02,13

Резонансные ступени тока в джозефсоновских структурах с прослойкой из материала, обладающего сильным спин-орбитальным взаимодействием

© К.И. Константинян 1 , Г.А. Овсянников 1 , А.М. Петржик 1 , А.В. Шадрин 1,2 , Ю.В. Кислинский 1 , G. Cristiani 3 , G. Logvenov 3

Долгопрудный, Россия

³ Max Planck Institute for Solid State Research, Stuttgart, Germany

E-mail: karen@hitech.cplire.ru

Поступила в Редакцию 26 марта 2020 г. В окончательной редакции 26 марта 2020 г. Принята к публикации 2 апреля 2020 г.

Исследованы СВЧ- и магнитные параметры джозефсоновских меза-структур Nb/Au/Sr₂IrO₄/YBa₂Cu₃O_x с прослойкой из Sr₂IrO₄ — материала, являющегося моттовским антиферромагнитным изолятором с высокой энергией спин-орбитального взаимодействия, $E_{\rm SO} \sim 0.4\,{\rm eV}$. Под воздействием монохроматического электромагнитного облучения возникали осциллирующие с мощностью облучения ступени Шапиро, подтверждающие джозефсоновские свойства структур. В присутствии слабого магнитного поля $H < 15\,{\rm Oe}$ на вольт-амперных характеристиках наблюдаются резонансные ступени тока при напряжениях V_n , обратно пропорциональных размеру структур в плане L. При смене полярности электрического тока I наблюдалась асимметрия положения резонансных ступеней тока. При задании магнитного поля H значения напряжений V_n не изменялись, а амплитуды резонансных ступеней тока изменялись немонотонно.

Ключевые слова: меза-гетероструктура, спин-орбитальное взаимодействие, иридат стронция, ступени Фиске.

DOI: 10.21883/FTT.2020.09.49758.03H

1. Введение

В последнее время наблюдается повышенный интерес к сверхпроводниковым структурам с сильным спинорбитальным взаимодействием (СОВ), что обусловлено, в частности, возможностью возникновения в них спинтриплетного спаривания [1,2] и перспективой реализации джозефсоновских структур с нарушенной инвариантностью при обращении времени [3,4]. Экспериментальное наблюдение эффекта Джозефсона в мезаструктурах Nb/Au/Sr₂IrO₄/YBa₂Cu₃O_x с барьерной прослойкой из Sr₂IrO₄ — материала, являющегося скошенным (canted) моттовским антиферромагнитным изолятором с высокой энергией СОВ $E_{\rm SO}\sim 0.4\,{\rm eV}$ и слабым ферромагнетизмом $\sim 0.04 \, \mu_{\rm B}$ на атом Ir сообщалось в работе [5]. Особенностью указанных структур являлось одновременное сосуществование сверхпроводимости тока в меза-структурах, пика проводимости при нулевом смещении (ZBCP) и рост проводимости при напряжениях $V > 5 - 10 \,\text{mV}$.

Известно, что под воздействием даже слабого магнитного поля на вольт-амперной характеристике (BAX) туннельного SIS-перехода (S — сверхпроводниковые электроды, I — немагнитный изолятор) возникают

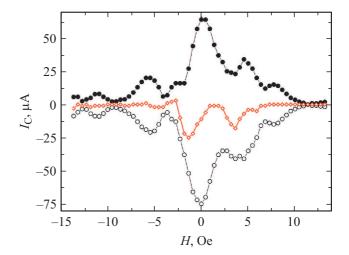
резонансные ступени Фиске [7,8] при напряжениях $V_n=n\Phi_0c'/2L$, где n — номер ступени, Φ_0 — квант магнитного потока, $c'=c(t/\varepsilon\Lambda)^{1/2}$ — скорость Свайхарта [9], c — скорость света в вакууме, L — ширина перехода, t — толщина изоляторного слоя передающей линии с диэлектрической проницаемостью ε , Λ — глубина проникновения магнитного поля в прослойку и сверхпроводники. В случае сверхпроводящего туннельного перехода с изолятором, обладающего магнитными свойствами, величина глубины проникновения видоизменяется

$$\Lambda = \mu t + \lambda_{L1} \operatorname{cth}(d_1/2\lambda_{L1}) + \lambda_{L2} \operatorname{cth}(d_2/2\lambda_{L2}),$$

где μ — магнитная проницаемость, d_i и λ_{Li} (i=1, 2) — толщины сверхпроводящих пленок и их лондоновские глубины проникновения магнитного поля, соответственно.

Влияние магнетизма барьерного слоя на динамику распространения электромагнитных колебаний в сверхпроводниковых контактах было рассмотрено теоретически для SIFS- и SFIFS-структур [10] и для SI_FS [11], здесь F — ферромагнетик, I_F — ферромагнитный изолятор. Однако в экспериментальных работах [12,13] на SIFS-структурах отклонения от теории [7], предсказан-

 $^{^{1}}$ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия

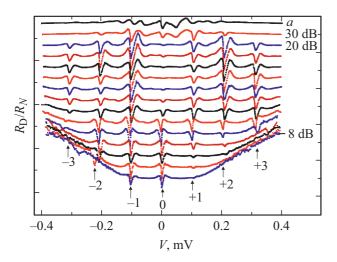

 $^{^{2}}$ Московский физико-технический институт,

ные в работах [10,11], не отмечались. В то же время наличие сильного СОВ в прослойке $I_{\rm SO}$ может изменить динамику распространения электромагнитных волн в $SI_{\rm SO}S$ -структуре. В настоящей работе сообщается об экспериментальном исследовании резонансных ступеней тока в $S_1I_{\rm SO}S_2$ -структурах Nb/Au/Sr₂IrO₄/YBa₂Cu₃O_x с барьерной прослойкой из Sr₂IrO₄, материала с высокой энергией СОВ.

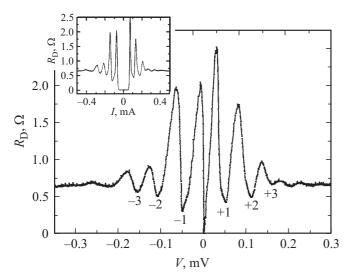
2. Результаты и обсуждение

Технология изготовления и результаты измерения электрофизических параметров сверхпроводниковых меза-структур (СМС) сообщались в работах [6,14,15]. СМС изготавливались из эпитаксиальных гетероструктур $Sr_2IrO_4/YBa_2Cu_3O_x$ с толщиной пленки $YBa_2Cu_3O_x \sim 100$ nm дополнительным напылением пленок Nb и Au, а также изолятора SiO_2 . Топология меза-структур микронных размеров формировалась с помощью фотолитографии и ионно-плазменного и ионно-лучевого травлений. В данной работе обсуждаются результаты экспериментального исследования СМС Nb/Au/Sr₂IrO₄/YBa₂Cu₃O_x, у которых прослойка Sr_2IrO_4 имела толщину t=5 nm, а размеры L в плане изменялись от 20 до $50\,\mu$ m.

На рис. 1 приведена магнитнополевая зависимость критического тока $I_C(H)$, представленная для обеих полярностей задаваемого тока I через СМС. Отметим, магнитное поле задавалось соленоидом, ток через который изменялся от $I_H = 0$, затем до положительного значения I_H (поле H_+) и обратно до отрицательного значения (H_{-}) . На рис. 1 приведена зависимость, снятая при изменении поля от $H_{+}=13.2\,\mathrm{Oe}$ до $H_{-}=-13.7\,\mathrm{Oe}$. Соленоид и СМС находились внутри экрана из многослойного аморфного пермаллоя, понижающего поле Земли примерно на порядок. Величины малых значений критического тока I_C и замытых флуктуациями резонансных ступеней I_n определялись по методике, приведенной в работе [6]. Семейства ВАХ снимались в режиме задания тока в последовательности от $0 o I_+ o I_- o 0$. Здесь I_{+} и I_{-} — крайние значения измерительных токов с индексом, указывающим полярность. Аналогичное обозначение использовалось для значений критического тока с разной полярностью: I_{C+} и I_{C-} . Из рис. 1 видно, что на осциллирующих зависимостях $I_{C+}(H)$ и $I_{C-}(H)$ в диапазоне H от -15 до -7 Ое и при H > 10 Ое имеются нулевые минимумы, что свидетельствует об отсутствии закороток. Расчетное значение первого минимума по теоретической фраунгоферовой зависимости $I_C(H)$ дает близкое к эксперименту значение $H_1 = \Phi_0/\mu_0 \Lambda L \approx 4 \, \mathrm{Oe}$ при $\lambda_{L1}=150\,\mathrm{nm}$ для $\mathrm{YBa_{2}Cu_{3}O_{x}}$ и $\lambda_{L2}=90\,\mathrm{nm}$ для Nb, хотя форма экспериментальной зависимости $I_C(H)$ для H > 0 заметно отличается от фраунгоферовой. Наблюдается отличие $I_{C+}(H)$ и $I_{C-}(H)$ как по направлению магнитного поля, H > 0 и H < 0, так и по полярности задания измерительного тока І через СМС. Зависимость


Рис. 1. Зависимости $I_C(H)$ для CMC с $L=40\,\mu\text{m}$. Темные кружки соответствуют положительной полярности задаваемого тока I, незаполненные — светлые. Магнитная зависимость разности значений критических токов при положительном и отрицательном задании электрического смещения показана ромбами.

 $I_{C+}(H)$ vs $I_{C-}(H)$, наблюдаемая в узком интервале полей H, также приведена на рис. 1. Заметим, случай "широкого" перехода $L>4\lambda_J$, где $\lambda_J=(\Phi_0/\mu_0\Lambda j_C)^{1/2}$ — джозефсоновская глубина проникновения магнитного поля $(j_C=I_C/L^2$ — плотность критического тока) не объясняет асимметрию и отличие критических токов I_{C+} и I_{C-} , поскольку $\lambda_J=170\,\mu\mathrm{m}$ и имеем, напротив, обратное неравенство $\lambda_J>4L$.


Были проведены также измерения ВАХ и зависимостей дифференциального сопротивления $R_D(V)$ под воздействием электромагнитного облучения на частоте $f_e = 50 \, \text{GHz}$ при различных значениях мощности воздействия P (см. рис. 2). Видно, что эквидистантность напряжений $V_N = N\Phi_0 f_e$ ступеней Шапиро выполняется с высокой точностью для обеих полярностей напряжения V, как показано на рисунке для N=1,2,3. В то же время амплитуды ступеней Шапиро, судя по глубине минимумов R_D , нормированных на R_N , для разнополярных значений V отличаются. Такая асимметрия может быть обусловлена отличием спин-поляризованных компонент тока через СМС, что требует отдельного исследования. Важно отметить осциллирующие с мощностью электромагнитного облучения амплитуды I_C и ступеней Шапиро, также свидетельствующие об отсутствии закороток. На рис. 2 приведена также зависимость $R_D(V)$, снятая без СВЧ-воздействия (кривая а). Видно, что уже слабое воздействие с 30-dB затуханием мощности Р практически нивелирует резонансные особенности тока, а ступени Шапиро с номером до N=2 хорошо регистрируются.

Положение резонансных ступеней тока по напряжению определялись по минимумам дифференциального сопротивления $R_D = dV/dI$ СМС при воздействии магнитного поля H. На рис. 3 показана зависимость диф-

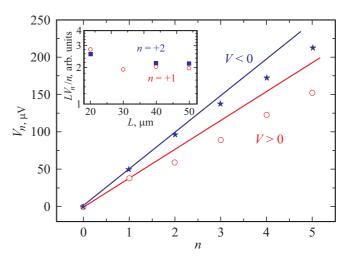
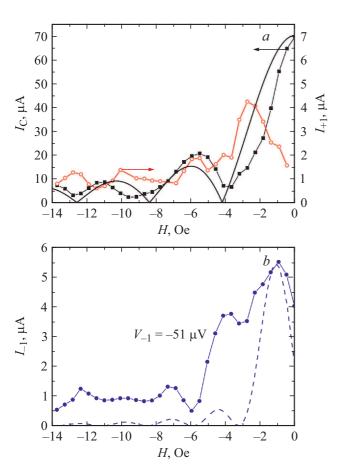
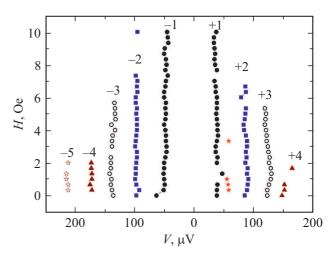

ференциального сопротивления R_D от напряжения при воздействии магнитного поля $H=-1.3\,\mathrm{Oe}$. Цифрами на рис. 3 указаны номера минимумов R_D . При этом значении магнитного поля хорошо видны минимумы R_D до n=3. Соответствующая зависимость $R_D(I)$ СМС, указывающая на наличие критического тока, приведена на вставке к рис. 3.

Рис. 2. Зависимости нормированных к R_N значений дифференциального сопротивления R_D от напряжения V, снятых под воздействием электромагнитного облучения на $f=50.09\,\mathrm{GHz}$ для МС с $L=40\,\mu\mathrm{m}$. Кривые сдвинуты по оси ординат. Цифрами указаны величины вносимого аттенюатором затухания мощности воздействия P: 30 dB, затем с шагом по 1 dB от 20 до 8 dB. Кривая a снята без CBЧ-воздействия. Цифрами указаны номера ступеней Шапиро N, 0 соответствует критическому току.

Рис. 3. Зависимость дифференциального сопротивления R_D СМС с $L=40\,\mu\mathrm{m}$ от напряжения V при напряженности магнитного поля $H=-1.3\,\mathrm{Oe},$ соответствующая подавлению на 30% критического тока I_C на ветви ВАХ, снятой при отрицательном смещении (V<0) при $T=4.2\,\mathrm{K}.$ Цифрами указаны номера n минимумов R_D . На вставке показана зависимость R_D от тока I.


Рис. 4. Значения напряжений резонансных ступеней V_n на СМС с $L=40\,\mu\mathrm{m}$ при положительных и отрицательных напряжениях смещения. Прямые линии — линейные зависимости $V_n(n)$, отвечающие условию эквидистантности напряжений V_n относительно V_1 для n=+1 (V>0) и n=-1 (V<0). На вставке показана зависимость скорости Свайхарта (параметр LV_n/n) от L для четырех СМС на одном чипе для n=+1 и n=+2.

На рис. 4 приведены значения напряжений V_n , соответствующие минимумам R_D для n=1-5 для той же СМС. Видно, что отсутствует эквидистантность положений резонансных ступеней по напряжению. Кроме того, наблюдается асимметрия по напряжению V на СМС; так, значения напряжения особенностей (минимумов R_D) для n=+1 и n=-1, снятых при различных полярностях напряжения, отличаются более чем на $10\,\mu\mathrm{V}$. Отметим, что ошибка при определении особенностей определяется влиянием шумов и не превышает $\pm 0.25\,\mu\mathrm{V}$.


На вставке к рис. 4 показаны значения V_nL/n с номерами резонансных ступеней n = 1 и 2 для четырех СМС на одном чипе, скорости Свайхарта которых должны быть одинаковы из-за постоянства $t/\varepsilon\Lambda$. Такая зависимость V_n от ширины L соответствует возникновению ступенек Фиске [7]. Видно, что отклонение параметра $V_n L/n$, характеризующего величину c', от среднего значения для СМС с L = 30, 40 и 50 μ m оказалось порядка 5% и несколько больше для СМС с $L=20\,\mu m$. Небольшой сдвиг напряжений ступеней Фиске с высокими номерами n отмечался в [13], что объяснялось влиянием окружающей среды с диэлектрическими свойствами, отличными от материала туннельного барьера [16]. Однако в нашем случае отклонение начинается уже с n = 1. Учитывая высокое значение $\varepsilon \sim 45$, измеренное для монокристаллического Sr₂IrO₄ [17], влияние диэлектрического окружения SiO₂ в нашем случае может сказаться только при $n \gg 1$.

На рис. 5 приведены амплитуды ступеней Фиске для n=+1 и n=-1, снятых при магнитном поле H<0, где форма $I_C(H)$ ближе следует теоретической фраунго-

феровой зависимости, приведенной на рис. 5, а. Подгоночными параметрами для фраунгоферовой зависимости использовались значения первых двух минимумов $I_C(H)$ и среднее значение амплитуды $(I_{C+} + I_{C-})/2$. Видно наличие ступеней даже при H=0, что вызвано, скорее всего, асимметрией сверхпроводящего тока $I_{C+} \neq I_{C-}$ (см. рис. 1). На рис. 5, в приведена теоретическая зависимость [8] от магнитного поля амплитуды ступени Фиске I_{-1} с n = -1 при напряжении V_{-1} . В качестве подгоночных параметров по полю H для теоретической функции $I_{-1}(H)$ использовались значения магнитного поля первых двух максимумов $I_{-1}(H)$ со сдвигом по Hна 1 Ое (или на $\Phi_0/6$), что приводит также к сдвигу нуля $I_1(H)$ при H=0 по сравнению с теорией [8]. Отметим осциллирующий характер магнитно-полевых зависимостей I_{+1} и I_{-1} и относительно высокие амплитуды вторичных максимумов по сравнению с теоретической. На рис. 6 показаны все зарегистрирован-

Рис. 5. a) Зависимости от магнитного поля среднего значения критического тока $I_C=(I_{C+}+I_{C-})/2$ (квадраты) и амплитуды ступеней Фиске $I_{+1}(H)$ для n=+1 при $V=+39\,\mu\mathrm{V}$. Теоретическая фраунгоферова зависимость $I_C(H)$ показана сплошной линией. b) Зависимости от магнитного поля амплитуды ступеней Фиске $I_{-1}(H)$ для n=-1 при $V=-51\,\mu\mathrm{V}$. Теоретическая зависимость $I_{-1}(H)$ показана штриховой линией. Максимальные значения теоретических значений I_C и I_{-1} совмещены с экспериментальными.

Рис. 6. Ступени Фиске на плоскости H-V. Цифрами указаны номера n ступеней.

ные резонансные токовые ступени Фиске с достаточно хорошо идентифицируемыми номерами п. Также видно, что положения ступеней Фиске по напряжению V_n устойчивы к изменению магнитного поля. Отклонение от эквидистантности и отличие V_n при смене знака п могут быть вызваны влиянием на спектр джозефсоновских плазменных волн колебаний локальной намагниченности антиферромагнитной прослойки с сильным спин-орбитальным взаимодействием. Для аномального эффекта Джозефсона со сдвигом фазы на φ_0 требуется реализация условий, например, расщепления спиновых зон и наличия СОВ [18,19]. В нашем эксперименте уровень приложенного магнитного поля много меньше зеемановского расщепления, но на характеристики СМС могут оказать значительное влияние магнон-плазменное взаимодействие волн, рассмотренное теоретически для ферромагнитного случая [10,11]. Однако вопрос взаимодействия плазменных и спиновых волн в антиферромагнетике с сильным СОВ пока остается открытым.

3. Заключение

В сверхпроводящих меза-структурах Nb/Au/Sr₂IrO₄/ YBa₂Cu₃O_x с прослойкой из Sr₂IrO₄ толщиной 5 nm, эпитаксиально выращенной на пленке YBa₂Cu₃O_x, наблюдаются резонансные ступени тока и эффект Джозефсона. Наблюдалось неравенство амплитуд критического тока $I_{C+} \neq I_{C-}$ при смене полярности задания электрического тока через структуру. Под воздействием электромагнитного облучения миллиметрового диапазона волн возникают осциллирующие с мощностью ступени Шапиро, указывающие на отсутствие закороток, как и нулевые минимумы на зависимости $I_C(H)$. Отклонение от эквидистантности осциллирующих с полем-H ступеней Фиске и асимметрия зависимости $I_C(H)$ вызваны, скорее всего, влиянием сильного спин-орбитального взаимодействия материала барьерной прослойки Sr₂IrO₄,

известным как антиферромагнитный изолятор с высоким значением диэлектрической проницаемости.

Благодарности

Авторы благодарны А.В. Зайцеву и В.П. Кошельцу за полезные обсуждения.

Финансирование работы

Работа выполнена в рамках государственного задания и частично поддержана РФФИ (проект 19-07-00274).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] C.R. Reeg, D.L. Maslov. Phys. Rev. B 92, 134512 (2015).
- [2] I.V. Bobkova, A.M. Bobkov. Phys. Rev. B 95, 184518 (2017).
- [3] O.V. Dimitrova, M.V. Feigel'man. ЖЭТФ 129, 4, 742 (2006).
- [4] A. Buzdin. Phys. Rev. Lett. 101, 107005 (2008).
- [5] G. Cao, P. Schlottmann. Rep. Prog. Phys. 81, 042502 (2018).
- [6] A.M. Petrzhik, K.Y. Constantinian, G.A. Ovsyannikov, A.V. Zaitsev, A.V. Shadrin, A.S. Grishin, Yu.V. Kislinski, G. Cristiani, G. Logvenov. Phys. Rev. B 100, 024501 (2019).
- [7] D.D. Coon, M.D. Fiske. Phys. Rev. 138, A744 (1965).
- [8] И.О. Кулик. Письма в ЖЭТФ 2, 134 (1965).
- [9] J.C. Swihart. J. Appl. Phys. 32, 461 (1961).
- [10] S. Mai, E. Kandelaki, A.F. Volkov, K.B. Efetov. Phys. Rev. B 84, 144519 (2011).
- [11] S.-I. Hikino, M. Mori, S. Takahashi, S. Maekawa. J. Phys. Soc. Jpn. 80, 074707 (2011).
- [12] G. Wild, C. Probst, A. Marx, R. Gross. Eur. Phys. J. B 78, 509 (2010).
- [13] J. Pfeiffer, M. Kemmler. Phys. Rev. B 77, 214506 (2008).
- [14] Ю.В. Кислинский, Г.А. Овсянников, А.М. Петржик, К.И. Константинян, Н.В. Андреев, Т.А. Свиридова. ФТТ 57, 2446 (2015).
- [15] Г.А. Овсянников, А.С. Гришин, К.И. Константинян, А.В. Шадрин, А.М. Петржик, Ю.В. Кислинский, G. Cristiani, G. Logvenov. ФТТ **60**, *11*, 2125 (2018).
- [16] R. Monaco, G. Costabile, N. Martuccielle. J. Appl. Phys. 77, 5, 2073 (1995).
- [17] S. Chikara, O. Korneta, W.P. Crummett, L.E. DeLong, P. Schlottmann, G. Cao. Phys. Rev. B 80, 14, 140407R (2009).
- [18] M.A. Silaev, I.V. Tokatly, F.S. Bergeret. Phys. Rev. B 95, 184508 (2017).
- [19] S. Calder. Phys. Rev. B 98, 220402(R) (2018).

Редактор Е.В. Толстякова