03

О связи ширины зоны турбулентного горения с составом топлива, давлением, скоростью распространения и электропроводностью пламени

© А.П. Шайкин, И.Р. Галиев

Тольяттинский государственный университет, 445667 Тольятти, Россия e-mail: sbs777@yandex.ru

Поступило в Редакцию 21 февраля 2019 г. В окончательной редакции 31 мая 2019 г. Принято к публикации 19 января 2020 г.

Представлены результаты экспериментального изучения взаимосвязи ширины зоны турбулентного горения (ЗТГ) с составом композитного топлива (hythane), максимальным давлением в камере сгорания переменного объема, скоростью распространения и электропроводностью турбулентного пламени. Выявлено, что ширина ЗТГ имеет характерную зависимость от состава hythane. Экспериментально обнаружено, что, несмотря на изменение коэффициента избытка воздуха, концентрации водорода в топливе, интенсивности турбулентности и вида топлива (hythane и бензин), сохраняются неизменными зависимости ширины ЗГТ от турбулентной скорости распространения пламени и от электропроводности пламени, а также зависимость максимального давления от ширины ЗТГ. Результаты работы могут быть использованы при проектировании и доводке энергоэффективных и малоэмиссионных камер сгораний.

Ключевые слова: пламя, электропроводность, ширина пламени, скорость распространения пламени.

DOI: 10.21883/JTF.2020.07.49437.65-19

Введение и постановка задачи

В связи с постоянным ростом цен на топливо и законодательным ужесточением концентрации токсичных компонентов в выхлопных газах энергоустановок остаются актуальными вопросы дальнейшего улучшения их экологических и энергетических характеристик. Одним из наиболее быстрореализуемых способов решения данной проблемы является использование композитных топлив. В последнее два десятилетия ученые и инженеры ведущих стран мира уделяют большое внимание новому топливу hythane — смеси природного газа с водородом [1,2]. В США, Китае, Индии и Норвегии действуют программы государственной поддержки потребителей hythane [3,4]. Это обусловлено тем, что использование hythane способствует значительному снижению токсичности выхлопа двигателя и повышению его тягово-динамических показателей [5,6]. Кроме этого, имеется возможность использовать действующие газонаполнительные компрессорные станции и газобаллонное оборудование для заправки двигателей hythane, при этом стоит отметить, что стоимость hythane сопоставима со стоимостью бензина, что делает перспективным его использование с экономической точки зрения.

Для создания новых малоэмиссионных и энергоэффективных камер сгораний (КС), использующих hythane, необходимо глубокое изучение процесса сгорания композитного топлива. Процесс сгорания композитного углеводородного топлива в поршневых энергоустановках представляет собой сложный физико-химический про-

цесс, протекающий при изменении в течение нескольких миллисекунд: давления, температуры, объема КС, масштаба и интенсивности турбулентности, ширины зоны турбулентного горения (ЗТГ), турбулентной и нормальной скоростей распространения пламени. В настоящее время остается малоизученным влияние на ширину ЗТГ химического состава композитного топлива (т.е. hythane), скорости распространения и электропроводности турбулентного пламени. Отсутствуют данные о взаимосвязи ширины ЗТГ с максимальным давлением сгорания в КС переменного объема. Исследования в данной области необходимы для создания новых энергетических установок, использующих hythane и соответствующих современным требованиям по мощности, экономичности и токсичности.

Цель работы: изучить связь ширины зоны турбулентного горения с составом композитного топлива (hythane), максимальным давлением в камере сгорания переменного объема, скоростью распространения и электропроводностью турбулентного пламени.

Методика проведения экспериментов

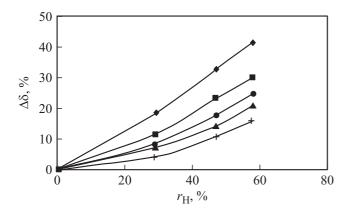
Эксперименты проводились в КС переменного объема с искровым зажиганием [7]. В качестве топлива использовался hythane. Методика эксперимента заключалась в параллельной регистрации сигналов с искры зажигания, датчика расхода воздуха, датчика давления и ионизационного датчика (ИД). Варьируемыми факторами в экспериментах являлись: частота вращения коленчатого

вала двигателя (n=600 и $900\,\mathrm{min}^{-1}$), коэффициент избытка воздуха (α) и концентрация водорода в hythane, составляющая $r_\mathrm{H}=29,\ 47$ и 58% (по объему). Ширина ЗТГ определялась по формуле (1):

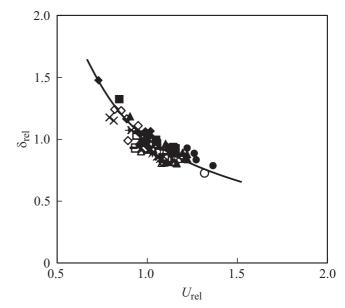
$$\delta = U_{av} \cdot t - D \tag{1}$$

$$U_{av} = \frac{L}{t},\tag{2}$$

где U_{av} — средняя скорость распространения пламени [m/s]; t_s — продолжительность сигнала ионного тока [s]; D — диаметр электрода ИД [m]; L — расстояние от свечи зажигания до электрода ИД [m], t — промежуток времени от начала зажигания до появления ионного тока в ИД [s].

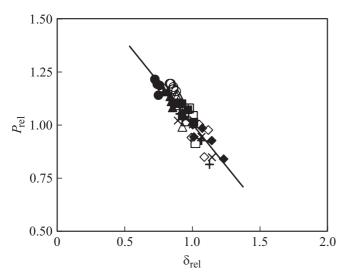

Для придания исследуемой связи большей универсальности, т.е. независимости от формы КС и газодинамических характеристик, все значения представлены в относительных величинах — отношения анализируемых параметров к параметрам при стехиометрическом составе смеси, как это представлено для ширины ЗТГ:

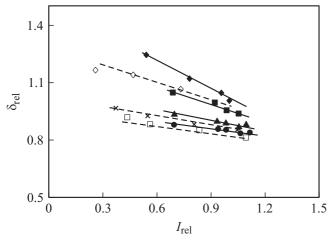
$$\delta_{\text{rel}} = \frac{\delta_{\alpha=x}}{\delta_{\alpha=1}},\tag{3}$$


где δ — ширина ЗТГ при стехиометрическом составе топливовоздушной смеси (ТВС), м; α — коэффициент избытка воздуха; x — текущее значение коэффициента избытка воздуха.

Экспериментальные результаты и их обсуждение

Исследование ширины ЗТГ показало, что при коэффициентах избытка воздуха от 0.9 до 1.1 увеличение интенсивности турбулентности в 1.5 раза (достигаемое за счет роста частоты вращения коленчатого вала двигателя с 600 до 900 min⁻¹) не приводит к заметному изменению ширины ЗТГ. Так, изменение δ_{rel} при коэффициенте избытка воздуха $\alpha = 1$ составило всего 2%.


Рис. 1. Зависимость уменьшения ширины ЗТГ от коэффициента избытка воздуха и концентрации водорода, α : + — 0.9; \blacktriangle — 1; \bullet — 1.1; \blacksquare — 1.2; \blacklozenge — 1.3.


Рис. 2. Связь ширины ЗТГ со скоростью распространения пламени: \lozenge , \square , \triangle , \circ , \blacklozenge , \blacksquare , \blacktriangle , \bullet — hythane; \neg , \star , \times , + — бензин + H₂; \diamondsuit , \square , \circ , \neg , \star , \times — $n = 600 \, \mathrm{min}^{-1}$; \blacklozenge , \blacksquare , \blacktriangle , \bullet , + — $n = 900 \, \mathrm{min}^{-1}$; \blacklozenge , \diamondsuit , \times , + — $r_{\mathrm{H}} = 0\%$; \star — $r_{\mathrm{H}} = 19\%$; \neg , \blacksquare , \square — $r_{\mathrm{H}} = 29\%$; \blacktriangle , \triangle — $r_{\mathrm{H}} = 47\%$; \bullet , \circ — $r_{\mathrm{H}} = 58\%$.

Это обусловлено тем, что при α от 0.9 до 1.1 горение описывается моделью микроламинарного пламени. Турбулентные вихри не проникают в ЗТГ, а только меняют ее конфигурацию, поэтому увеличение п приводит к увеличению площади поверхности фронта пламени и скорости распространения пламени, но ширина ЗТГ остается неизменной. При $\alpha = 1.2$ рост интенсивности турбулентности привел к увеличению ширины ЗТГ на 8%, а при $\alpha = 0.8$ ширина пламени увеличилась на 7%. Это объясняется тем, что при сжигании бедных и богатых смесей ширина ламинарного пламени увеличивается, турбулентные вихри проникают в ЗТГ и влияют на кинетику химических реакций. Турбулентность потока приводит разрыву и растяжению ЗТГ, поэтому δ_{rel} увеличивается. Отметим, что обработка экспериментальных данных, полученных на бензопоршневой моторной установке [8] выявила схожее поведение ширины ЗТГ при увеличении частоты вращения коленчатого вала с 600 до 900 min $^{-1}$. В частности, при $\alpha = 1$ ширина ЗТГ увеличилась на 4%, а при $\alpha = 1.2$ прирост δ_{rel} составил 9%, при этом добавка водорода в ТВС практически не влияет на выявленную закономерность.

Анализ экспериментальных значений ширины ЗТГ также выявил, что чем ближе коэффициент избытка воздуха к единице, тем тоньше ширина ЗТГ. Это объясняется тем, что при стехиометрическом составе ТВС ($\alpha=1$) скорость химических реакций имеет максимальное значение, в результате увеличивается нормальная скорость пламени и уменьшается ширина ЗТГ. Обнаружено, что добавление водорода приводит к уменьшению ширины ЗТГ (рис. 1). Данный эффект объясняется возрастанием

Рис. 3. Связь максимального давления (P_{rel}) в КС с шириной ЗТГ: \diamondsuit , \Box , \triangle , \diamond , \spadesuit , \blacksquare , \blacktriangle , \bullet — hythane; \times , + — бензин + H₂ [8]; \diamondsuit , \Box , \triangle , \diamond , \times — $n=600\,\mathrm{min}^{-1}$; \spadesuit , \blacksquare , \blacktriangle , \bullet , + — $n=900\,\mathrm{min}^{-1}$; \spadesuit , \diamondsuit , \times , + — $r_{\mathrm{H}}=0\%$; \blacksquare , \Box — $r_{\mathrm{H}}=29\%$; \blacktriangle , \triangle — $r_{\mathrm{H}}=47\%$; \bullet , \circ — $r_{\mathrm{H}}=58\%$.

Рис. 4. Связь ширины ЗТГ пламени с электропроводностью пламени: \blacklozenge , \blacksquare , \blacktriangle , \bullet — hythane; \diamondsuit , \times , \square — бензин + H₂ [7]; \blacklozenge , \diamondsuit — $r_{\rm H} = 0\%$; \times — $r_{\rm H} = 19\%$; \blacksquare , \square — $r_{\rm H} = 29\%$; \blacktriangle , \triangle — $r_{\rm H} = 47\%$; \bullet , \diamondsuit — $r_{\rm H} = 58\%$.

нормальной скорости пламени, которая отражает интенсивность химических реакций в ЗТГ. Чем выше нормальная скорость распространения пламени, тем быстрее сгорает топливо и сильнее сокращается ЗТГ. Отмечено, что уменьшение ширины ЗТГ усиливается с увеличением коэффициента избытка воздуха (рис. 1). Это связано с тем, что в бедных ТВС количество основного углеводородного топлива меньше, чем в богатых ТВС, поэтому при $\alpha > 1$ влияние добавок водорода на процесс сгорания становится более заметным. Так, например, при $\alpha = 1$ добавка 58% водорода привела к сокращению ЗТГ на 20%, а для $\alpha = 1.2$ уменьшение ширины ЗТГ составило 29%. Сравнение полученных результатов с

исследованиями российских [8] и зарубежных [9] ученых показало схожее поведение ширины ЗТГ при добавках водорода в ТВС. Например, в работе [8] при изучении влияния микродобавок водорода на ширину ЗТГ было обнаружено, что при $\alpha=0.8$ добавка $r_{\rm H}=19\%$ приводит к 7% уменьшению ширины ЗТГ, а при $\alpha=1.3$ такая же добавка водорода уменьшила ширину ЗТГ уже на 21%.

На рис. 2 представлена связь ширины ЗТГ со скоростью распространения пламени. Экспериментально обнаружено, что, несмотря на изменение коэффициента избытка воздуха, концентрации водорода в ТВС, интенсивности турбулентности и вида топлива (hythane и бензин), сохраняется степенная зависимость ширины ЗТГ от турбулентной скорости распространения пламени. При этом уменьшение δ_{rel} соответствует увеличению U_{rel} . Схожее поведение δ_{rel} при изменении U_{rel} выявлено при анализе исследований, проведенных российскими учеными на бензопоршневом двигателе [8], а также работ шведских ученых из технического университета Чалмерса [10]. Также на рис. 2 видно, что при снижении скорости пламени ширина ЗТГ стремится к максимуму, т.е. когда режим горения приобретает черты реактора идеального перемешивания, отсутствуют четкие границы между зонами сгоревшей и несгоревшей ТВС и весь процесс сгорания представляет собой одну сплошную ЗТГ. С другой стороны, анализ графика показывает, что, как бы ни была высока скорость распространения пламени, ширина ЗТГ никогда не будет равна нулю. Полученные результаты соответствуют и подтверждают современные представления теории турбулентного горения в условиях двигателя внутреннего сгорания с искровым зажиганием [11].

На рис. З представлена связь максимального давления в КС с шириной ЗТГ при изменении коэффициента избытка топлива, концентрации водорода в топливе (hythane и бензин) и интенсивности турбулентности. Обнаружено, что, несмотря на изменение варьируемых в эксперименте факторов, сохраняется линейная зависимость максимального давления в КС от ширины ЗТГ. При этом сокращение δ_{rel} соответствует увеличению P_{rel} . Это объясняется тем, что чем меньше δ_{rel} , тем выше скорость распространения пламени и интенсивность сгорания топлива в ЗТГ. В результате при сгорании выделяется больше тепла, а само топливо сгорает в меньшем объеме, что приводит к росту P_{rel} .

На рис. 4 представлена связь ширины ЗТГ пламени с электропроводностью пламени (оцениваемой амплитудой ионного тока). Выявлено, что, несмотря на изменение коэффициента избытка воздуха, концентрации водорода в ТВС и вида топлива (hythane и бензин), сохраняется линейная зависимость ширины ЗТГ от амплитуды ионного тока (I_{rel}). При этом увеличение I_{rel} соответствует уменьшению δ_{rel} , т.е. чем выше электропроводность пламени, тем меньше ширина ЗТГ. Так, например, для $r_{\rm H}=0\%$ увеличение I_{rel} с 0.55 до 1 соответствует уменьшению ширины ЗТГ δ_{rel} с 1.25

до 1; для бензовоздушной смеси при тех же условиях увеличение I_{rel} с 0.3 до 1 соответствует уменьшению ширины 3ТГ δ_{rel} с 1.2 до 1. Это объясняется тем, что значение ионного тока характеризует интенсивность химических реакций в 3ТГ — чем выше ток, тем выше скорость химических реакций и, значит, меньше ширина 3ТГ. Также на рис. 4 видно, что чем больше добавка водорода, тем слабее корреляция между ионным током и шириной 3ТГ. Это связано с тем, что при добавке водорода в интервале от 29 до 58% ионный ток практически не меняется (так как увеличение I_{rel} за счет роста скорости химических реакций, обусловленного добавкой водорода, компенсируется снижением I_{rel} изза уменьшения концентрации углерода [7]), в отличие от ширины 3ТГ пламени.

Заключение

- 1. Выявлено, что ширина ЗТГ имеет характерную зависимость от состава hythane чем ближе коэффициент избытка воздуха к единице и больше концентрация водорода в топливе, тем меньше ширина ЗТГ.
- 2. Экспериментально обнаружено, что, несмотря на изменение коэффициента избытка воздуха, концентрации водорода в топливе, интенсивности турбулентности и вида топлива (hythane и бензин), сохраняются неизменными следующие зависимости: а) степенная зависимость ширины ЗТГ от турбулентной скорости распространения пламени чем выше скорость пламени, тем меньше ширина ЗТГ; б) линейная зависимость ширины ЗТГ от электропроводности пламени чем больше электропроводность пламени, тем меньше ширина ЗТГ; в) линейная зависимость максимального давления от ширины ЗТГ чем меньше ширина ЗТГ, тем выше давление.
- 3. Обработка результатов зарубежных и отечественных ученых показала справедливость полученных нами закономерностей для камер сгораний разных конструкций, использующих разное углеводородное топливо.

Финансирование работы

Работа публикуется при поддержке Министерства науки и высшего образования РФ в рамках программы назначения стипендии президента РФ для молодых ученых СП-3204.2018.1.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Sandalcı T., Galata S., Karagoz Y. // Int. J. Hydrogen Energy. 2019. N 5. P. 3208-3220.
- [2] Tangoz S., Kahraman N. // Int. J. Hydrogen Energy. 2017.N 5. P. 25766—25780.

- [3] *Mariani A.* Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines. In Tech. Europe, 2012. 325 p.
- [4] *Ma F.* Hydrogen-Enriched Compressed Natural Gas as a Fuel for Engines. Natural Gas, 2010. 606 p.
- [5] Verma G., Prasad R.K., Agarwal R.A. // Fuel. 2016. N 178. P. 209–217.
- [6] Shaikin A.P., Galiev I.R. // Russ. Aeronautics. 2016. Vol. 59. P. 249-253.
- [7] Шайкин А.П., Галиев И.Р. // ЖТФ. 2016. Т. 86. Вып. 8.
 С. 87–89. [Shaikin A.P., Galiev I.R. // Tech. Phys. 2016. N 8.
 Р. 1206–1208.]
- [8] Дерячев АД. Эмпирическая модель оценки концентрации оксидов азота при добавке водорода в ТВС двигателей с искровым зажиганием. Тольятти, 2015. 150 с.
- [9] *Hermanns R.T.* Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures. Universal Press, 2007. 144 p.
- [10] Lipatnikov A.N., Chomiak J. // Prog. Energy Combust. Sci. 2002. N 28. P. 1-74.
- [11] Peters N. Combustion Theory. Princeton, 2010. 285 p.