06.5

Сравнительный эллипсометрический анализ политипов карбида кремния 4H, 15R, 6H, полученных модифицированным методом Лели в одном ростовом процессе

© Д.Д. Авров¹, А.Н. Горляк¹, А.О. Лебедев^{1,2}, В.В. Лучинин¹, А.В. Марков¹, А.В. Осипов^{3,¶}, М.Ф. Панов¹, С.А. Кукушкин⁴

Поступило в Редакцию 15 мая 2020 г. В окончательной редакции 2 июля 2020 г. Принято к публикации 2 июля 2020 г.

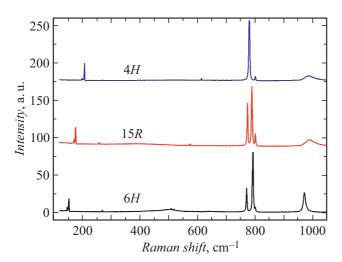
Предложена модель количественного анализа зависимости диэлектрической проницаемости гексагональных политипов карбида кремния от энергии фотонов в диапазоне $0.7-6.5\,\mathrm{eV}$. Модель, представляющая собой сумму двух осцилляторов Таук—Лорентца (основного и неосновного) с общей шириной запрещенной зоны, применяется для описания трех гексагональных политипов карбида кремния (4H, 15R, 6H), полученных в одном ростовом процессе. Анализируются как С-грани, так и Si-грани каждого политипа. Сделан ряд выводов о зависимости параметров осцилляторов от степени гексагональности политипа и типа грани поверхности. Самая сильная зависимость — увеличение амплитуды неосновного осциллятора с увеличением степени гексагональности политипа. Следует отметить также увеличение ширины запрещенной зоны при переходе от C-грани $(000\bar{1})$ к Si-грани (0001).

Ключевые слова: карбид кремния, политипы, диэлектрическая проницаемость, эллипсометрия.

DOI: 10.21883/PJTF.2020.19.50041.18376

Хорошо известно, что для материалов со слоистой структурой, таких как карбид кремния (SiC), характерен частный случай полиморфизма — политипизм [1,2]. В этом случае разные политипы различаются между собой лишь порядком чередования атомных слоев. Некоторые свойства политипов могут значительно отличаться друг от друга, что используется для работы различных приборов [2]. Например, ширина запрещенной зоны кубического политипа 3C-SiC равна 2.4 eV, а гексагонального политипа 4H-SiC — 3.3 eV, поэтому и диоды, и НЕМТ-транзисторы на основе гетероперехода 3C/4H считаются весьма перспективными [3]. Рамановские спектры различных политипов SiC сильно отличаются друг от друга из-за того, что политипы обладают разной симметрией и соответственно для них действуют различные правила запрета на оптические переходы [4]. Зависимость диэлектрической проницаемости от энергии фотонов, наоборот, слабо зависит от симметрии и соответственно от политипа. Тем не менее определенные закономерности существуют, но, чтобы их выявить, необходимо использовать модель, которая описывала бы диэлектрическую проницаемость политипов SiC не только качественно, но и количественно. Цель настоящей работы — исследовать зависимость диэлектрической проницаемости SiC от степени гексагональности политипа и типа грани (С или Si). Последняя зависимость изучается впервые. Для количественного описания диэлектрической проницаемости гексагональных политипов SiC от энергии фотонов в области $0.7-6.5\,\mathrm{eV}$ используется параметризация, состоящая из двух осцилляторов Таук—Лорентца (Tauc—Lorentz, TL) [5], связанных общей шириной запрещенной зоны. Данная модель содержит девять параметров минимизации целевой функции (т. е. разницы между моделью и экспериментом) и обеспечивает очень высокую точность ($\sim 1\%$) описания экспериментальных данных во всей исследуемой области энергий $0.7-6.5\,\mathrm{eV}$. Ранее для сравнения политипов использовались положения критических точек (чаще всего максимумов диэлектрической функции), что давало значительно меньше информации [6].

Для проведения сравнительного анализа оптических свойств гексагональных политипов 4H, 15R, 6H (как Siграней, так и C-граней) из слитка, выращенного модифицированным методом Лели [7] на C-грани $(000\bar{1})$ затравки 4H-SiC, была изготовлена двухдюймовая пластина, содержащая все три политипа. Температурный и скоростной режимы специально выбирались такими, чтобы обеспечить практически одновременный рост и стабилизацию в базисной плоскости политипов 4H, 15R и 6H. Как отмечено в [7], именно области с политипами 6H и 15R появляются в слитках 4H наиболее часто. Температурные градиенты в процессе роста


¹ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

³ Институт проблем машиноведения РАН, Санкт-Петербург, Россия

⁴ Университет ИТМО, Санкт-Петербург, Россия

[¶] E-mail: andrey.v.osipov@gmail.com

Рис. 1. Рамановские спектры каждой из трех областей пластины SiC. Верхний спектр соответствует области с желтозеленым оттенком (60% площади), средний — области с бледно-желтым оттенком (10% площади), нижний — области с бледно-синим оттенком (30% площади). Данные спектры отождествляются со спектрами 4H, 15R, 6H соответственно.

составляли $10-20\,\mathrm{K/cm}$, уровень легирования азотом поддерживался на уровне $\sim 5\cdot 10^{18}\,\mathrm{cm}^{-3}$. Необходимо отметить формирование фасетки на поверхности роста, соответствующей грани $(000\bar{1})$, с более высоким уровнем легирования азотом (в 1.2-1.8 раза) по сравнению с остальной областью фронта роста. Как показано в [8], в относительно слабо легированных азотом кристаллах 4H-SiC ($n<10^{19}\,\mathrm{cm}^{-3}$) сбои политипной последовательности и появление включений 6H и 15R формируются именно на границе фасетки в условиях, когда питание фронта роста азотом прерывается. В данном случае послойный механизм роста стабилизирует политипную структуру возникшего зародыша, распространяя его на всю базисную плоскость.


Пластина, которая использовалась в нашем исследовании, содержала политипы примерно в следующей пропорции: 60% площади — 4H, 30% — 6H, 10% — 15R. Политипы различались по цвету. Политип 4H имел желто-зеленый оттенок, 15R — бледно-желтый, 6H — бледно-синий. На границах политипных включений имелись области с высокой плотностью микропор и дислокаций [9]. Политипная структура образца определялась с помощью как дифракции рентгеновских лучей, так и рамановской спектроскопии. На рис. 1 приведены рамановские спектры каждой из трех областей исследуемой пластины SiC, которые позволяют однозначно идентифицировать политип в каждой области.

Методом спектральной эллипсометрии на эллипсометре M-2000D J.A. Woollam с вращающимся компенсатором были измерены зависимости диэлектрической проницаемости ε от энергии E в диапазоне $0.7-6.5\,\mathrm{eV}$ для каждого из трех политипов как у C-грани $(000\bar{1})$, так и у Si-грани (0001). Для измерения выбирались

центральные участки областей каждого политипа, чтобы избежать влияния дефектов на границах политипов. Вещественные части диэлектрической проницаемости $\varepsilon_1(E)$ у Si-граней всех трех политипов в той части спектра, где они различаются наиболее сильно, приведены для сравнения на рис. 2. Для эллипсометрического моделирования использовалась наиболее простая модель, состоящая из подложки SiC и классического слоя шероховатости [10] толщиной h, представляющего собой эффективную среду Бруггеманна (Bruggemann) [10] из 50% материала подложки и 50% вакуума. Диэлектрическая проницаемость SiC моделировалась в виде суммы двух осцилляторов TL с общей шириной запрещенной зоны [5,10]

$$\varepsilon_{2}(E) = \begin{cases} \frac{(E - E_{g})^{2}}{E} \sum_{i=1}^{2} \frac{A_{i}B_{i}E_{i}}{(E - E_{i})^{2} + B_{i}^{2}E^{2}}, E > E_{g}, \\ 0, E \leq E_{g}, \end{cases}$$
(1)
$$\varepsilon_{1}(E) = \varepsilon_{\infty} + \frac{2}{\pi} P \int_{E}^{\infty} \frac{\varepsilon_{2}(E) + A_{P}/(E_{P}^{2} - E^{2})}{x^{2} - E^{2}} x dx.$$
(2)

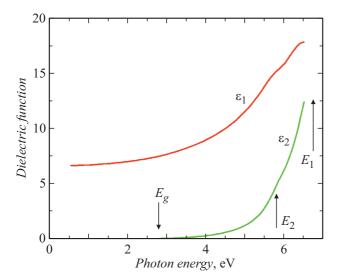

Здесь $\varepsilon_1, \varepsilon_2$ — вещественная и мнимая части диэлектрической проницаемости соответственно, E_g — ширина запрещенной зоны, E_1, E_2 — энергии двух пиков TL, A_1, A_2 — их амплитуды, B_1, B_2 — их ширины, P обозначает интеграл в смысле главного значения, ε_∞ — высокочастотная диэлектрическая проницаемость, A_P, E_P — амплитуда и положение ультрафиолетового полюса, который находится вне исследуемой области энергий и описывает влияние поглощения света вне исследуемой области на дисперсию диэлектрической проницаемости [10]. Иными словами, ультрафиолетовый полюс корректирует поведение ε_1 из-за того, что мы

Рис. 2. Зависимость от энергии фотонов вещественной части диэлектрической проницаемости Si-грани пластины SiC в областях с политипами 4H, 15R, 6H, измеренная на эллипсометре M-2000D J.A. Woollam с вращающимся компенсатором.

Параметры осцилляторов	TL, полученные	е минимизацией	разности	между	экспериментальными	и теоретическими	зависимостя-
ми $\varepsilon(E)$							

Политип	A_1	B ₁ , eV	E_1 , eV	A_2	B_2 , eV	E_2 , eV	A_P	E_g , eV	h, nm
4 <i>H</i> -SiC, Si-грань	56	1.40	6.78	5.1	0.80	5.77	88	2.93	2.09
4 <i>H</i> -SiC, С-грань	51	1.40	6.79	5.2	0.80	5.78	95	2.88	2.26
15 <i>R</i> -SiC, Si-грань	59	1.35	6.79	2.7	0.70	5.84	74	2.77	2.12
15 <i>R</i> -SiC, С-грань	58	1.35	6.84	2.8	0.70	5.86	74	2.72	2.68
6 <i>H-</i> SiC, Si-грань	56	1.38	6.71	0.7	0.52	5.93	83	2.68	2.03
6 <i>H-</i> SiC, С-грань	56	1.38	6.77	0.8	0.52	5.99	80	2.66	2.08

Рис. 3. Зависимость диэлектрической проницаемости С-грани политипа 15R от энергии фотонов. Разница между экспериментом и теорией (1), (2) со значениями параметров из таблицы меньше толшины линий.

не знаем зависимость $\varepsilon_2(E)$ во всем диапазоне энергий (в данном случае мы измеряем и описываем $\varepsilon_2(E)$ только в диапазоне от 0.7 до 6.5 eV).

При сопоставлении экспериментальных и теоретических зависимостей $\varepsilon(E)$ было обнаружено, что параметры ε_{∞} и E_P во всех случаях одинаковы, а именно $\varepsilon_{\infty} = 2.3 \, \text{eV}, \; E_P = 7.2 \, \text{eV}.$ Таким образом, в данной эллипсометрической модели имеется всего девять параметров минимизации погрешности (h, A_P, E_g) и по три параметра на каждый осциллятор TL: $A_1, B_1, E_1, A_2, B_2, E_2$). Результаты моделирования экспериментальных данных сведены в таблицу. Погрешность минимизации во всех случаях меньше 1%, т.е. визуально разница между экспериментальными $\varepsilon_1(E)$, $\varepsilon_2(E)$ и теоретическими зависимостями, полученными по формулам (1), (2), практически не видна. Данные таблицы позволяют не только выявить разницу между политипами или типами грани поверхности SiC, но и получить аналитические зависимости $\varepsilon_1(E)$, $\varepsilon_2(E)$ в диапазоне энергий от 0 до 6.5 eV в каждом случае. В частности, на рис. 3 изображены зависимости $\varepsilon_1(E)$, $\varepsilon_2(E)$

для С-грани $(000\overline{1})$ 15*R*-SiC. Отметим, что информация о диэлектической функции политипа 15*R* отсутствует даже в наиболее полном справочнике [6].

Таким образом, в работе предложена модель, содержащая девять параметров минимизации, описывающая с высокой точностью ($\sim 1\%$) зависимость от энергии диэлектрической функции гексагональных политипов SiC. Сопоставляя между собой результаты описания политипов 4H, 15R, 6H, полученных в одном ростовом процессе, т.е. в одних и тех же условиях, можно сделать следующие выводы. Энергии как основного E_1 , так и неосновного осциллятора E_2 всегда увеличиваются при переходе от Si-грани к C-грани, а ширина запрещенной зоны E_g , наоборот, уменьшается. При увеличении степени гексагональности политипа SiC, т. е. при изменении $6H \rightarrow 15R \rightarrow 4H$ амплитуда A_2 и ширина B_2 неосновного осциллятора заметно увеличиваются, причем для Сграни A_2 увеличивается всегда сильнее, чем для Si-грани. Ширина запрещенной зоны при увеличении степени гексагональности также увеличивается, что хорошо известно. Амплитуда основного осциллятора A_1 в отличие от A_2 больше у Si-грани. Ширины B_1 и B_2 основного и неосновного осцилляторов не зависят от типа грани, а шероховатость С-грани больше, чем шероховатость Siграни. Последнее, очевидно, связано с тем, что поверхностная энергия С-грани всегда больше поверхностной энергии Si-грани [11].

Благодарности

Исследования проводились с использованием оборудования уникальной научной установки "Физика, химия и механика кристаллов и тонких пленок" ФГУП ИПМаш РАН (Санкт-Петербург).

Финансирование работы

А.В. Осипов выполнял свою часть работы в рамках госзадания ФГУП ИПМаш РАН № АААА-А18-118012790011-3. С.А. Кукушкин осуществлял свою часть работы в рамках проекта Российского научного фонда № 19-72-30004.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Sebastian M.T., Krishna P. Random, non-random and periodic faulting in crystals. London—N.Y.: Routledge, 2014. 383 p.
- [2] Fan J., Chu P.K. Silicon carbide nanostructures. Fabrication, structure, and properties. Cham: Springer, 2014. 330 p.
- [3] Minamisawa R.A., Mihaila A., Farkas I., Teodorescu V.S., Afanas'ev V.V., Hsu C.-W., Janzen E., Rahimo M. // Appl. Phys. Lett. 2016. V. 108. P. 143502. DOI: 10.1063/1.4945332
- [4] Nakashima S., Harima H. // Phys. Status Solidi A. 1997. V. 162. P. 39–64. DOI: 10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L
- [5] Jellison G.E., Modine F.A. // Appl. Phys. Lett. 1996. V. 69.
 P. 371–373. DOI: 10.1063/1.118064
- [6] Adachi S. Optical constants of crystalline and amorphous semiconductors: numerical data. Boston: Kluwer Academic Publ., 1999. 714 p.
- [7] Авров Д.Д., Лебедев А.О., Таиров Ю.М. // ФТП. 2016. Т. 50. В. 4. С. 501–508.
- [8] Liu Ch., Chen X., Peng T., Wang B., Wang W., Wang G. //
 J. Cryst. Growth. 2014. V. 394. P. 126–131.
 DOI: 10.1016/j.jcrysgro.2014.02.027
- [9] Авров Д.Д., Дорожкин С.И., Лебедев А.О., Таиров Ю.М., Трегубова А.С., Фадеев А.Ю. // ФТП. 2009. Т. 43. В. 9. С. 1288–1294.
- [10] Spectroscopic ellipsometry for photovoltaics. V. 1. Fundamental principles and solar cell characterization / Eds H. Fujiwara, R.W. Collins. Cham: Springer, 2018. 594 p. DOI: https://doi.org/10.1007/978-3-319-75377-5
- [11] Osipov A.V. // J. Phys. D: Appl. Phys. 1995. V. 28. P. 1670– 1679. DOI: 10.1088 0022-3727/28/8/016