_3(PO_4)_2$ на катион с большим ионным радиусом [8], например, Sr^{2+} или Pb^{2+} . В ряду твердых растворов $Ca_{3-x}M_x(PO_4)_2$ ($M = Sr^{2+}$, Pb²⁺) наблюдается возрастание симметрии элементарной ячейки и постепенный переход $R3c \rightarrow R3m$ через двухфазную область.

Ранее [9] авторами было установлено, что помимо вышеперечисленных превращений существует еще один тип преобразования элементарной ячейки при катионных замещениях. При введении в структуру катиона с меньшим, по сравнению с Ca²⁺, ионным радиусом,

например Mg^{2+} , происходит изменение пр.гр. изменяется $R3c \to R\bar{3}c$. Контроль изменения симметрии важен с практической точки зрения, так как ведет к изменению свойств, в том числе, люминесцентных. Было показано, что вещества, обладающие более высокой симметрией, демонстрировали более интенсивные свойства. Несмотря на значительное число публикаций по синтезу и исследованию веществ семейства β - $\mathrm{Ca}_3(\mathrm{PO}_4)_2$, основные кристаллохимические закономерности формирования и поведения их свойств до сих пор не установлены.

Элементарная ячейка β -Ca₃(PO₄)₂ и твердых растворов на его основе содержит пять неэквивалентных кристаллографических позиций M1-M5, различных по размерам и кислородному окружению, вакансию M6 (в некоторых соединениях дополнительную вакансию M4), а также структура связана в 3D-каркас посредством тетраэдров PO₄. С точки зрения кристаллохимического строения, формула может быть записана как Ca_{10.5}(PO₄)₇. Именно уникальное строение создает возможность для формирования различных замещенных твердых растворов. Разнообразие таких замещений обусловливает предпосылки для создания функциональных материалов. Так, вещества, допированные катионами редкоземельного ряда активно применяются в качестве неорганических люминофоров.

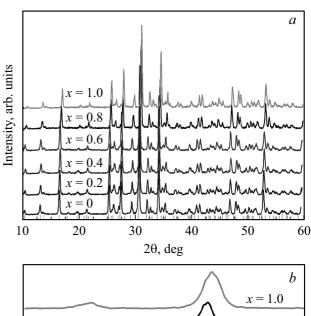
Таким образом, основная цель данного исследования связана с синтезом и исследованием свойств твердых растворов фосфатов $Ca_{9-x}Mg_xDy(PO_4)_7$ и $Ca_{9-x}Zn_xDy(PO_4)_7$ со структурой β - $Ca_3(PO_4)_2$, обладающих люминесцентными свойствами за счет внутицентровых переходов 4f-4f катиона Dy^{3+} , и установлени-

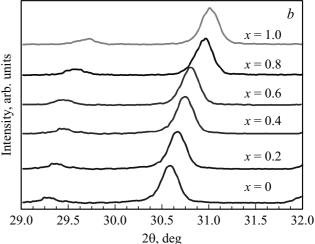
[¶] E-mail: deynekomsu@gmail.com

ем концентрации катионов-заместителей Zn^{2+} и Mg^{2+} , при которых происходит трансформация симметрии $R3c \to R\bar{3}c$, а также с исследованием их влияния на люминесцентные, нелинейно-оптические и диэлектрические свойства твердых растворов.

2. Экспериментальная часть

Образцы сложных фосфатов $Ca_{9-x}Mg_xDy(PO_4)_7$ и $Ca_{9-x}Zn_xDy(PO_4)_7$ получали методом твердофазного синтеза в алундовых тиглях посредством ступенчатого нагревания до $1100^{\circ}C$ с промежуточной гомогенизацией, общая продолжительность реакции составляла 50 h. В качестве прекурсоров использовали: $CaHPO_4 \cdot 2H_2O$ (99.9%), $CaCO_3$ (99.9%), MgO (99.9%), ZnO (99.9%), Dy_2O_3 (99.9%), проверенные методом рентгенофазового анализа ($P\Phi A$) и не содержащие примесных фаз.


Рентгенофазовый анализ проведен на порошковом дифрактометре Thermo ARL. Обработка проводились с помощью программ Crystallographica Search-Match и Jana2006 [10]. Исследования методом генерации второй оптической гармоники (ГВГ) проводили на лазерной установке по схеме "на отражение" (источник излучения — импульсный YAG: Nd-лазер Minilite-I с длиной волны излучения $\lambda_{\omega}=1064$) [11]. Спектры возбуждения фотолюминесценции регистрировались с помощью спектрографа Lot-Oriel MS-257, оснащенного детектором Marconi CCD. Кривые затухания люминесценции получены на приборе Cary Eclipse Fluorescence Spectrophotometer.


3. Результаты и их обсуждение

Полученные фосфаты исследовались методом ренттеновской дифракции. На рис. 1, a приведены дифрактограммы для $Ca_{9-x}Mg_xDy(PO_4)_7$. Количество и положение рефлексов соответствуют ранее известным фосфатам $Ca_9Dy(PO_4)_7$ (N_{12} 46-1086 в кристаллографической базе данных) $Ca_8MgDy(PO_4)_7$ (N_{12} 48-1127). Таким образом, синтезированные образцы кристаллизуются в структурном типе β - $Ca_3(PO_4)_2$. При введении в структуру катионов меньшего радиуса, чем кальций, происходит сдвиг в область больших значений углов 2θ , согласно условию Брегга—Вульфа, что отчетливо видно для главного пика (0 2 10) на дифрактограмме (рис. 1, b).

Были вычислены параметры элементарных ячеек (приведены на рис. 2). При замещении одного иона $\mathrm{Ca^{2+}}$ ($r_{\mathrm{VI}}=1.00~\mathrm{Å}$ [8]) на более мелкие ионы $\mathrm{Mg^{2+}}$ ($r_{\mathrm{VI}}=0.72~\mathrm{Å}$) и $\mathrm{Zn^{2+}}$ ($r_{\mathrm{VI}}=0.74~\mathrm{Å}$) размер элементарной ячейки закономерно уменьшается. Наиболее сильно сокращается ячейка при замене кальция на магний, самый маленький катион в этом ряду. Ранее было установлено, что катионы $\mathrm{Mg^{2+}}$ [12] и $\mathrm{Zn^{2+}}$ [13] занимают в структуре единственную октаэдрическую позицию M5.

На зависимостях параметров a, c и V наблюдается отклонение от закономерного снижения и излом в

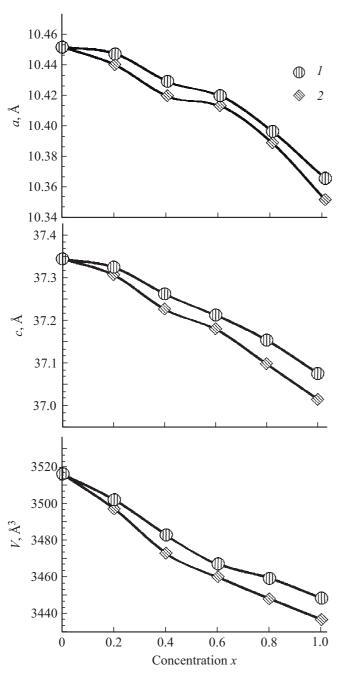


Рис. 1. (*a*) Дифрактограмма $Ca_{9-x}Mg_xDy(PO_4)_7$ (*b*) главный рефлекс (0 2 10) твердого раствора $Ca_{9-x}Mg_xDy(PO_4)_7$.

области х от 0.4 до 0.6. Такое поведение в случае аналогичных фосфатов [9] было связано с изменением симметрии $R3c \rightarrow R\bar{3}c$. Этот результат согласуется с данными, полученными методом ГВГ. С постепенным увеличением концентрации двухвалентного катиона M^{2+} наблюдается снижение сигнала. В области х от 0.4 до 0.6 наблюдается резкое уменьшение данного параметра, вплоть до его полного исчезновения с поправкой на приборную погрешность. Отсутствие сигнала ГВГ характерно для центросимметричных пр. гр. $R\bar{3}c$ и $R\bar{3}m$. Таким образом, можно заключить, что до концентрации x = 0.4 фосфаты $Ca_{9-x}M_xDy(PO_4)_7$ кристаллизируются в пр. гр. R3c, область от 0.4 до 0.6, по-видимому, является двухфазной, $R3c + R\bar{3}c$, а при концентрациях M^{2+} более 0.6 твердые растворы являются однофазными и относятся к пр. гр. $R\bar{3}c$. Значения сигнала ГВГ приведены в таблице и на рис. 3.

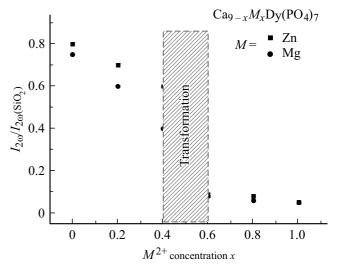

Были исследованы люминесцентные свойства твердых растворов. На рис. 4 приведен спектр возбуждения фотолюминесценции для $Ca_8MgDy(PO_4)_7$. При регистрации

Рис. 2. Параметры элементарных ячеек для систем (*1*) $Ca_{9-x}Mg_xDy(PO_4)_7$ и (*2*) $Ca_{9-x}Zn_xDy(PO_4)_7$.

Значения сигнала ГВГ для ${\rm Ca}_{9-x}M_x{\rm Dy}({\rm PO}_4)_7~(M={\rm Zn,\ Mg})$

$I_{2\omega}/I_{2\omega}({ m SiO}_2)$		
x	$Ca_{9-x}Zn_xDy(PO_4)_7$	$Ca_{9-x}Mg_xDy(PO_4)_7$
0.0	0.8	0.7
0.2	0.7	0.6
0.4	0.6	0.4
0.6	0.2	0.2
0.8	0.1	0.15
1.0	0.05	0.05

Рис. 3. Зависимости сигнала ГВГ для фосфатов $Ca_{9-x}M_xDy(PO_4)_7$ ($M=Zn,\ Mg$).

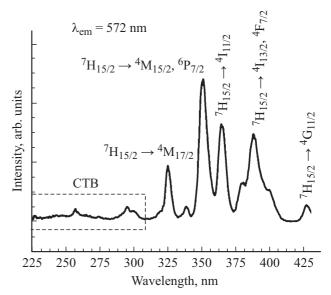
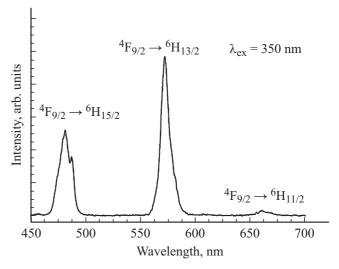
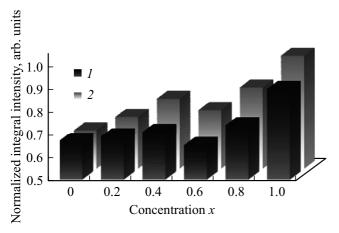




Рис. 4. Спектр возбуждения люминесценции Са₈MgDy(PO₄)₇.

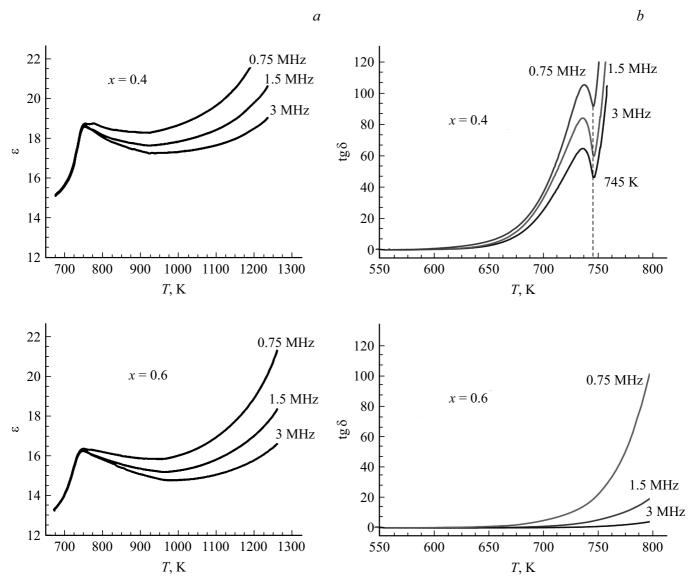


Рис. 5. Спектр фотолюминесценции $Ca_8MgDy(PO_4)_7$.

Рис. 6. Интегральные интенсивности для твердых растворов (*I*) $Ca_{9-x}Mg_xDy(PO_4)_7$ и (*2*) $Ca_{9-x}Zn_xDy(PO_4)_7$.

на длине волны $\lambda_{\rm em}=572\,{\rm nm}$ наиболее интенсивный переход наблюдается при 350 nm, что соответствует внутрицентровому переходу $^6H_{15/2}\to^4M_{15/2},\,^6P_{7/2}$ катиона Dy³+. Область от 225 nm до 300 nm соответствует области с переносом заряда (Charge Transfer Band — СТВ) по связям ${\rm O^{2-}-Dy^{3+}}$. Данная полоса обладает малой интенсивностью по сравнению с основными переходами. На спектре фотолюминесценции ($\lambda_{\rm ex}=350\,{\rm nm}$) (рис. 5) присутствуют линии, отвечающие переходам 4f-4f в электронной оболочке: $^4F_{9/2}\to^6H_{15/2}$ (475 nm), наиболее интенсивны $^4F_{9/2}\to^6H_{13/2}$ (575 nm) и $^4F_{9/2}\to^6H_{9/2}$ (660 nm) (рис. 5). Количество и положение линий на спектрах фотолюминесценции не изменяется в зависимости от содержания $Z{\rm n^{2+}}$ и $M{\rm g^{2+}}$, перераспределение их интенсивностей не наблюдается, однако изменяется интенсивность переходов. С увеличением x наблюдается

Рис. 7. (*a*) Диэлектрическая проницаемость и (*b*) тангенс диэлектрических потерь для $Ca_{9-x}Zn_xDy(PO_4)_7$, x=0.4, 0.6.

как увеличение интенсивности самих переходов для двух систем, так и общее увеличение интегральной интенсивности. Стоит отметить, что в двух фазной области, при трансформации элементарной ячейки и возникновении центра симметрии наблюдается некоторое снижение и излом на концентрационной зависимости (рис. 5). При сравнении двух твердых растворов установлено, что катион Zn^{2+} оказывает более сильное положительное влияние на люминесцентные свойства в целом (рис. 6).

На температурных зависимостях диэлектрической проницаемости зарегистрированы аномалии в виде максимумов $\varepsilon(t)$, положение которых не зависит от частоты измерительного поля (рис. 7, a). Такое поведение связано с наличием фазового перехода (ф. п.) из полярной структуры R3c в центросимметричную $R\bar{3}m$. Положение данных максимумов коррелирует с данными, полученными методом ГВГ. На температурной зависимости тангенса угла диэлектрических потерь $\operatorname{tg} \delta$ (рис. 7, b) наблюдается максимум, предшествующий ф. п. для твердых растворов с $x \le 0.4$, что подтверждает сегнетоэлектрическую природу данного перехода. При увеличении концентрации M^{2+} более x = 0.4 в $\text{Ca}_{9-x}M_x\text{Dy}(\text{PO}_4)_7$ этот пик размывается. Такое поведение связано с антисегнетоэлектрическим [14] переходом из неполярной пр. гр. $R\bar{3}c$ в также неполярную R3m. Значительный рост диэлектрической проницаемости выше $T_{\rm c}$ отвечает резкому возрастанию ионной проводимости по кальцию в витлокитоподобных фосфатах и ванадатах [15,16] при высокой температуре.

4. Заключение

Серии растворов $Ca_{9-x}M_xDy(PO_4)_7$ твердых $M = \mathrm{Zn}^{2+}$, Mg^{2+} были синтезированы путем высокотемпературной твердофазной реакции. Было зарегистрировано интенсивное результирующее белое свечение, которое происходит за счет возбуждении уровня ${}^4\mathrm{F}_{9/2} \to {}^6\mathrm{H}_{13/2}$, ${}^6\mathrm{H}_{13/2}$ Было показано, что интенсивность люминесценции зависит от симметрии кристаллической структуры. Показано, что в фосфатах $Ca_{9-x}M_xDy(PO_4)_7$, $M = \mathrm{Zn}^{2+}, \quad \mathrm{Mg}^{2+}$ происходит трансформация из полярной структуры в центросимметричную при 0.4 < x < 0.6. Данная трансформация отражается на резком изменении изучаемых свойств и параметров. Такое поведение согласуется с поведением ранее изученной системы фосфатов $Ca_{9-x}Mg_xEu(PO_4)_7$ [9]. В целом, центросимметричные структуры демонстрируют более сильные люминесцентные свойства.

Благодарности

Исследование выполнено при поддержке грантом РНФ 19-77-10013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Deyneko, S. Aksenov, V. Morozov, S. Stefanovich, O.V. Dimitrova, O.V. Barishnikova, B. Lazoryak, Z. Kristallogr. 229, 823 (2014).
- [2] D.V. Deyneko, V.A. Morozov, J. Hadermann, A.E. Savon, D.A. Spassky, S.Y. Stefanovich, A.A. Belik, B.I. Lazoryak. J. Alloys Compd. 647, 965 (2015).
- [3] Asmaa El Khouria, Mohammed Elaatmania, Giancarlo Della Venturab, Armida Sodob, Rosanna Rizzic, Manuela Rossid, F. Capitellie. Ceram. Int. 47, 15645 (2017).
- [4] B.I. Lazoryak, T.V. Strunenkova, V.N. Golubev, E.A. Vovk, L.N. Ivanov. Mater. Res. Bull. 31, 207 (1996).
- [5] M.B. Kosmyna, P.V. Mateychenko, B.P. Nazarenko, A.N. Shekhovtsov, S.M. Aksenov, D.A. Spassky, A.V. Mosunov, S.Y. Stefanovich. J. Alloys Compd. 708, 285 (2017).
- [6] Z. Zhang, F. Zhang, G. Li, J. Zhang, W. Zhang. J. Mater. Sci.-Mater. Electron. 30 (2019).
- [7] В.Н. Голубев, Б.И. Лазоряк. Изв. АН СССР. Сер. Неорган. матер. 27, 576 (1991).
- [8] R. Shannon. Acta Crystallogr. Sect. A: Found. Crystallogr. 32, 751 (1976).
- [9] D.V. Deyneko, I.V. Nikiforov, D.A. Spassky, Y.Y. Dikhtyar, S.M. Aksenov, S.Y. Stefanovich, B.I. Lazoryak. Cryst. Eng. Commun. 21, 5235 (2019).
- [10] V. Petrícek, M. Dusek, L. Palatinus. Z. Kristallogr. 229, 345 (2014).
- [11] N.G. Dorbakov, O.V. Baryshnikova, V.A. Morozov, A.A. Belik, Y. Katsuya, M. Tanaka, S.Y. Stefanovich, B.I. Lazoryak. Mater. Des. 116, 515 (2017).
- [12] A.A. Belik, V.A. Morozov, D.V. Deyneko, A.E. Savon, O.V. Baryshnikova, E.S. Zhukovskaya, N.G. Dorbakov, Y. Katsuya, M. Tanaka, S.Y. Stefanovich, J. Hadermann, B.I. Lazoryak. J. Alloys Compd. 699, 928 (2017).
- [13] B.I. Lazoryak, E.S. Zhukovskaya, O.V. Baryshnikova, A.A. Belik, O.N. Leonidova, D.V. Deyneko, A.E. Savon, N.G. Dorbakov, V.A. Morozov. Mater. Res. Bull. 104, 20 (2018).
- [14] Д.В. Дейнеко, В.А. Морозов, С.Ю. Стефанович, А.А. Белик, Б.И. Лазоряк, О.И. Лебедев. Неорган. материалы **52**, 211 (2016).
- [15] А.В. Тетерский, В.А. Морозов, С.Ю. Стефанович, Б.И. Лазоряк. ЖНХ **50**, 1072 (2005).
- [16] А.В. Тетерский, С.Ю. Стефанович, Б.И. Лазоряк, Д.А. Русаков. ЖНХ **52**, 357 (2007).

Редактор Е.Ю. Флегонтова